Phytogenic and Nutritional Strategies to Improve Milk Production and Microbiological Quality in Lactating Donkeys
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design, Animals and Management
- CG: 10–11 kg/animal/day of pasture grass supplemented with 1 kg of corn (Table 1);
- G1: 10–11 kg/animal/day of pasture grass supplemented with 1 kg/animal/day of compound feed including phytogenic additives (Table 1);
- G2: 10–11 kg/animal/day of pasture grass supplemented with 1 kg/animal/day of compound feed without phytogenic additives (Table 1).
2.3. Feed and Feces Collection and Analysis
2.4. Milk Sampling and Analyses
2.5. Statistical Analysis
3. Results
3.1. Digestibility of Feed Rations
3.2. Milk Production Response to Feeding Strategies
3.3. Dietary Influence on the Chemical Composition of Donkey Milk
3.4. Microbiological Quality of Donkey Milk
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martini, M.; Altomonte, I.; Licitra, R.; Salari, F. Nutritional and Nutraceutical Quality of Donkey Milk. J. Equine Vet. Sci. 2018, 65, 33–37. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, L.; Chen, X.; Zhu, H.; Wei, J.; Zhu, M.; Khan, M.Z.; Wang, C.; Zhang, Z. Nutritional Composition and Biological Activities of Donkey Milk: A Narrative Review. Foods 2025, 14, 2337. [Google Scholar] [CrossRef]
- Živkov Baloš, M.; Ljubojević Pelić, D.; Jakšić, S.; Lazić, S. Donkey Milk: An Overview of Its Chemical Composition and Main Nutritional Properties or Human Health Benefit Properties. J. Equine Vet. Sci. 2023, 121, 104225. [Google Scholar] [CrossRef]
- Martini, M.; Salari, F.; Licitra, R.; La Motta, C.; Altomonte, I. Lysozyme Activity in Donkey Milk. Int. Dairy J. 2019, 96, 98–101. [Google Scholar] [CrossRef]
- Massouras, T.; Bitsi, N.; Paramithiotis, S.; Manolopoulou, E.; Drosinos, E.H.; Triantaphyllopoulos, K.A. Microbial Profile Antibacterial Properties and Chemical Composition of Raw Donkey Milk. Animals 2020, 10, 2001. [Google Scholar] [CrossRef]
- Šarić, L.; Premović, T.; Šarić, B.; Čabarkapa, I.; Todorić, O.; Miljanić, J.; Lazarević, J.; Karabasil, N. Microbiological Quality of Raw Donkey Milk from Serbia and Its Antibacterial Properties at Pre-Cooling Temperature. Animals 2023, 13, 327. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, F.; Catapano, A.; Villano, I.; Di Maio, G.; Petrella, L.; Traina, G.; Pizzella, A.; Tudisco, R.; Cavaliere, G. Invited Review: Human, Cow, and Donkey Milk Comparison: Focus on Metabolic Effects. J. Dairy Sci. 2023, 106, 3072–3085. [Google Scholar] [CrossRef] [PubMed]
- Garhwal, R.; Sangwan, K.; Mehra, R.; Kumar, N.; Bhardwaj, A.; Pal, Y.; Buttar, H.S.; Kumar, H. A Systematic Review of the Bioactive Components, Nutritional Qualities and Potential Therapeutic Applications of Donkey Milk. J. Equine Vet. Sci. 2022, 115, 104006. [Google Scholar] [CrossRef]
- Martini, M.; Altomonte, I.; Tricò, D.; Lapenta, R.; Salari, F. Current Knowledge on Functionality and Potential Therapeutic Uses of Donkey Milk. Animals 2021, 11, 1382. [Google Scholar] [CrossRef]
- Xie, A.; Shen, X.; Hong, R.; Xie, Y.; Zhang, Y.; Chen, J.; Li, Z.; Li, M.; Yue, X.; Quek, S.Y. Unlocking the Potential of Donkey Milk: Nutritional Composition, Bioactive Properties and Future Prospects. Food Res. Int. 2025, 209, 116307. [Google Scholar] [CrossRef]
- Jirillo, F.; Magrone, T. Anti-Inflammatory and Anti-Allergic Properties of Donkey’s and Goat’s Milk. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 27–37. [Google Scholar] [CrossRef]
- Armentia, A.; Miguel, M.S.; Martín-Armentia, B.; Miguel, J.S.; Miguel, A.S.; Galán, T.; Castro, M.-J.; Albertos, I.; Jiménez, J.M.; Corell, A.; et al. Study of Donkey Milk as A Possible Alternative for Patients Allergic to Cow’s Milk. J. Vaccines Immunol. Immunopathol. 2023, 8, 191. [Google Scholar]
- Khan, M.Z.; Chen, W.; Li, M.; Ren, W.; Huang, B.; Kou, X.; Ullah, Q.; Wei, L.; Wang, T.; Khan, A.; et al. Is There Sufficient Evidence to Support the Health Benefits of Including Donkey Milk in the Diet? Front Nutr. 2024, 11, 1404998. [Google Scholar] [CrossRef] [PubMed]
- Martemucci, G.; D’Alessandro, A.G. Fat Content, Energy Value and Fatty Acid Profile of Donkey Milk during Lactation and Implications for Human Nutrition. Lipids Health Dis. 2012, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Q.; Liu, G.; Wang, C. Effects of Donkey Milk on Oxidative Stress and Inflammatory Response. J. Food Biochem. 2022, 46, e13935. [Google Scholar] [CrossRef] [PubMed]
- De Palo, P.; Auclair-Ronzaud, J.; Maggiolino, A. Mammary Gland Physiology and Farm Management of Dairy Mares and Jennies. JDS Commun. 2022, 3, 234–237. [Google Scholar] [CrossRef]
- Papademas, P.; Mousikos, P.; Aspri, M. Valorization of Donkey Milk: Technology, Functionality, and Future Prospects. JDS Commun. 2022, 3, 228–233. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, F.; Du, X.; Liu, G.; Wang, C. Fermented Codonopsis Pilosula Residue Improved Milk Performance of Lactating Donkeys by Enhancing Antioxidant Capacity and Regulating Metabolism. Front. Vet. Sci. 2024, 11, 1489480. [Google Scholar] [CrossRef]
- Raspa, F.; Cavallarin, L.; McLean, A.K.; Bergero, D.; Valle, E. A Review of the Appropriate Nutrition Welfare Criteria of Dairy Donkeys: Nutritional Requirements, Farm Management Requirements and Animal-Based Indicators. Animals 2019, 9, 315. [Google Scholar] [CrossRef]
- Yue, Y.; Li, L.; Tong, M.; Li, S.; Zhao, Y.; Guo, X.; Guo, Y.; Shi, B.; Yan, S. Effect of Varying Dietary Crude Protein Level on Milk Production, Nutrient Digestibility, and Serum Metabolites by Lactating Donkeys. Animals 2022, 12, 2066. [Google Scholar] [CrossRef]
- Rahman, M.A.; Redoy, M.R.A.; Shuvo, A.A.S.; Chowdhury, R.; Hossain, E.; Sayem, S.M.; Rashid, M.H.-U.-; Al-Mamun, M. Influence of Herbal Supplementation on Nutrient Digestibility, Blood Biomarkers, Milk Yield, and Quality in Tropical Crossbred Cows. PLoS ONE 2024, 19, e0313419. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic Feed Additives as Natural Antibiotic Alternatives in Animal Health and Production: A Review of the Literature of the Last Decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Selionova, M.I.; Trukhachev, V.I.; Zagarin, A.Y.; Kulikov, E.I.; Belyaeva, N.P. Effects of Dietary Supplementation Using Phytobiotics with Different Functional Properties on Expression of Immunity Genes, Intestinal Histology, Growth, and Meat Productivity of Broiler Chickens. Vet. Sci. 2025, 12, 302. [Google Scholar] [CrossRef]
- Available online: https://www.eurogroupforanimals.org/files/eurogroupforanimals/2025-04/20250428-Equine%20survey%20report%20-%20English_0.pdf?utm (accessed on 10 July 2025).
- Mureşan, A.; Mureşan, C.; Siteavu, M.; Avram, E.; Bochynska, D.; Taulescu, M. An Outbreak of Equine Herpesvirus-4 in an Ecological Donkey Milk Farm in Romania. Vaccines 2022, 10, 468. [Google Scholar] [CrossRef]
- Coroian, A.; Longodor, A.; Mariş, C.; Marchis, Z.; Andronie, L.; Cocan, D.; Balta, I. Influence of Thermal Processes on Donkey Milk Composition. Sci. Papers. Ser. D. Anim. Sci. 2020, LXIII, 314. [Google Scholar]
- Marchis, Z.; Coroian, A.; Oroian, I.; Mirza, M.; Burduhos, P. Analysis of Environmental Factors’ Impact on Donkeys’ Colostrum Quality. Sustainability 2018, 10, 2958. [Google Scholar] [CrossRef]
- Tamas-Krumpe, O.M.; Stan, A.; Onaciu, G.; Ognean, S.; Ilea, A.; Necula, D.; Coroian, A.; Berean, D.; Lațiu, C.; Ognean, L. The Compositional and Hygienic-Sanitary Analysis of Jennet Milk. Sci. Pap. Ser. D Anim. Sci. 2023, 66, 175–182. [Google Scholar]
- FAO: Domestic Animal Diversity Information System (DAD-IS). Available online: https://www.fao.org/dad-is/data/en/ (accessed on 18 July 2025).
- Burden, F. Practical Feeding and Condition Scoring for Donkeys and Mules. Equine Vet. Educ. 2012, 24, 589–596. [Google Scholar] [CrossRef]
- Mohanty, I.; Senapati, M.R.; Jena, D.; Behera, P. Ethnoveterinary Importance of Herbal Galactogogues—A Review. Vet. World 2014, 7, 325–330. [Google Scholar] [CrossRef]
- Thakur, M.; Khedkar, R.; Singh, K.; Sharma, V. Ethnopharmacology of Botanical Galactagogues and Comprehensive Analysis of Gaps Between Traditional and Scientific Evidence. Curr. Res. Nutr. Food Sci. J. 2023, 11, 589–604. [Google Scholar] [CrossRef]
- Available online: https://food.ec.europa.eu/system/files/2020-08/animal-feed_fh_good-practice_eu-guide_efmc_v1-2.pdf (accessed on 6 July 2025).
- AOAC International. Official Methods of Analysis of AOAC International, 21st ed.; Methods 934.01, 920.39, 954.01, 978.10; Latimer, G.W., Jr., Ed.; AOAC International: Rockville, MD, USA, 2019. [Google Scholar]
- Martin-Rosset, W.; Andueza, D.; Vermorel, M. Prediction of the Metabolisable Energy Content of Forages and Mixed Diets for Horses: Validation and Comparison of Two Evaluation Systems. Animal 2021, 15, 100086. [Google Scholar] [CrossRef]
- Tassone, S.; Fortina, R.; Valle, E.; Cavallarin, L.; Raspa, F.; Boggero, S.; Bergero, D.; Giammarino, M.; Renna, M. Comparison of In Vivo and In Vitro Digestibility in Donkeys. Animals 2020, 10, 2100. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Dairy Products, 17th ed.; Wehr, H.M., Frank, J.F., Eds.; American Public Health Association: Washington, DC, USA, 2004. [Google Scholar]
- Liu, L.-L.; Zhou, X.-L.; Yang, H.-J.; Chen, R. Effect of Dietary Forage/Concentrate Ratio on Nutrient Digestion and Energy and Protein Metabolism in Adult Donkeys. Animals 2020, 10, 1025. [Google Scholar] [CrossRef]
- Tong, M.; Li, S.; Hui, F.; Meng, F.; Li, L.; Shi, B.; Zhao, Y.; Guo, X.; Guo, Y.; Yan, S. Effects of Dietary Selenium Yeast Supplementation on Lactation Performance, Antioxidant Status, and Immune Responses in Lactating Donkeys. Antioxidants 2024, 13, 275. [Google Scholar] [CrossRef] [PubMed]
- Fantuz, F.; Todini, L.; Salimei, E.; Fatica, A.; Mariani, P.; Marcantoni, F.; Ferraro, S. Milk Yield, Major Milk Components and Macro Minerals in Blood Serum of Lactating Donkeys, as Affected by Dietary Trace Element Supplementation and Stage of Lactation. Animals 2025, 15, 1073. [Google Scholar] [CrossRef]
- da Silva Dias, W.; Santiago, J.M.; da Silva, A.H.; de Souza Araujo Pinto, D.; da Silva, A.R.; de Melo Júnior, E.F.; da Silva, K.M.L.; Oliveira, J.T.C.; Bispo, S.V.; Lucena, J.E.C. Production and Composition of Milk from Female Donkeys of the Nordestino Ecotype. Trop Anim Health Prod 2025, 57, 143. [Google Scholar] [CrossRef]
- Kamboh, A.A. Antibiotics and Probiotics in Animal Food—Impact and Regulation; IntechOpen: London, UK, 2023; ISBN 978-1-80356-588-0. [Google Scholar]
- Salari, F.; Licitra, R.; Altomonte, I.; Martini, M. Donkey Feeding During Maintenance, Pregnancy, and Lactation: Effects on Body Weight, Milk Production, and Foal Growth. J. Equine Vet. Sci. 2020, 91, 103131. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, G.; Hui, F.; Guo, X.; Shi, B.; Zhao, Y.; Yan, S. Effects of Dietary Energy Level on Antioxidant Capability, Immune Function and Rectal Microbiota in Late Gestation Donkeys. Front. Microbiol 2024, 15, 1308171. [Google Scholar] [CrossRef] [PubMed]
- Sha, Y.; Yu, J.; Xia, D.; Zhang, Y.; Liu, J.; Wang, H. Remodeling of Intestinal Bacterial Community and Metabolome of Dezhou Donkey Induced by Corn Silage. Sci. Rep. 2024, 14, 17032. [Google Scholar] [CrossRef]
- Su, L.; Guo, J.; Shi, W.; Tong, W.; Li, X.; Yang, B.; Xiang, Z.; Qin, C. Metagenomic Analysis Reveals the Community Composition of the Microbiome in Different Segments of the Digestive Tract in Donkeys and Cows: Implications for Microbiome Research. BMC Microbiol. 2024, 24, 530. [Google Scholar] [CrossRef]
- Alberghini, L.; Catellani, P.; Norbiato, M.A.; Giaccone, V. Microbial status of donkey’s milk: First results. Ital. J. Food Saf. 2012, 1, 7–10. [Google Scholar] [CrossRef]
- Cavallarin, L.; Giribaldi, M.; Soto-Del Rio, M.d.l.D.; Valle, E.; Barbarino, G.; Gennero, M.S.; Civera, T. A Survey on the Milk Chemical and Microbiological Quality in Dairy Donkey Farms Located in NorthWestern Italy. Food Control 2015, 50, 230–235. [Google Scholar] [CrossRef]
- Knežević, S.V.; Vranešević, J.; Lupulović, D.; Kartalović, B.; Knežević, S.; Pajić, M. Effect of Different Temperatures on the Microbiological Status of Donkey Milk. Contemp. Agric. 2023, 72, 235–239. [Google Scholar] [CrossRef]
- Malissiova, E.; Arsenos, G.; Papademas, P.; Fletouris, D.; Manouras, A.; Aspri, M.; Nikolopoulou, A.; Giannopoulou, A.; Arvanitoyannis, I.S. Assessment of Donkey Milk Chemical, Microbiological and Sensory Attributes in Greece and Cyprus. Int. J. Dairy Technol. 2015, 69, 143. [Google Scholar] [CrossRef]
- Mottola, A.; Alberghini, L.; Giaccone, V.; Marchetti, P.; Tantillo, G.; Di Pinto, A. Microbiological Safety and Quality of Italian Donkey Milk. J. Food Saf. 2018, 38, e12444. [Google Scholar] [CrossRef]
- Pilla, R.; Daprà, V.; Zecconi, A.; Piccinini, R. Hygienic and Health Characteristics of Donkey Milk during a Follow-up Study. J. Dairy Res. 2010, 77, 392–397. [Google Scholar] [CrossRef]
- Sarno, E.; Santoro, A.M.L.; Di Palo, R.; Costanzo, N. Microbiological Quality of Raw Donkey Milk from Campania Region. Ital. J. Anim. Sci. 2012, 11, e49. [Google Scholar] [CrossRef]
- Tavşanli, H.; Gökmen, M.; Önen, A. Chemical and Microbiological Quality of Donkey Milk. Ank. Üniversitesi Vet. Fakültesi Derg. 2020, 67, 243–248. [Google Scholar] [CrossRef]
- Malacarne, M.; Criscione, A.; Franceschi, P.; Bordonaro, S.; Formaggioni, P.; Marletta, D.; Summer, A. New Insights into Chemical and Mineral Composition of Donkey Milk throughout Nine Months of Lactation. Animals 2019, 9, 1161. [Google Scholar] [CrossRef]
- Zivkov-Balos, M.; Popov, N.; Vidakovic-Knezevic, S.; Savic, S.; Gajdov, V.; Jaksic, S.; Ljubojevic-Pelic, D. Nutritional Quality of Donkey Milk during the Lactation. Bio Anim. Husb. 2024, 40, 155–168. [Google Scholar] [CrossRef]


| CG | G1 | G2 | ||
|---|---|---|---|---|
| Ingredients | ||||
| Pasture grass consumed | kg | 11 | ||
| Chemical composition (% as is) | ||||
| DE | MJ/kg | 4.13 | ||
| DM | % | 60.60 | ||
| CP | % | 11.80 | ||
| EE | % | 3.80 | ||
| CF | % | 27.50 | ||
| NfE | % | 9.6 | ||
| Ingredients | ||||
| Compound feed consumed (% as is) | kg | 1 | 1 | 1 |
| Corn (ground) | % | 100.00 | 36.00 | 39.00 |
| Wheat (ground) | % | 0.00 | 53.60 | 53.60 |
| Sunflower meal | % | 0.00 | 7.00 | 7.00 |
| Herbal supplement | % | 0.00 | 3.00 | 0.00 |
| Bentonite | % | 0.00 | 0.40 | 0.40 |
| Total | % | 100.00 | 100.00 | 100.00 |
| Chemical composition (% as is) | ||||
| DE | MJ/kg | 5.13 | 5.14 | 5.12 |
| DM | % | 85.68 | 89.43 | 86.91 |
| CP | % | 14.08 | 22.37 | 20.98 |
| EE | % | 2.46 | 1.89 | 2.08 |
| CF | % | 2.46 | 5.22 | 4.67 |
| NfE | % | 64.78 | 57.43 | 56.82 |
| Name | Quantity/kg (As Is) |
|---|---|
| Lemon balm (Melissa officinalis) | 179.2 g |
| Dill (Anethum graveolens) | 179.2 g |
| Fennel (Foeniculum vulgare) | 92.8 g |
| Blessed thistle (Cnicus Benedictus) | 34.6 g |
| Raspberry (Rubus idaeus) | 92.8 g |
| Hop (Humulus lupulus) | 34.6 g |
| Elders flower (Sambucus) | 34.6 g |
| Stinging Nettle (Urtica dioica) | 76.5 g |
| Chamomile (Matricaria chamomilla) | 179.2 g |
| Fenugreek (Trigonella foenumgraecum) | 50.7 g |
| Turmeric (Curcuma longa) | 9.4 g |
| Ginger (Zingiber officinale) | 15.7 g |
| Anise (Pimpinella anisum) | 20.7 g |
| Chemical composition (% as is) | |
| DM | 91.74% |
| CP | 18.74% |
| EE | 1.4% |
| CF | 35.63% |
| Group | Parameter | Mean | Min.–Max. | x ± SD | CV (%) | p-Value |
|---|---|---|---|---|---|---|
| CG | ADMD | 58.72 | 47.38–72.35 | 58.72 ± 6.74 | 11.47 | 0.1314 |
| ACPD | 45.26 | 19.58–56.71 | 45.26 ± 9.85 | 21.77 | 0.5030 | |
| AEED | 78.27 | 71.77–85.36 | 78.27 ± 3.70 | 4.73 | 0.4295 | |
| ACFD | 67.65 | 53.21–77.91 | 67.65 ± 6.92 | 10.22 | 0.2275 | |
| G1 | ADMD | 62.82 | 55.40–72.41 | 62.82 ± 4.56 | 7.26 | 0.4874 |
| ACPD | 57.89 | 48.63–62.10 | 57.89 ± 4.21 | 7.27 | 0.0028 | |
| AEED | 79.3 | 76.14–82.15 | 79.30 ± 2.36 | 2.97 | 0.4692 | |
| ACFD | 71.19 | 61.77–76.63 | 71.19 ± 5.70 | 8.01 | 0.3044 | |
| G2 | ADMD | 60.62 | 52.00–69.37 | 60.62 ± 5.13 | 8.46 | 0.3261 |
| ACPD | 55.86 | 48.95–72.60 | 55.86 ± 6.66 | 11.91 | 0.0123 | |
| AEED | 79.28 | 72.02–83.66 | 79.28 ± 3.35 | 4.23 | 0.9891 | |
| ACFD | 70.64 | 57.53–75.65 | 70.64 ± 5.69 | 8.05 | 0.8315 |
| Group | Parameter % | Pre-Experimental | Post-Experimental | p-Value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Min–Max | x ± SD | CV (%) | Mean | Min–Max | x ± SD | CV (%) | |||
| CG | Fat | 0.22 | 0.18–0.26 | 0.2200 ± 0.0258 | 11.74 | 0.158 | 0.05–0.22 | 0.1580 ± 0.0581 | 36.76 | 0.035131 |
| Protein | 2.592 | 2.13–2.84 | 2.5920 ± 0.2219 | 8.56 | 1.614 | 1.37–1.91 | 1.6140 ± 0.1559 | 9.66 | 0.000002 | |
| Lactose | 6.005 | 5.89–6.12 | 6.0050 ± 0.0717 | 1.19 | 6.385 | 6.11–6.69 | 6.3850 ± 0.2052 | 3.21 | 0.000059 | |
| Total solids | 9.513 | 8.93–9.89 | 9.5130 ± 0.3511 | 3.69 | 8.873 | 8.51–9.15 | 8.8730 ± 0.2012 | 2.27 | 0.002438 | |
| G1 | Fat | 0.27 | 0.25–0.29 | 0.2700 ± 0.0141 | 5.24 | 0.258 | 0.22–0.3 | 0.2580 ± 0.0312 | 12.09 | 0.205528 |
| Protein | 1.91 | 1.68–2.08 | 1.9100 ± 0.1234 | 6.46 | 1.817 | 1.68–1.94 | 1.8170 ± 0.0952 | 5.24 | 0.074022 | |
| Lactose | 6.307 | 5.79–6.67 | 6.3070 ± 0.3156 | 5.0 | 6.475 | 6.11–6.74 | 6.4750 ± 0.2017 | 3.11 | 0.127845 | |
| Total solids | 9.299 | 9.02–9.66 | 9.2990 ± 0.2186 | 2.35 | 9.006 | 8.84–9.26 | 9.0060 ± 0.1419 | 1.58 | 0.010864 | |
| G2 | Fat | 0.257 | 0.16–0.4 | 0.2570 ± 0.0718 | 27.94 | 0.217 | 0.19–0.24 | 0.2170 ± 0.0177 | 8.14 | 0.097778 |
| Protein | 1.923 | 1.57–2.11 | 1.9230 ± 0.2049 | 10.65 | 1.67 | 1.52–1.85 | 1.6700 ± 0.1223 | 7.32 | 0.001454 | |
| Lactose | 6.012 | 5.75–6.39 | 6.0120 ± 0.1820 | 3.03 | 6.476 | 6.33–6.61 | 6.4760 ± 0.0947 | 1.46 | 0.000135 | |
| Total solids | 8.866 | 8.71–9.06 | 8.8660 ± 0.1300 | 1.47 | 9.141 | 9.02–9.22 | 9.1410 ± 0.0687 | 0.75 | 0.000163 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plotuna, A.-M.; Hotea, I.; Nichita, I.; Popa, I.; Imre, K.; Herman, V.; Tîrziu, E. Phytogenic and Nutritional Strategies to Improve Milk Production and Microbiological Quality in Lactating Donkeys. Animals 2025, 15, 3060. https://doi.org/10.3390/ani15203060
Plotuna A-M, Hotea I, Nichita I, Popa I, Imre K, Herman V, Tîrziu E. Phytogenic and Nutritional Strategies to Improve Milk Production and Microbiological Quality in Lactating Donkeys. Animals. 2025; 15(20):3060. https://doi.org/10.3390/ani15203060
Chicago/Turabian StylePlotuna, Ana-Maria, Ionela Hotea, Ileana Nichita, Ionela Popa, Kalman Imre, Viorel Herman, and Emil Tîrziu. 2025. "Phytogenic and Nutritional Strategies to Improve Milk Production and Microbiological Quality in Lactating Donkeys" Animals 15, no. 20: 3060. https://doi.org/10.3390/ani15203060
APA StylePlotuna, A.-M., Hotea, I., Nichita, I., Popa, I., Imre, K., Herman, V., & Tîrziu, E. (2025). Phytogenic and Nutritional Strategies to Improve Milk Production and Microbiological Quality in Lactating Donkeys. Animals, 15(20), 3060. https://doi.org/10.3390/ani15203060

