Characterization of Multidrug-Resistant Trueperella (Arcanobacterium) pyogenes Isolates from Vertebral Osteomyelitis in Slaughtered Pigs
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacteria Isolation and Culture Conditions
2.2. Virulence Factor Analysis
2.3. Antimicrobial Susceptibility Test
2.4. Analysis of 16S rRNA Gene Partial Sequences
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Vertebral Osteomyelitis Cases
3.2. Bacteria Screening and Isolation
3.3. Virulence Related Gene Examination
3.4. Antimicrobial Susceptibility Test
3.5. Analysis of 16S rRNA Gene Partial Sequences
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rzewuska, M.; Kwiecien, E.; Chrobak-Chmiel, D.; Kizerwetter-Swida, M.; Stefanska, I.; Gierynska, M. Pathogenicity and Virulence of Trueperella pyogenes: A Review. Int. J. Mol. Sci. 2019, 20, 2737. [Google Scholar] [CrossRef]
- Gulaydin, O.; Kayikci, C.; Gulaydin, A. Determination of antimicrobial susceptibility and virulence-related genes of Trueperella pyogenes strains isolated from various clinical specimens in animals. Pol. J. Vet. Sci. 2024, 27, 193–202. [Google Scholar] [CrossRef]
- Deliwala, S.; Beere, T.; Samji, V.; McDonald, P.J.; Bachuwa, G. When Zoonotic Organisms Cross Over-Trueperella pyogenes Endocarditis Presenting as a Septic Embolic Stroke. Cureus 2020, 12, e7740. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Lammler, C. Evaluation of the API Coryne test system for identification of Actinomyces pyogenes. J. Vet. Med. Ser. B 1992, 39, 273–276. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.P.; Shivaprasad, H.L.; Jerry, C.; Stoute, S. An Uncommon Case of Trueperella pyogenes Infection in an Adult Backyard Rooster and a Retrospective Study; 2000–20. Avian Dis. 2021, 65, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Pinto, M.; Azevedo, J.; Poeta, P.; Pires, I.; Ellebroek, L.; Lopes, R.; Veloso, M.; Alban, L. Classification of Vertebral Osteomyelitis and Associated Judgment Applied during Post-Mortem Inspection of Swine Carcasses in Portugal. Foods 2020, 9, 1502. [Google Scholar] [CrossRef]
- Levy, C.E.; Pedro, R.J.; Von Nowakonski, A.; Holanda, L.M.; Brocchi, M.; Ramo, M.C. Arcanobacterium pyogenes sepsis in farmer, Brazil. Emerg. Infect. Dis. 2009, 15, 1131–1132. [Google Scholar] [CrossRef]
- Stuby, J.; Lardelli, P.; Thurnheer, C.M.; Blum, M.R.; Frei, A.N. Trueperella pyogenes endocarditis in a Swiss farmer: A case report and review of the literature. BMC Infect. Dis. 2023, 23, 821. [Google Scholar] [CrossRef]
- Hermida Amejeiras, A.; Romero Jung, P.; Cabarcos Ortiz De Barron, A.; Trevino Castallo, M. One case of pneumonia with Arcanobacterium pyogenes. An. Med. Interna 2004, 21, 334–336. [Google Scholar] [CrossRef]
- Kavitha, K.; Latha, R.; Udayashankar, C.; Jayanthi, K.; Oudeacoumar, P. Three cases of Arcanobacterium pyogenes-associated soft tissue infection. J. Med. Microbiol. 2010, 59, 736–739. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, B.; Wu, K.; Wang, C.; Bai, X.; Wang, J.; Yang, Z. Prevalence, Virulence Genes, Drug Resistance and Genetic Evolution of Trueperella pyogenes in Small Ruminants in Western China. Animals 2024, 14, 2964. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Wang, B.; Zhang, Y.; Hu, Y.; Ma, B.; Wang, J. Replacing the 238th aspartic acid with an arginine impaired the oligomerization activity and inflammation-inducing property of pyolysin. Virulence 2018, 9, 1112–1125. [Google Scholar] [CrossRef]
- Liang, H.; Wang, B.; Wang, J.; Ma, B.; Zhang, W. Pyolysin of Trueperella pyogenes Induces Pyroptosis and IL-1beta Release in Murine Macrophages Through Potassium/NLRP3/Caspase-1/Gasdermin D Pathway. Front. Immunol. 2022, 13, 832458. [Google Scholar] [CrossRef]
- Kwiecien, E.; Stefanska, I.; Chrobak-Chmiel, D.; Salamaszynska-Guz, A.; Rzewuska, M. New Determinants of Aminoglycoside Resistance and Their Association with the Class 1 Integron Gene Cassettes in Trueperella pyogenes. Int. J. Mol. Sci. 2020, 21, 4230. [Google Scholar] [CrossRef]
- Fujimoto, H.; Shimoji, N.; Sunagawa, T.; Kubozono, K.; Nakajima, C.; Chuma, T. Differences in phenotypic and genetic characteristics of Trueperella pyogenes detected in slaughtered cattle and pigs with septicemia. J. Vet. Med. Sci. 2020, 82, 626–631. [Google Scholar] [CrossRef]
- Fujimoto, H.; Shimoji, N.; Sunagawa, T.; Sanga, G.; Chuma, T. Differences in antimicrobial resistance-related genes of Trueperella pyogenes between isolates detected from cattle and pigs. J. Vet. Med. Sci. 2024, 86, 1119–1123. [Google Scholar] [CrossRef] [PubMed]
- Jost, B.H.; Post, K.W.; Songer, J.G.; Billington, S.J. Isolation of Arcanobacterium pyogenes from the porcine gastric mucosa. Vet. Res. Commun. 2002, 26, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Cheng, J.; Liu, M. Virulence factors and therapeutic methods of Trueperella pyogenes: A review. Virulence 2025, 16, 2467161. [Google Scholar] [CrossRef]
- Fujimoto, H.; Nakamura, T.; Sato, A.; Chuma, T. Antimicrobial susceptibility of Trueperella pyogenes isolated from cattle and pigs with septicemia in southern Kyushu, Japan. J. Vet. Med. Sci. 2023, 85, 379–382. [Google Scholar] [CrossRef]
- Fessler, A.T.; Schwarz, S. Antimicrobial Resistance in Corynebacterium spp., Arcanobacterium spp., and Trueperella pyogenes. Microbiol. Spectr. 2017, 5, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, J.H.; Hindler, J.F. New consensus guidelines from the Clinical and Laboratory Standards Institute for antimicrobial susceptibility testing of infrequently isolated or fastidious bacteria. Clin. Infect. Dis. 2007, 44, 280–286. [Google Scholar] [CrossRef]
- Aino, M.; Oka, S.; Haruguchi, K.; Aino, M.; Hashimura, S.; Kurosawa, K. Comparison of spinal column alignment and autonomic nervous activity using the intersegmental tenderness test in the segment above. J. Phys. Ther. Sci. 2021, 33, 570–575. [Google Scholar] [CrossRef]
- Rogovskyy, A.S.; Lawhon, S.; Kuczmanski, K.; Gillis, D.C.; Wu, J.; Hurley, H.; Rogovska, Y.V.; Konganti, K.; Yang, C.Y.; Duncan, K. Phenotypic and genotypic characteristics of Trueperella pyogenes isolated from ruminants. J. Vet. Diagn. Investig. 2018, 30, 348–353. [Google Scholar] [CrossRef]
- Rzewuska, M.; Stefanska, I.; Osinska, B.; Kizerwetter-Swida, M.; Chrobak, D.; Kaba, J.; Bielecki, W. Phenotypic characteristics and virulence genotypes of Trueperella (Arcanobacterium) pyogenes strains isolated from European bison (Bison bonasus). Vet. Microbiol. 2012, 160, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Park, J.G.; Moon, K.S.; Jung, S.B.; Kwon, Y.M.; Kang, N.S.; Kim, J.H.; Nam, S.J.; Choi, G.; Baek, Y.B.; et al. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch. Virol. 2024, 169, 41. [Google Scholar] [CrossRef] [PubMed]
- Han, S.J.; Kim, Y.H.; Lee, D.K.; Im, C.W.; Kim, S.J.; Han, J.H. Investigation of characteristics and classification for swine vertebral osteomyelitis in South Korea. BMC Vet. Res. 2025, 21, 192. [Google Scholar] [CrossRef]
- Baird, R.M.; Lee, W.H. Media used in the detection and enumeration of Staphylococcus aureus. Int J Food Microbiol 1995, 26, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Facklam, R.; Elliott, J.; Shewmaker, L.; Reingold, A. Identification and characterization of sporadic isolates of Streptococcus iniae isolated from humans. J. Clin. Microbiol. 2005, 43, 933–937. [Google Scholar] [CrossRef]
- Despotovic, M.; de Nies, L.; Busi, S.B.; Wilmes, P. Reservoirs of antimicrobial resistance in the context of One Health. Curr. Opin. Microbiol. 2023, 73, 102291. [Google Scholar] [CrossRef]
- Garcia-Diez, J.; Saraiva, S.; Moura, D.; Grispoldi, L.; Cenci-Goga, B.T.; Saraiva, C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet. Sci. 2023, 10, 167. [Google Scholar] [CrossRef]
- Apenteng, O.O.; Aarestrup, F.M.; Vigre, H. Modelling the effectiveness of surveillance based on metagenomics in detecting, monitoring, and forecasting antimicrobial resistance in livestock production under economic constraints. Sci. Rep. 2023, 13, 20410. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi Tamai, I.; Mohammadzadeh, A.; Zahraei Salehi, T.; Mahmoodi, P. Genomic characterisation, detection of genes encoding virulence factors and evaluation of antibiotic resistance of Trueperella pyogenes isolated from cattle with clinical metritis. Antonie Van Leeuwenhoek 2018, 111, 2441–2453. [Google Scholar] [CrossRef]
- Liu, M.C.; Wu, C.M.; Liu, Y.C.; Zhao, J.C.; Yang, Y.L.; Shen, J.Z. Identification, susceptibility, and detection of integron-gene cassettes of Arcanobacterium pyogenes in bovine endometritis. J. Dairy Sci. 2009, 92, 3659–3666. [Google Scholar] [CrossRef]
- Rzewuska, M.; Czopowicz, M.; Gawrys, M.; Markowska-Daniel, I.; Bielecki, W. Relationships between antimicrobial resistance, distribution of virulence factor genes and the origin of Trueperella pyogenes isolated from domestic animals and European bison (Bison bonasus). Microb. Pathog. 2016, 96, 35–41. [Google Scholar] [CrossRef]
- Trinh, H.T.; Billington, S.J.; Field, A.C.; Songer, J.G.; Jost, B.H. Susceptibility of Arcanobacterium pyogenes from different sources to tetracycline, macrolide and lincosamide antimicrobial agents. Vet. Microbiol. 2002, 85, 353–359. [Google Scholar] [CrossRef]
- Werckenthin, C.; Alesik, E.; Grobbel, M.; Lubke-Becker, A.; Schwarz, S.; Wieler, L.H.; Wallmann, J. Antimicrobial susceptibility of Pseudomonas aeruginosa from dogs and cats as well as Arcanobacterium pyogenes from cattle and swine as determined in the BfT-GermVet monitoring program 2004-2006. Berl. Munch. Tierarztl. Wochenschr. 2007, 120, 412–422. [Google Scholar] [PubMed]
- Yoshimura, H.; Kojima, A.; Ishimaru, M. Antimicrobial susceptibility of Arcanobacterium pyogenes isolated from cattle and pigs. J. Vet. Med. B Infect. Dis. Vet. Public Health 2000, 47, 139–143. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, J.; Wang, Q.; Liu, Y.; Tian, C.; Zhao, Y.; Yu, L.; Liu, M. Trueperella pyogenes isolated from dairy cows with endometritis in Inner Mongolia, China: Tetracycline susceptibility and tetracycline-resistance gene distribution. Microb. Pathog. 2017, 105, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.L.; Liu, Y.; Zhang, X.Y.; Palahati, P.; Wang, H.N.; Yue, B.S. Detection and characterization of antibiotic-resistance genes in Arcanobacterium pyogenes strains from abscesses of forest musk deer. J. Med. Microbiol. 2011, 60, 1820–1826. [Google Scholar] [CrossRef]
- Dong, W.L.; Liu, L.; Odah, K.A.; Atiah, L.A.; Gao, Y.H.; Kong, L.C.; Ma, H.X. Antimicrobial resistance and presence of virulence factor genes in Trueperella pyogenes isolated from pig lungs with pneumonia. Trop. Anim. Health Prod. 2019, 51, 2099–2103. [Google Scholar] [CrossRef]
- Rezanejad, M.; Karimi, S.; Momtaz, H. Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiol. 2019, 19, 305. [Google Scholar] [CrossRef]
- Trinchera, M.; De Gaetano, S.; Sole, E.; Midiri, A.; Silvestro, S.; Mancuso, G.; Catalano, T.; Biondo, C. Antimicrobials in Livestock Farming and Resistance: Public Health Implications. Antibiotics 2025, 14, 606. [Google Scholar] [CrossRef]
- Chilanga, F.; Kasozi, K.I.; Mazeri, S.; Paterson, G.K.; Muwonge, A. A systematic review of antimicrobial resistance transmission inferences at the human-livestock interface in Africa. NPJ Antimicrob. Resist. 2025, 3, 58. [Google Scholar] [CrossRef] [PubMed]
- Hoshina, D.; Tsujiwaki, M.; Furuya, K.; Kawamura, T. Erythema multiforme associated with Trueperella pyogenes bacteremia. J. Dermatol. 2017, 44, e83–e84. [Google Scholar] [CrossRef]
- Chesdachai, S.; Larbcharoensub, N.; Chansoon, T.; Chalermsanyakorn, P.; Santanirand, P.; Chotiprasitsakul, D.; Ratanakorn, D.; Boonbaichaiyapruck, S. Arcanobacterium pyogenes endocarditis: A case report and literature review. Southeast Asian J. Trop. Med. Public Health 2014, 45, 142–148. [Google Scholar]
- Calo, L.; Scarano, E.; Brigato, F.; Di Cintio, G.; Galli, J. Bilateral cavernous sinus and ophthalmic vein thrombosis secondary to Trueperella pyogenes rhinosinusitis. Indian J. Otolaryngol. Head Neck Surg. 2024, 76, 2840–2843. [Google Scholar] [CrossRef]
- Meili, Z. Trueperella pyogenes pharyngitis in an immunocompetent 40-year-old man. BMJ Case Rep. 2020, 13, e236129. [Google Scholar] [CrossRef] [PubMed]
- Marchionatti, E.; Kittl, S.; Sendi, P.; Perreten, V. Whole genome-based antimicrobial resistance, virulence, and phylogenetic characteristics of Trueperella pyogenes clinical isolates from humans and animals. Vet. Microbiol. 2024, 294, 110102. [Google Scholar] [CrossRef] [PubMed]
Sample | Weight (kg) | Relative Body Weight to Control Pigs (%) | Sex | Collection Date |
---|---|---|---|---|
H2311HS_GJ01 | 103 kg | 91.57% | Female | 16 November 2023 |
IH2311.1MA_GJ02 | 113 kg | 96.2% | Castrated | 16 November 2023 |
IH2311.2MA_GJ03 | 112 kg | 99.58% | Female | 23 November 2023 |
IH2312KC_GJ05 | 100 kg | 88.91% | Female | 12 December 2023 |
IH2312GM_GJ06 | 82 kg | 69.81% | Castrated | 12 December 2023 |
IH2403HN_GJ16 | 114 kg | 101.35% | Female | 20 March 2024 |
IH2403JH_GJ17 | 111 kg | 98.69% | Female | 21 March 2024 |
IH2403YG_GJ18 | 115 kg | 102.24% | Female | 22 March 2024 |
IH2403GY_GJ19 | 115 kg | 102.24% | Female | 26 March 2024 |
IH2404GS_GJ20 | 104 kg | 92.47% | Female | 1 April 2024 |
IH2404MA_GJ21 | 119 kg | 101.3% | Castrated | 4 April 2024 |
Antibiotic Class | Antibiotic Name (Abbreviation) | Minimal Inhibitory Concentration Breakpoint (µg/mL) | |
---|---|---|---|
Susceptible (S) | Resistant (R) | ||
β-lactams | Ampicillin (AMP) | ≤1 | ≥2 |
Cefoxitin (FOX) | ≤4 | ≥8 | |
Ceftazidime (TAZ) | ≤4 | ≥8 | |
Cefotaxime (FOT) | ≤8 | ≥16 | |
Ceftriaxone (AXO) | ≤0.5 | ≥1 | |
Tetracyclines | Tetracycline (TET) | ≤2 | ≥4 |
Aminoglycosides | Gentamicin (GEN) | ≤8 | ≥16 |
Streptomycin (STR) | ≤4 | ≥8 | |
Amikacin (AMI) | ≤8 | ≥16 | |
Fluoroquinolones | Ciprofloxacin (CIP) | ≤2 | ≥4 |
Quinolone | Nalidixic acid (NAL) | ≤16 | ≥32 |
Phenicols | Chloramphenicol (CHL) | ≤0.5 | ≥1 |
Florfenicol (FFN) | ≤0.5 | ≥1 | |
Macrolides | Azithromycin (AZI) | ≤4 | ≥8 |
Erythromycin (ERY) | ≤4 | ≥8 | |
Sulfonamides | Trimethoprim/Sulfamethoxazole (SXT) | ≤0.12 | ≥0.25 |
Lincosamides | Clindamycin (CLI) | ≤4 | ≥8 |
Sample | plo Gene PCR Result |
---|---|
H2311HS_GJ01 | + |
IH2311.1MA_GJ02 | + |
IH2311.2MA_GJ03 | + |
IH2312KC_GJ05 | + |
IH2312GM_GJ06 | + |
IH2403HN_GJ16 | − |
IH2403JH_GJ17 | − |
IH2403YG_GJ18 | − |
IH2403GY_GJ19 | − |
IH2404GS_GJ20 | − |
IH2404MA_GJ21 | − |
AMP | FOX | TAZ | FOT | AXO | TET | GEN | STR | AMI | CIP | NAL | CHL | FFN | AZI | ERY | CLI | SXT | No. of Resistant Antimicrobial Agents | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample | Minimum Inhibitory Concentrations (MICs, µg/mL)/ Susceptibility (S: Susceptible, R: Resistant) | |||||||||||||||||
IH2311HS_GJ01 | <1/ S | <4/ S | 4/ S | <1/ S | 2/ R | 64/ R | >64/ R | >128/ R | 64/ R | 4/ R | >128/ R | 32/ R | 8/ R | >32/ R | >64/ R | >16/ R | 0.5/ R | 13 |
IH2311.1MA_GJ02 | <1/ S | <4/ S | 4/ S | <1/ S | 2/ R | <2/ S | 4/ S | 4/ S | 16/ R | 2/ S | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 1/ R | 9 |
IH2311.2MA_GJ03 | <1/ S | <4/ S | 8/ R | <1/ S | 2/ R | 64/ R | >64/ R | >128/ R | 64/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 0.25/ R | 14 |
IH2312KC_GJ05 | <1/ S | <4/ S | 8/ R | <1/ S | 2/ R | <2/ S | 8/ S | 4/ S | 16/ R | 1/ S | >128/R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 2/ R | 10 |
IH2312GM_GJ06 | <1/ S | <4/ S | 8/ R | <1/ S | 1/ R | <2/ S | 4/ S | 4/ S | 16/ R | 2/ S | >128/R | 8/ R | 1/ R | >32/ R | 0.06/ S | 0.12/ S | 0.5/ R | 8 |
IH2403HN_GJ16 | <1/ S | <4/ S | 8/ R | <1/ S | 1/ R | <2/ S | 4/ S | 4/ S | 16/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 1/ R | 11 |
IH2403JH_GJ17 | <1/ S | <4/ S | 8/ R | <1/ S | 1/ R | <2/ S | 4/ S | 4/ S | 16/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 1/ R | 11 |
H2403YG_GJ18 | <1/ S | <4/ S | <1/ S | <1/ S | 1/ S | 64/ R | 8/ S | >128/ R | 32/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 0.5/ R | 11 |
IH2403GY_GJ19 | <1/ S | <4/ S | 4/ S | <1/ S | 0.25/ S | 64/ R | 8/ S | >128/ R | 32/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 0.5/ R | 11 |
IH2404GS_GJ20 | <1/ S | <4/ S | 16/ R | <1/ S | 0.25/ S | <2/ S | <4/ S | 4/ S | 16/ R | 4/ R | >128/ R | 8/ R | 2/ R | >32/ R | >64/ R | >16/ R | 1/ R | 10 |
IH2404MA_GJ21 | <1/ S | <4/ S | 16/ R | <1/ S | 0.5/ S | 32/ R | >64/ R | >128/ R | 64/ R | 2/ S | >128/ R | 32/ R | 16/ R | >32/ R | >64/ R | >16/ R | 0.25/ R | 12 |
Antibiotic Class | Antibiotic | Pig (This Study) | Pig (Pneumonia) [40] | Cow (Mastitis) [41] | Cow (Metritis) [41] | Sheep/ Goat [2,11] |
---|---|---|---|---|---|---|
β-lactams | Amoxicillin | – | 0% | 87.50% | 100% | – |
Amoxicillin/ Clavulanic acid | – | – | – | – | 38.40% | |
AMP | 0% | – | 90.62% | 100% | – | |
Cefalexin | – | – | 84.37% | 97.56% | – | |
Cefazolin | – | 7.40% | – | – | – | |
FOT | 0% | – | – | – | – | |
FOX | 0% | – | – | – | – | |
TAZ | 63.60% | – | – | – | – | |
AXO | 63.60% | – | – | – | – | |
Penicillin | – | 0% | 100% | 97.56% | 0.00–5.80% | |
AXO | 63.60% | – | – | – | – | |
Tetracyclines | TET | 45.50% | – | 53.12% | 48.78% | 32.60–53.12% |
Aminoglycosides | GEN | 27.30% | 77.80% | 100% | 97.56% | 21.87 |
STR | 45.50% | – | 81.25% | 56.09% | 32.60–56.25% | |
AMI | 100% | 74.10% | – | – | – | |
Fluoroquinolones | CIP | 63.60% | 0% | 53.12% | 70.73% | – |
Enrofloxacin | – | 0% | 59.37% | 73.17% | 78.13 | |
Quinolone | NAL | 100% | – | – | – | – |
Phenicols | FFN | 100% | 0% | – | – | – |
CHL | 100% | – | – | – | 14.00% | |
Macrolides | AZI | 100% | 85.20% | 37.50% | 46.34% | – |
Tylosin | – | – | 62.50% | 63.41% | – | |
ERY | 90.90% | 85.20% | 53.12% | 39.02% | 28.12–44.20% | |
Clindamycin | 90.90% | – | – | – | 4.70% | |
Sulfonamides | SXT | 100% | – | 87.50% | 70.73% | 37.50% |
Sulfisoxazole | – | – | – | – | 37.20% | |
Lincosamides | Lincomycin | – | – | 43.75% | 58.53% | – |
Rifamycins | Rifampicin | – | – | 59.37% | 68.29% | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, I.-H.; Lee, G.; Moon, H.J.; Kim, D.-Y.; Choi, J.-W.; Baek, Y.-B.; Park, S.-I.; Yoo, D.-S.; Lee, J.B.; Jung, B.-G.; et al. Characterization of Multidrug-Resistant Trueperella (Arcanobacterium) pyogenes Isolates from Vertebral Osteomyelitis in Slaughtered Pigs. Animals 2025, 15, 2970. https://doi.org/10.3390/ani15202970
Lee I-H, Lee G, Moon HJ, Kim D-Y, Choi J-W, Baek Y-B, Park S-I, Yoo D-S, Lee JB, Jung B-G, et al. Characterization of Multidrug-Resistant Trueperella (Arcanobacterium) pyogenes Isolates from Vertebral Osteomyelitis in Slaughtered Pigs. Animals. 2025; 15(20):2970. https://doi.org/10.3390/ani15202970
Chicago/Turabian StyleLee, In-Haeng, Gun Lee, Hyeon Jeong Moon, Dae-Young Kim, Jong-Woog Choi, Yeong-Bin Baek, Sang-Ik Park, Dae-Sung Yoo, Jun Bong Lee, Bock-Gie Jung, and et al. 2025. "Characterization of Multidrug-Resistant Trueperella (Arcanobacterium) pyogenes Isolates from Vertebral Osteomyelitis in Slaughtered Pigs" Animals 15, no. 20: 2970. https://doi.org/10.3390/ani15202970
APA StyleLee, I.-H., Lee, G., Moon, H. J., Kim, D.-Y., Choi, J.-W., Baek, Y.-B., Park, S.-I., Yoo, D.-S., Lee, J. B., Jung, B.-G., Lee, K.-J., & Park, J.-G. (2025). Characterization of Multidrug-Resistant Trueperella (Arcanobacterium) pyogenes Isolates from Vertebral Osteomyelitis in Slaughtered Pigs. Animals, 15(20), 2970. https://doi.org/10.3390/ani15202970