Predicting Beef Fatty Acid Composition from Diet and Plasma Profiles Using Multivariate Models
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Animal Management
Pasture Diet | Hay + Concentrate Diet | ||||
---|---|---|---|---|---|
Item | Attribute | Farm1 | Farm2 | Farm3 | Stall |
Farm characteristics | Latitude/longitude | 40°16′ N, 8°52′ E | 40°16′ N, 8°58′ E | 40°15′ N, 8°49′ E | |
Altitude (m. a.s.l.) | 420 | 200 | 376 | ||
Soil series [17] | Rock outcrop, Lithic Xerorthents | Typic, Aquic, and Ultic Palexeralf Xerorthents Palexeralf | Rock outcrop, Lithic Xerorthents Ultic Palexeralfs | ||
Sand/silt/clay (%) | 64/16/14 | 68/12/20 | 46/30/24 | ||
pH | 6.0 | 6.3 | 6.0 | ||
Animal traits | Young bulls (n°) | - | - | 3 | 2 |
Heifers (n°) | 3 | 4 | - | 6 | |
Live weight (LW, kg mean ± s.d.) | 332 ± 28 | 301.5 ± 13 | 328 ± 46 | 333 ± 20 | |
Age (days, mean ± s.d.) | 353 ± 5 | 347 ± 5 | 358 ± 6 | 355 ± 4 | |
Average stock density (kg LW ha−1) | 332 | 280 | 218 | - | |
Feed on offer | Natural pasture | ad libitum | ad libitum | ad libitum | - |
Hay (kg head−1day−1) | - | - | - | 3 | |
Concentrate (kg/100 kg LW * head−1day−1) | - | - | - | 1.6–1.8 |
2.2. Feedstuff Sampling and Chemical Analysis
2.3. Blood Sampling
2.4. Slaughter and Meat Sampling
2.5. Plasma and Meat Fatty Acid Analysis
2.6. Statistical Analysis
3. Results
3.1. Diet Characteristics
3.2. Plasma and Meat Fatty Acids
3.3. Relationships Between Diet Profile and Meat Fatty Acids
3.4. Prediction of Meat Fatty Acids from Plasma
4. Discussion
4.1. Diet Characteristics
4.2. Plasma and Meat Fatty Acids
4.3. Relationships Between Diet Profile and Meat FA Variables
4.4. Prediction of Meat Fatty Acids from Plasma
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PUFA | n-3 polyunsaturated fatty acid |
LW | live weight |
DM | dry matter |
CP | crude protein |
NDF | neutral detergent fiber |
ADF | acid detergent fiber |
ADL | acid detergent lignin |
EE | ether extract |
IVDMD | in vitro dry matter digestibility |
ToP | total phenolics |
NTP | non-tannic phenolics |
TP | tannic phenolics |
GAE | gallic acid equivalent |
ABTS | 2,2′azinobis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt |
TEAC | Trolox equivalent antioxidant capacity |
LT | Longissimus thoracis |
MGM | Musculus gluteus maximus |
P-FA | plasma fatty acid composition |
CCA | canonical correlation analysis |
LT-FA | Longissimus thoracis fatty acid composition |
MGM-FA | Musculus gluteus maximus fatty acid composition |
Vn | canonical variable for diet characteristics |
Wn | canonical variable for fatty acids in LT and MGM |
PLSR | Partial Least Square Regression |
RMSEP | root mean square error of prediction |
MES | Model Evaluation System |
ALA | α-linolenic acid |
LA | linoleic acid |
OA | oleic acid |
VA | vaccenic acid |
DPA | docosapentaenoic acid |
CLA | conjugated linoleic acid |
UFAs | unsaturated fatty acids |
SFAs | saturated fatty acids |
MUFAs | monounsaturated fatty acids |
n-3 FA | omega-3 fatty acid |
n-6 FA | omega-6 fatty acid |
EPA | eicosapentanoic acid (C20:5n-3) |
DPA | docosapentanoic acid (C22:5n-3) |
DHA | docosahexaenoic acid (C22:6n-3) |
References
- Molle, G.; Decandia, M.; Ligios, S.; Fois, N.; Treacher, T.T.; Sitzia, M. Grazing management and stocking rate with particular reference to the Mediterranean environment. In Dairy Sheep Nutrition; Pulina, G., Ed.; CABI Publishing: Wallingford, UK, 2004; pp. 191–211. [Google Scholar]
- Acciaro, M.; Decandia, M.; Giovanetti, V.; Manca, C.; Dimauro, C.; Rassu, S.P.G.; Addis, M.; Molle, G. Effects of grass- and concentrate-based finishing systems on the quality of meat from the M. longissimus thoracis of young Sarda bulls. Anim. Prod. Sci. 2021, 61, 807–820. [Google Scholar] [CrossRef]
- Acciaro, M.; Dimauro, C.; Giovanetti, V.; Epifani, G.; Manca, C.; Contini, S.; Cabiddu, A.A.; Decandia, M.; Molle, G. Milk production of Sarda suckler cows with different calving period. J. Agric. Sci. Technol. 2020, 10, 86–97. [Google Scholar] [CrossRef]
- Alfaia, C.P.M.; Alves, S.P.; Martins, S.I.V.; Costa, A.S.H.; Fontes, C.M.G.A.; Lemos, J.P.C.; Bessa, R.J.B.; Prates, J.A.M. Effect of the feeding system on intramuscular fatty acids and conjugated linoleic acid isomers of beef cattle, with emphasis on their nutritional value and discriminatory ability. Food Chem. 2009, 114, 939–946. [Google Scholar] [CrossRef]
- Butler, G.; Nielsen, J.H.; Larsen, M.K.; Rehberger, B.; Stergiadis, S.; Canever, A.; Leifert, C. The effects of dairy management and processing on quality characteristics of milk and dairy products. NJAS-Wagen J. Life Sci. 2011, 58, 97–102. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dannenberger, D.; Nuernberg, K.; Richardson, I.; MacKintosh, S.; Hocquette, J.F.; Moloney, A.P. Enhancing the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2014, 97, 384–394. [Google Scholar] [CrossRef]
- Adams, C.A. Nutricines: Food Components in Health and Nutrition, 2nd ed.; Nottingham University Press: Nottingham, UK, 2009. [Google Scholar]
- Stagos, D. Antioxidant activity of polyphenolic plant extracts. Antioxidants 2020, 9, 19. [Google Scholar] [CrossRef]
- Molinu, M.G.; Sulas, L.; Campesi, G.; Re, G.A.; Sanna, F.; Piluzza, G. Subterranean clover and sulla as valuable and complementary sources of bioactive compounds for rainfed Mediterranean farming systems. Plants 2023, 12, 417. [Google Scholar] [CrossRef]
- Tanase, C.; Bujor, O.C.; Popa, V.I. Phenolic natural compounds and their influence on physiological processes in plants. In Polyphenols in Plants, 2nd ed.; Watson, R.R., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–58. [Google Scholar]
- Villalba, J.J.; Miller, J.; Ungar, E.D.; Landau, S.Y.; Glendinning, J. Ruminant self-medication against gastrointestinal nematodes: Evidence, mechanism, and origins. Parasite 2014, 21, 31. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef]
- Beck, M.R.; Gregorini, P. Animal design through functional dietary diversity for future productive landscapes. Front. Sustain. Food Syst. 2021, 5, 546581. [Google Scholar] [CrossRef]
- Hennessy, A.A.; Kenny, D.A.; Byrne, C.J.; Childs, S.; Ross, R.P.; Devery, R.; Stanton, C. Fatty acid concentration of plasma, muscle, adipose and liver from beef heifers fed an encapsulated n-3 polyunsaturated fatty acid supplement. Animal 2021, 15, 100039. [Google Scholar] [CrossRef] [PubMed]
- Conte, G.; Dimauro, C.; Daghio, M.; Serra, A.; Mannelli, F.; McAmmond, B.M.; Van Hamme, J.D.; Buccioni, A.; Viti, C.; Mantino, A.; et al. Exploring the relationship between bacterial genera and lipid metabolism in bovine rumen. Animal 2022, 16, 100520. [Google Scholar] [CrossRef]
- Sanna, F.; Campesi, G.; Deligios, P.; Ledda, L.; Piluzza, G.; Sulas, L.; Re, G.A. Combined effects of microenvironment and land use on C fluxes in a Mediterranean agro-silvopastoral system. Eur. J. Agron. 2021, 130, 126348. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Department Agricultural Handbook; U.S. Government Printing Office: Washington, DC, USA, 1999; Volume 436. [Google Scholar]
- Parrini, S.; Acciaioli, A.; Franci, O.; Pugliese, C.; Bozzi, R. Near infrared spectroscopy technology for prediction of chemical composition of natural fresh pastures. J. Appl. Anim. Res. 2019, 47, 514–520. [Google Scholar] [CrossRef]
- Re, G.A.; Piluzza, G.; Sanna, F.; Molinu, M.G.; Sulas, L. Polyphenolic composition and antioxidant capacity of legume-based swards are affected by light intensity in a Mediterranean agroforestry system. J. Sci. Food Agric. 2019, 99, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Banni, S.; Contini, M.S.; Angioni, E.; Deiana, M.; Dessi, M.A.; Melis, M.P.; Corongiu, F.P. Characterization of conjugated diene fatty acids in milk, dairy products, and lamb tissues. J. Nutr. Biochem. 1996, 7, 150–155. [Google Scholar] [CrossRef]
- Batetta, B.; Griinari, M.; Carta, G.; Murru, E.; Ligresti, A.; Cordeddu, L.; Giordano, E.; Sanna, F.; Bisogno, T.; Uda, S.; et al. Endocannabinoids may mediate the ability of (n − 3) fatty acids to reduce ectopic fat and inflammatory mediators in obese Zucker rats. J. Nutr. 2009, 139, 1495–1501. [Google Scholar] [CrossRef]
- Melis, M.P.; Angioni, E.; Carta, G.; Murru, E.; Scanu, P.; Spada, S.; Banni, S. Characterization of conjugated linoleic acid and its metabolites by RP-HPLC with diode array detector. Eur. J. Lipid Sci. Technol. 2001, 103, 617–621. [Google Scholar] [CrossRef]
- Angioni, E.; Lercker, G.; Frega, N.G.; Carta, G.; Melis, M.P.; Murru, E.; Spada, S.; Banni, S. UV spectral properties of lipids as a tool for their identification. Eur. J. Lipid Sci. Technol. 2002, 104, 59–64. [Google Scholar] [CrossRef]
- SAS Institute Inc. MarketLine Company Profile; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Mendeş, M.; Akkartal, E. Canonical correlation analysis for studying the relationships between pre and post slaughter traits of Ross 308 broiler chickens. Arch. Für Geflügelkd. 2007, 71, 267–271. [Google Scholar] [CrossRef]
- Akbaş, Y.; Takma, Ç. Canonical correlation analysis for studying the relationship between egg production traits and body weight, egg weight and age at sexual maturity in layers. Czech J. Anim. Sci. 2005, 50, 163–168. [Google Scholar] [CrossRef]
- Olson, C.L. Comparative robustness of six tests in multivariate analysis of variance. J. Am. Stat. Assoc. 1974, 69, 894–908. [Google Scholar] [CrossRef]
- Sharma, S. Applied Multivariate Techniques; John Wiley & Sons Inc.: New York, NY, USA, 1996. [Google Scholar]
- Dimauro, C.; Steri, R.; Pintus, M.A.; Gaspa, G.; Macciotta, N.P.P. Use of partial least squares regression to predict single nucleotide polymorphism marker genotypes when some animals are genotyped with a low-density panel. Animal 2011, 5, 833–837. [Google Scholar] [CrossRef]
- Dimauro, C.; Cellesi, M.; Gaspa, G.; Ajmone-Marsan, P.; Steri, R.; Marras, G.; Macciotta, N.P.P. Use of partial least squares regression to impute SNP genotypes in Italian cattle breeds. Genet. Sel. Evol. 2013, 45, 15. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 1 March 2025).
- Mayer, D.G.; Stuart, M.A.; Swain, A.J. Regression of real-world data on model output: An appropriate overall test of validity. Agric. Syst. 1994, 45, 93–104. [Google Scholar] [CrossRef]
- Li, H.B.; Wong, C.C.; Cheng, K.W.; Chen, F. Antioxidant properties in vitro and total phenolic contents in methanol extracts from medicinal plants. LWT-Food Sci. Technol. 2008, 41, 385–390. [Google Scholar] [CrossRef]
- Moon, J.K.; Shibamoto, T. Antioxidant assays for plant and food components. J. Agric. Food Chem. 2009, 57, 1655–1666. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC methodology: Main milestones and recent applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Amrit, B.K.; Ponnampalam, E.N.; Macwan, S.; Wu, H.; Aziz, A.; Muir, S.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive screening and characterization of polyphenol compounds from pasture grasses used for livestock production under temperate region. Anim. Feed Sci. Technol. 2023, 300, 115657. [Google Scholar] [CrossRef]
- Beaucarne, G.; Shackleton, J.; Grace, C.; Kennedy, J.; Sheridan, H.; Boland, T.M. Multispecies swards enhance animal performance in a co-grazing cattle and sheep production system. Animal 2025, 19, 101451. [Google Scholar] [CrossRef] [PubMed]
- Camarda, I. Composizione floristica dei pascoli naturali del versante settentrionale del Marghine. In Sistemi Agricoli Marginali-Marghine-Planargia; Cavallero, A., Ed.; Progetto Finalizzato IPRA; CNR: Roma, Italy, 1989; pp. 53–83. [Google Scholar]
- Kearney, S.E.; Brunton, N.P.; Rai, D.K. Challenges and opportunities in characterisation of phytochemicals in pasture-fed meat produce. Meat Sci. 2025, 225, 109816. [Google Scholar] [CrossRef] [PubMed]
- Boukrouh, S.; Mnaouer, I.; Mendes de Souza, P.; Hornick, J.L.; Nilahyane, A.; El Amiri, B.; Hirich, A. Microalgae supplementation improves goat milk composition and fatty acid profile: A meta-analysis and meta-regression. Arch. Anim. Breed. 2025, 68, 223–238. [Google Scholar] [CrossRef]
- Al Rharad, A.; El Aayadi, S.; Avril, C.; Souradjou, A.; Sow, F.; Camara, Y.; Hornick, J.L.; Boukrouh, S. Meta-Analysis of Dietary Tannins in Small Ruminant Diets: Effects on Growth Performance, Serum Metabolites, Antioxidant Status, Ruminal Fermentation, Meat Quality, and Fatty Acid Profile. Animals 2025, 15, 596. [Google Scholar] [CrossRef]
- Scollan, N.D.; Hocquette, J.F.; Nürnberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Cabiddu, A.; Wencelová, M.; Bomboi, G.; Decandia, M.; Molle, G.; Salis, L. Fatty acid profile in two berseem clover (Trifolium alexandrinum L.) cultivars: Preliminary study of the effect of part of plant and phenological stage. Grass. Sci. 2017, 63, 101–110. [Google Scholar] [CrossRef]
- Kälber, T.; Meier, J.S.; Kreuzer, M.; Leiber, F. Flowering catch crops used as forage plants for dairy cows: Influence on fatty acids and tocopherols in milk. J. Dairy Sci. 2011, 94, 1477–1489. [Google Scholar] [CrossRef]
- Varela, A.; Oliete, B.; Moreno, T.; Portel, C.; Monserrat, L.; Carball, J.A.; Sánchez, L. Effect of pasture finishing on the meat characteristics and intramuscular fatty acid profile of steers of the Rubia Gallega breed. Meat Sci. 2004, 67, 515–522. [Google Scholar] [CrossRef]
- Vahmani, P.; Mapiye, C.; Prieto, N.; Rolland, D.C.; McAllister, T.A.; Aalhus, J.L.; Dugan, M.E. The scope for manipulating the polyunsaturated fatty acid content of beef: A review. J. Anim. Sci. Biotechnol. 2015, 6, 29. [Google Scholar] [CrossRef]
- Van Elswyk, M.E.; McNeill, S.H. Impact of grass/forage feeding versus grain finishing on beef nutrients and sensory quality: The U.S. experience. Meat Sci. 2014, 96, 535–540. [Google Scholar] [CrossRef]
- Nürnberg, K.; Nürnberg, G.; Ender, K.; Dannenberger, D.; Schabbel, W.; Grumbach, S.; Zupp, W.; Steinhart, H. Effect of grass vs. concentrate feeding on the fatty acid profile of different fat depots in lambs. Eur. J. Lipid Sci. Technol. 2005, 107, 737–745. [Google Scholar] [CrossRef]
- Bauman, D.E.; Baumgard, L.H.; Corl, B.A.; Griinari, J.M. Biosynthesis of conjugated linoleic acid in ruminants. In Proceedings of the American Society of Animal Science, Indianapolis, IN, USA, 21–23 July 1999. [Google Scholar]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Alfaia, C.M.M.; Ribeiro, V.S.S.; Lourenço, M.R.A.; Quaresma, M.A.G.; Martins, S.V.; Portugal, A.P.V.; Fontes, C.M.G.A.; Bessa, R.J.B.; Castro, M.L.F.; Prates, J.A.M. Fatty acid composition, conjugated linoleic acid isomers and cholesterol in beef from crossbred bullocks intensively produced and from Alentejana purebred bullocks reared according to Carnalentejana-PDO specifications. Meat Sci. 2006, 72, 425–436. [Google Scholar] [CrossRef]
- Bula, M.; Przybylski, W.; Jaworska, D.; Kajak-Siemaszko, K. Formation of heterocyclic aromatic amines in relation to pork quality and heat treatment parameters. Food Chem. 2019, 276, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Quan, W.; Zhilin, W.; Jiaoc, Y.; Liu, G.; Wang, Z.; He, Z.; Tao, G.; Qin, F.; Zeng, M.; Chen, J. Exploring the relationship between potato components and Maillard reaction derivative harmful products using multivariate statistical analysis. Food Chem. 2021, 339, 127853. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio: Health implications. In Nutrigenetics and Nutrigenomics; World Review of Nutrition and Dietetics; Simopoulos, A.P., Ordovas, J.M., Eds.; Karger: Basel, Switzerland, 2004; Volume 93, pp. 175–189. [Google Scholar]
- Stürmer, M.; Busanello, M.; Velho, J.P.; Heck, V.I.; Haygert-Velho, I.M.P. Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis. Int. J. Biometeorol. 2018, 62, 1663–1674. [Google Scholar] [CrossRef] [PubMed]
- Nogoy, K.M.C.; Sun, B.; Shin, S.; Lee, Y.; Li, X.Z.; Ho Choi, S.; Park, S. Fatty Acid Compo-sition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci. Anim. Resour. 2022, 42, 18–33. [Google Scholar] [CrossRef]
Pasture Diet | Hay + Concentrate Diet | |||||
---|---|---|---|---|---|---|
Unit | Farm 1 | Farm 2 | Farm 3 | Hay | Concentrate | |
Herbage on offer | t ha−1 DM | 1.1 ± 0.18 | 1.4 ± 0.15 | 2.1 ± 0.16 | - | - |
Gramineae | % FM | 82.1 ± 6.83 | 66.8 ± 5.68 | 65.5 ± 5.91 | - | - |
Leguminosae | % FM | 0.3 ± 3.11 | 4.4 ± 2.59 | 14.7 ± 2.70 | - | - |
Other dicotyledons | % FM | 17.7 ± 6.02 | 28.7 ± 5.01 | 20.2 ± 5.22 | - | - |
CP | % DM | 7.6 ± 0.50 | 10.4 ± 0.42 | 9.5 ± 0.44 | 5.03 ± 0.18 | 16.52 ± 1.15 |
NDF | % DM | 66.5 ± 1.66 | 55.5 ± 1.38 | 58.5 ± 1.44 | 70.13 ± 0.88 | 18.75 ± 0.81 |
ADF | % DM | 38.1 ± 0.86 | 32.6 ± 0.72 | 34.8 ± 0.74 | 41.5 ± 0.61 | 10.76 ± 0.09 |
ADL | % DM | 3.5 ± 0.37 | 3.7 ± 0.31 | 3.8 ± 0.32 | 3.24 ± 0.09 | 1.16 ± 0.12 |
EE | % DM | 2.3 ± 0.09 | 2.5 ± 0.08 | 1.9 ± 0.08 | 1.42 ± 0.08 | 2.95 ± 0.52 |
IVDMD | % DM | 46.3 ± 2.24 | 55.4 ± 1.86 | 55.4 ± 1.94 | 50.25 ± 0.75 | 96.53 ± 0.54 |
Energy level | MJME/kg DM | 7.6 ± 0.15 | 8.1 ± 0.12 | 7.8 ± 0.13 | 6.95 ± 0.81 | 12.89 ± 0.62 |
TotP (g GAE kg−1 DW) | NTP (g GAE kg−1 DW) | TP (g GAE kg−1 DW) | ABTS (mmol TEAC 100 g−1 DW) | ||
---|---|---|---|---|---|
Herbage on offer | Farm 1 | 9.6 ± 0.7 | 5.1 ± 0.4 | 4.5 ± 0.5 | 4.9 ± 0.3 |
Farm 2 | 17.3 ± 1.4 | 9.1 ± 0.9 | 8.3 ± 0.6 | 9.1 ± 0.6 | |
Farm 3 | 13.5 ± 0.6 | 7.5 ± 0.5 | 6.0 ± 0.5 | 7.2 ± 0.3 | |
Gramineae | Farm 1 | 6.7 ± 0.2 | 4.0 ± 0.3 | 2.7 ± 0.4 | 3.6 ± 0.01 |
Farm 2 | 13.7 ± 0.7 | 7.7 ± 0.5 | 6.0 ± 0.5 | 6.7 ± 0.1 | |
Farm 3 | 7.2 ± 0.1 | 4.4 ± 0.4 | 2.8 ± 0.3 | 3.6 ± 0.1 | |
Leguminosae | Farm 1 | 26.3 ± 1.7 | 6.9 ± 0.5 | 19.4 ± 1.2 | 13.6 ± 0.4 |
Farm 2 | 20.0 ± 0.6 | 9.6 ± 0.4 | 10.3 ± 0.5 | 10.3 ± 0.6 | |
Farm 3 | 17.1 ± 0.2 | 9.1 ± 0.4 | 8.0 ± 0.1 | 7.1 ± 0.4 | |
Other dicotyledons | Farm 1 | 23.1 ± 0.7 | 10.0 ± 0.5 | 13.1 ± 0.6 | 10.7 ± 0.3 |
Farm 2 | 25.6 ± 0.2 | 11.8 ± 0.8 | 13.7 ± 0.6 | 14.4 ± 0.2 | |
Farm 3 | 31.2 ± 0.6 | 16.2 ± 0.3 | 15.0 ± 0.7 | 18.9 ± 0.5 | |
Hay + | Stall | 4.3 ± 0.1 | 3.6 ± 0.2 | 0.7 ± 0.1 | 1.6 ± 0.1 |
Concentrate | Stall | 3.0 ± 0.01 | 1.9 ± 0.03 | 1.0 ± 0.03 | 1.4 ± 0.05 |
Fatty Acid | LT-FA * | MGM-FA * | P-FA * | S.E. | p Value |
---|---|---|---|---|---|
C18:3n-3, ALA | 1.22 a (0.21–2.86) | 1.45 a (0.11–3.73) | 4.87 b (0.48–9.94) | 0.66 | <0.001 |
C18:2n-6, LA | 5.54 a (2.37–11.99) | 10.05 b (4.00–18.43) | 25.77 c (15.76–40.15) | 1.46 | <0.001 |
C18:1n-9, OA | 31.7 a (23.56–37.54) | 27.6 a (14.13–40.11) | 7.5 b (5.24–11.08) | 1.87 | <0.001 |
C18:1 11t, VA | 4.01 a (2.26–6.33) | 2.78 b (1.48–4.76) | 0.88 c (0.51–1.53) | 0.29 | <0.001 |
C22:5n-3, DPA | 0.50 (0.05–1.55) | 0.85 (0.11–2.29) | 0.84 (0.34–1.30) | 0.17 | 0.26 |
CLA cis-9 trans-11-18:2 | 1.25 a (0.51–1.80) | 1.10 a (0.65–1.58) | 0.36 b (0.13–0.73) | 0.09 | <0.001 |
UFAs | 50.5 a (44.50–62.34) | 53.1 b (45.93–61.98) | 48.2 ab (32.94–56.16) | 1.6 | 0.02 |
SFAs | 49.5 (37.66–55.50) | 46.9 (38.02–54.07) | 51.7 (43.79–66.79) | 1.6 | 0.13 |
MUFAs | 40.1 a (31.48–46.24) | 34.5 a (18.03–49.68) | 10.2 b (6.90–13.15) | 2.2 | <0.001 |
n-3/n-6 PUFA | 0.22 (0.08–0.33) | 0.18 (0.08–0.30) | 0.25 (0.03–0.42) | 0.03 | 0.41 |
n-3 FA | 1.86 b (0.28–5.00) | 2.80 b (0.71–6.42) | 6.94 a (1.35–13.19) | 0.89 | <0.001 |
n-6 FA | 7.21 c (3.04–15.81) | 13.93 b (5.71–24.50) | 30.84 a (20.21–45.03) | 1.69 | <0.001 |
LT | MGM | |||
---|---|---|---|---|
Standardized Canonical Coefficient | Canonical Loading | Standardized Canonical Coefficient | Canonical Loading | |
Diet Characteristics | V1 | V1 | ||
EE | 0.3181 | 0.5084 | 0.7677 | 0.9139 |
CP | 0.4567 | 0.1973 | 0.3471 | 0.4967 |
ABTS | 0.9645 | 0.7757 | 0.4354 | 0.2893 |
Fatty acids | W1 | W1 | ||
C18:3n-3, ALA | 2.3766 | 0.9482 | −0.0475 | 0.3484 |
C18:1, Oleic acid | 0.6618 | −0.5218 | −2.0763 | −0.6907 |
C18:1 11t, VA | 0.1520 | 0.3023 | 0.5017 | 0.0143 |
cis-9 trans-11, CLA | 0.3144 | 0.3720 | −0.0712 | −0.6176 |
Saturated fatty acids, SFAs | 0.6031 | −0.6992 | −0.6220 | 0.4635 |
n-3/n-6 PUFA ratio | −1.0354 | 0.6271 | −0.9734 | 0.1853 |
Canonical correlation (C1) | 0.99 | 0.99 | ||
Wilks’s Lambda | 0 | 0 | ||
P | 0.0002 | 0.035 |
Fatty Acids | LT-FA | MGM-FA | ||||||
---|---|---|---|---|---|---|---|---|
Dent and Blackie Test (p-Value) | Coefficient of Determination (R2) | RMSEP-CV | Q2 | Dent and Blackie Test (p-Value) | Coefficient of Determination (R2) | RMSEP-CV | Q2 | |
C18:3n-3, ALA | ns | 0.94 | 0.24 | 0.94 | ns | 0.64 | 0.77 | 0.70 |
C18:2, LA | ns | 0.87 | 1.21 | 0.88 | ns | 0.95 | 0.16 | 0.99 |
C18:1 | ns | 0.82 | 1.47 | 0.89 | ns | 0.98 | 1.03 | 0.99 |
C18:1 11t, VA | ns | 0.81 | 0.44 | 0.88 | ns | 0.97 | 0.15 | 0.97 |
C22:5n-3, DPA | ns | 0.86 | 0.20 | 0.87 | ns | 0.97 | 0.10 | 0.98 |
CLA cis-9 trans-11 | ns | 0.90 | 0.11 | ns | 0.91 | 0.06 | 0.93 | |
Unsaturated Fatty Acids (UFAs) | ns | 0.83 | 1.99 | ns | 0.90 | 0.90 | 0.91 | |
Saturated Fatty Acids (SFAs) | ns | 0.83 | 1.99 | ns | 0.96 | 0.90 | 0.96 | |
n-3/n-6 ratio | ns | 0.96 | 0.02 | ns | 0.92 | 0.02 | 0.92 | |
n-3-series fatty acids | ns | 0.92 | 0.49 | ns | 0.97 | 0.37 | 0.97 | |
n-6-series fatty acids | ns | 0.88 | 1.55 | ns | 0.94 | 0.25 | 0.99 | |
Mono Unsaturated Fatty Acids (MUFAs) | ns | 0.77 | 1.66 | ns | 0.97 | 1.25 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acciaro, M.; Sulas, L.; Carta, G.; Banni, S.; Murru, E.; Manca, C.; Dimauro, C.; Fiori, M.; Cabiddu, A.; Re, G.A.; et al. Predicting Beef Fatty Acid Composition from Diet and Plasma Profiles Using Multivariate Models. Animals 2025, 15, 2969. https://doi.org/10.3390/ani15202969
Acciaro M, Sulas L, Carta G, Banni S, Murru E, Manca C, Dimauro C, Fiori M, Cabiddu A, Re GA, et al. Predicting Beef Fatty Acid Composition from Diet and Plasma Profiles Using Multivariate Models. Animals. 2025; 15(20):2969. https://doi.org/10.3390/ani15202969
Chicago/Turabian StyleAcciaro, Marco, Leonardo Sulas, Gianfranca Carta, Sebastiano Banni, Elisabetta Murru, Claudia Manca, Corrado Dimauro, Myriam Fiori, Andrea Cabiddu, Giovanni Antonio Re, and et al. 2025. "Predicting Beef Fatty Acid Composition from Diet and Plasma Profiles Using Multivariate Models" Animals 15, no. 20: 2969. https://doi.org/10.3390/ani15202969
APA StyleAcciaro, M., Sulas, L., Carta, G., Banni, S., Murru, E., Manca, C., Dimauro, C., Fiori, M., Cabiddu, A., Re, G. A., Molinu, M. G., Piluzza, G., & Giovanetti, V. (2025). Predicting Beef Fatty Acid Composition from Diet and Plasma Profiles Using Multivariate Models. Animals, 15(20), 2969. https://doi.org/10.3390/ani15202969