Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling Site Selection and Broiler House Environment
2.2. Aerodynamic Diameter and Concentration of Airborne Bacteria
2.3. Collection of Airborne Microbial Samples
2.4. DNA Extraction and High-Throughput Sequencing
2.5. Data Analysis and Statistics
3. Results
3.1. Concentration and Size Distribution of Culturable Airborne Bacteria
3.2. Sequencing Analysis
3.3. Alpha and Beta Diversity of Bacterial Communities
3.4. Bacterial Community Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomes, B.; Dias, M.; Cervantes, R.; Pena, P.; Santos, J.; Vasconcelos Pinto, M.; Viegas, C. One health approach to tackle microbial contamination on poultries—A systematic review. Toxics 2023, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Shen, D.; Dai, P.; Li, C. Particulate matter in poultry house on poultry respiratory disease: A systematic review. Poult. Sci. 2023, 102, 102556. [Google Scholar] [CrossRef]
- Yan, H.; Chen, H.; Jiang, L.; Zhang, J.; Chen, G.; Yu, X.; Zhu, H.; Zhao, X.; Li, Y.; Tang, W.; et al. Spatial distribution of airborne bacterial communities in caged poultry houses. J. Air Waste Manag. Assoc. 2023, 73, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Sun, X.; Guo, Y.; Qiu, T.; Xin, H.; Yu, A.; Wang, X.; Gao, M. Particle-size stratification of airborne antibiotic resistant genes, mobile genetic elements, and bacterial pathogens within layer and broiler farms in Beijing, China. Environ. Sci. Pollut. Res. Int. 2023, 30, 112799–112812. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Zhang, M.; Yu, L.; Deng, K.; Mao, H.; Hu, J.; Wang, C. Seasonal dynamics of microbial communities in PM2.5 and PM10 from a pig barn. Animals 2025, 15, 1116. [Google Scholar] [CrossRef]
- Zhang, Z.; Ying, S.; Xiang, R. Spatial analysis of airborne bacterial concentrations and microbial communities in a large-scale commercial layer facility. Poult. Sci. 2025, 104, 105021. [Google Scholar] [CrossRef]
- Chen, H.; Yan, H.; Xiu, Y.; Jiang, L.; Zhang, J.; Chen, G.; Yu, X.; Zhu, H.; Zhao, X.; Li, Y.; et al. Seasonal dynamics in bacterial communities of closed-cage broiler houses. Front. Vet. Sci. 2022, 9, 1019005. [Google Scholar] [CrossRef]
- Ravić, I.; Ostović, M.; Kabalin, A.E.; Kovačić, M.; Matković, K.; Gottstein, Ž.; Tomić, D.H. Dust and bacterial air contamination in a broiler house in summer and winter. Agriculture 2024, 14, 778. [Google Scholar] [CrossRef]
- Ma, Y.; Zou, H. Optimized design of air inlet devices based on environmental analysis of a broiler house model. IOP Conf. Ser. Mater. Sci. Eng. 2020, 789, 012036. [Google Scholar]
- Almuhanna, E.; Ahmed, A.; Al-Yousif, Y. Effect of air contaminants on poultry immunological and production performance. Int. J. Poult. Sci. 2011, 10, 461–470. [Google Scholar] [CrossRef]
- Bist, R.B.; Yang, X.; Subedi, S.; Sharma, M.K.; Singh, A.K.; Ritz, C.W.; Kim, W.K.; Chai, L. Temporal variations of air quality in cage-free experimental pullet houses. Poultry 2023, 2, 320–333. [Google Scholar] [CrossRef]
- Chai, L.; Dunkley, C.; Ritz, C. Measuring air quality in broiler breeder houses in Georgia. J. NACAA 2021, 14. [Google Scholar]
- Cambra-López, M.; Aarnink, A.J.; Zhao, Y.; Calvet, S.; Torres, A.G. Airborne particulate matter from livestock production systems: A review of an air pollution problem. Environ. Pollut. 2010, 158, 1–17. [Google Scholar] [CrossRef]
- Wang, X.; Chen, L.; Yang, G.; Cai, Y.; Yu, G. Bacterial and fungal aerosols in poultry houses: PM2.5 metagenomics via single-molecule real-time sequencing. Poult. Sci. 2024, 103, 104348. [Google Scholar] [CrossRef] [PubMed]
- Kwak, N.; Tsameret, S.; Gaire, T.N.; Mendoza, K.M.; Cortus, E.L.; Cardona, C.; Noyes, N.; Li, J. Influence of rainfall on size-resolved bioaerosols around a livestock farm. Sci. Total Environ. 2024, 954, 176184. [Google Scholar] [CrossRef]
- Buoio, E.; Cialini, C.; Costa, A. Air quality assessment in pig farming: The italian classyfarm. Animals 2023, 13, 2297. [Google Scholar] [CrossRef]
- Xin, H.; Qiu, T.; Guo, Y.; Gao, H.; Zhang, L.; Gao, M. Aerosolization behavior of antimicrobial resistance in animal farms: A field study from feces to fine particulate matter. Front. Microbiol. 2023, 14, 1175265. [Google Scholar] [CrossRef]
- Shen, D.; Wu, S.; Dai, P.Y.; Li, Y.S.; Li, C.M. Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poult. Sci. 2018, 97, 4137–4149. [Google Scholar] [CrossRef]
- St-Germain, M.W.; Létourneau, V.; Cruaud, P.; Lemaille, C.; Robitaille, K.; Denis, É.; Boulianne, M.; Duchaine, C. Longitudinal survey of total airborne bacterial and archaeal concentrations and bacterial diversity in enriched colony housing and aviaries for laying hens. Poult. Sci. 2024, 103, 104119. [Google Scholar] [CrossRef]
- Cui, H.; Zhang, C.; Zhao, K.; Liu, J.; Pu, J.; Kong, Y.; Dong, S.; Chen, L.; Zhao, Y.; Chen, Y.; et al. Effects of different laying periods on airborne bacterial diversity and antibiotic resistance genes in layer hen houses. Int. J. Hyg. Environ. Health 2023, 251, 114173. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Liu, J.; Dong, S.; Zhao, K.; Chen, L.; Chen, Z.; Sun, Y.; Guo, Z. The distribution characteristics of aerosol bacteria in different types of pig houses. Animals 2022, 12, 1540. [Google Scholar] [CrossRef]
- Yan, H.; Li, Y.; Zhang, Y.; Zhang, H.; Guo, Z.; Liu, J. Deciphering of microbial diversity and antibiotic resistome of bioaerosols in swine confinement buildings. Sci. Total Environ. 2021, 781, 147056. [Google Scholar]
- Zhao, Y.; Wang, J.; Wang, H.; Huang, Y.; Qi, M.; Liao, S.; Bin, P.; Yin, Y. Effects of gaba supplementation on intestinal siga secretion and gut microbiota in the healthy and etec-infected weanling piglets. Mediat. Inflamm. 2020, 2020, 7368483. [Google Scholar] [CrossRef]
- Millner, P.D. Bioaerosols associated with animal production operations. Bioresour. Technol. 2009, 100, 5379–5385. [Google Scholar] [CrossRef] [PubMed]
- St-Germain, M.W.; Veillette, M.; Létourneau, V.; Martínez, A.D.L.; Godbout, S.; Boulianne, M.; Duchaine, C. Characterization of airborne bacterial diversity in conventional hen houses, enriched colonies and aviaries, and link between possible bioaerosol sources. Poult. Sci. 2025, 104, 105217. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.L.; King, M.D. Sampling and characterization of bioaerosols in poultry houses. Microorganisms 2023, 11, 2068. [Google Scholar] [CrossRef]
- De Villena, J.F.; Vargas, D.A.; López, R.B.; Chávez-Velado, D.R.; Casas, D.E.; Jiménez, R.L.; Sanchez-Plata, M.X. Bio-mapping indicators and pathogen loads in a commercial broiler processing facility operating with high and low antimicrobial intervention levels. Foods 2022, 11, 775. [Google Scholar] [CrossRef]
- Lou, C.; Chen, Z.; Bai, Y.; Chai, T.; Guan, Y.; Wu, B. Exploring the microbial community structure in the chicken house environment by metagenomic analysis. Animals 2023, 14, 55. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Omonijo, F.A.; Piché, L.C.; Vincent, A.T. Alternatives to antibiotics for sustainable livestock production in the context of the one health approach: Tackling a common foe. Front. Vet. Sci. 2025, 12, 1605215. [Google Scholar] [CrossRef]
- Chmielowiec-Korzeniowska, A.; Trawińska, B.; Tymczyna, L.; Bis-Wencel, H.; Matuszewski, Ł. Microbial contamination of the air in livestock buildings as a threat to human and animal health—A review. Ann. Anim. Sci. 2021, 21, 417–431. [Google Scholar]
- Górny, R.L.; Gołofit-Szymczak, M.; Cyprowski, M.; Ławniczek-Wałczyk, A.; Stobnicka, A.; Wolska, L.A. Poultry house as point source of intense bioaerosol emission. Ann. Agric. Environ. Med. 2023, 30, 432–454. [Google Scholar] [CrossRef]
- Yang, J.; Tong, C.; Xiao, D.; Xie, L.; Zhao, R.; Huo, Z.; Tang, Z.; Hao, J.; Zeng, Z.; Xiong, W. Metagenomic insights into chicken gut antibiotic resistomes and microbiomes. Microbiol. Spectr. 2022, 10, e0190721. [Google Scholar] [CrossRef]
- El-Saeed, B.A.; Elshebrawy, H.A.; Zakaria, A.I.; Abdelkhalek, A.; Imre, K.; Morar, A.; Herman, V.; Sallam, K.I. Multidrug-resistant proteus mirabilis and other gram-negative species isolated from native egyptian chicken carcasses. Trop. Med. Infect. Dis. 2024, 9, 217. [Google Scholar] [CrossRef]
- Moraïs, S.; Winkler, S.; Zorea, A.; Levin, L.; Nagies, F.S.P.; Kapust, N.; Lamed, E.; Artan-Furman, A.; Bolam, D.N.; Yadav, M.P.; et al. Cryptic diversity of cellulose-degrading gut bacteria in industrialized humans. Science 2024, 383, eadj9223. [Google Scholar] [CrossRef]
- Madigan-Stretton, J.; Mikkelsen, D.; Soumeh, E.A. Multienzyme super-dosing in broiler chicken diets: The implications for gut morphology, microbial profile, nutrient digestibility, and bone mineralization. Animals 2020, 11, 1. [Google Scholar] [CrossRef]
- Clarke, K.; Manrique, A.; Sabo-Attwood, T.; Coker, E.S. A narrative review of occupational air pollution and respiratory health in farmworkers. Int. J. Environ. Res. Public Health 2021, 18, 4097. [Google Scholar] [CrossRef] [PubMed]
- Chung, Y.S.; Sohn, E.J.; Cho, H.; Jang, B.; Lee, M.; Yang, S.J.; Park, K.T. Prevalence and antimicrobial resistance of acinetobacter baumannii in the livestock industry in South Korea under a one health perspective. One Health 2025, 20, 101071. [Google Scholar] [CrossRef]
- Qian, J.; Wu, Z.; Zhu, Y.; Liu, C. One health: A holistic approach for food safety in livestock. Sci. One Health 2022, 1, 100015. [Google Scholar] [CrossRef]
- Du, L.; Yang, L.; Yang, C.; Dominy, R.; Hu, C.; Du, H.; Li, Q.; Yu, C.; Xie, L.; Jiang, X. Investigation of bio-aerosol dispersion in a tunnel-ventilated poultry house. Comput. Electron. Agric. 2019, 167, 105043. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cui, H.; Li, Z.; Yang, Z.; Liu, H.; Wang, J.; Zhang, N.; Li, J.; Chen, X.; Zhang, C.; et al. Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter. Animals 2025, 15, 2859. https://doi.org/10.3390/ani15192859
Wang X, Cui H, Li Z, Yang Z, Liu H, Wang J, Zhang N, Li J, Chen X, Zhang C, et al. Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter. Animals. 2025; 15(19):2859. https://doi.org/10.3390/ani15192859
Chicago/Turabian StyleWang, Xuejing, Huan Cui, Zhenyue Li, Zitong Yang, Huage Liu, Jue Wang, Ning Zhang, Jiuxi Li, Xiaolong Chen, Cheng Zhang, and et al. 2025. "Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter" Animals 15, no. 19: 2859. https://doi.org/10.3390/ani15192859
APA StyleWang, X., Cui, H., Li, Z., Yang, Z., Liu, H., Wang, J., Zhang, N., Li, J., Chen, X., Zhang, C., & Liu, J. (2025). Distribution of Aerosol Bacteria in Broiler Houses at Different Growth Stages During Winter. Animals, 15(19), 2859. https://doi.org/10.3390/ani15192859