Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Tissue Sampling for Histochemistry
2.3. Histochemical Technique
2.4. Analysis of the Histological Slides and Histomorphometry Measurements
- Follicle-associated epithelium (FAE) length was defined as the linear extent (in μm) of the epithelium overlaying the PPs in the dome area (DA), in both the ileum and jejunum. The boundaries of the FAE were demarcated by the junctional zones between the FAE and follicle-associated crypts (FAIC).
- Follicle-associated intestinal villus (FAIV) was identified as the first intestinal villus adjacent to the FAE within jejunal and ileal PPs. FAIV was delineated between the FAIV–FAIC and FAIV–ordinary crypt junctional zones and it was not included in the morphological analysis.
- Follicle-associated crypts (FAIC), located between the FAE and FAIV, were not included in the morphological analysis.
- Conventional jejunal and ileal villi were measured with the following parameters—height (tip to base) and width (at midpoint), excluding associated crypts. These villi were defined as mucosal projections located between two villus–crypt junctions. Crypt–villus junctions represent transitional zones into intestinal crypts. The measurements were performed using calibrated digital tools within the specified imaging software described below.
- In the colon, the depth (in μm) of three intact colonic crypts per sample was measured from the crypt opening at the basement membrane surface of the crypt base.
2.5. Mucus Thickness Measurement
2.6. Indirect Immunofluorescence (IF) for Cytokeratin 18 (CK18)
2.7. Statistical Methods
2.8. Figure Preparation
3. Results
3.1. Histomorphometry–Villi in Jejunum and Ileum
3.2. Follicle-Associated Epithelium (FAE) in Jejunum and Ileum Are Similar in Length
3.3. Comparison of Mucin Gel Layer Thickness Across All Evaluated Intestinal Segments
3.4. Quantification of GCs Using the AB-PAS Staining Technique
3.5. Comparison of Goblet Cell Counts Across Intestinal Segments Using Both Staining Methods
3.6. Comparative Assessment of Goblet Cell Distribution Shows Reduced Numbers in the FAE
3.7. Colon
3.8. Fluorescence Microscopy Analysis of CK18+ GCs in Colonic Epithelium
3.9. Confocal Microscopy Imaging of Solitary CK18+ GCs in Jejunal PPs and Colon
4. Discussion
4.1. The Mucin Gel Layer
4.2. The Goblet Cells
4.3. Histochemical Techniques
4.4. Methodological Optimization for GCs and Mucin Visualization in Porcine Intestinal Tissue
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AB | Alcian Blue |
AB-PAS | Alcian Blue–Periodic Acid–Schiff |
BM | Basement membrane |
BW | Body weight |
CK18 | Cytokeratin 18 |
DA | Dome area |
DAPI | 4′,6-diamidino-2-phenylindole |
FAE | Follicle-associated epithelium |
FAIC | Follicle-associated intestinal crypt |
FAIV | Follicle-associated intestinal villus |
GALT | Gut-associated lymphoid tissue |
GAPs | Goblet cell-associated antigen passages |
GC | Germinal center |
GCs | Goblet cells |
GIT | Gastrointestinal tract |
gIC | gram of intestinal content |
icGCs | Intercrypt goblet cells |
IgA | Immunoglobulin A |
IF | Immunofluorescence |
MC | Mucicarmine |
M cells | Microfold cells |
MUC | “mucin” (the mucin gene/protein family) |
PAS | Periodic Acid–Schiff |
pIgR | Polymeric immunoglobulin receptor |
PPs | Peyer’s patches |
rER | Rough endoplasmic reticulum |
RT | Room temperature |
sIgA | Secretory immunoglobulin A |
SD | Standard Deviation |
SED | Subepithelial dome |
senGCs | Sentinel goblet cells |
SEM | Standard error of the mean |
TBS | Tris-buffered saline |
16S rRNA | 16S ribosomal RNA |
References
- Kebouchi, M.; Hafeez, Z.; Le Roux, Y.; Dary-Mourot, A.; Genay, M. Importance of Digestive Mucus and Mucins for Designing New Functional Food Ingredients. Food Res. Int. 2020, 131, 108906. [Google Scholar] [CrossRef]
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016, 14, e1002533. [Google Scholar] [CrossRef] [PubMed]
- Inaba, R.; Vujakovic, S.; Bergstrom, K. The Gut Mucus Network: A Dynamic Liaison between Microbes and the Immune System. Semin. Immunol. 2023, 69, 101807. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras Durand, F.; Dunière, L.; Blanquet-Diot, S.; Forano, E. Microbiota Composition and Functional Profiling Throughout the Gastrointestinal Tract of Commercial Weaning Piglets. Microorganisms 2019, 7, 343. [Google Scholar] [CrossRef] [PubMed]
- Luis, A.S.; Hansson, G.C. Intestinal Mucus and Their Glycans: A Habitat for Thriving Microbiota. Cell Host Microbe 2023, 31, 1087–1100. [Google Scholar] [CrossRef]
- Iyayi, E.A.; Adeola, O. Quantification of Short-Chain Fatty Acids and Energy Production from Hindgut Fermentation in Cannulated Pigs Fed Graded Levels of Wheat Bran1. J. Anim. Sci. 2015, 93, 4781–4787. [Google Scholar] [CrossRef]
- Hansson, G.C. Mucins and the Microbiome. Annu. Rev. Biochem. 2020, 89, 769–793. [Google Scholar] [CrossRef]
- Święch, E.; Tuśnio, A.; Barszcz, M.; Taciak, M.; Siwiak, E. Goblet Cells and Mucus Layer in the Gut of Young Pigs: Response to Dietary Contents of Threonine and Non-essential Amino Acids. Anim. Physiol. Nutr. 2019, 103, 894–905. [Google Scholar] [CrossRef]
- Beyaz, F.; Liman, N. The Prenatal Development and Histochemistry of the Ileal Mucins in the Bovine Fetuses. Anat. Histol. Embryol. 2009, 38, 436–442. [Google Scholar] [CrossRef]
- McGuckin, M.A.; Thornton, D.J. (Eds.) Mucins: Methods and Protocols; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; ISBN 978-1-61779-512-1. [Google Scholar]
- Breugelmans, T.; Oosterlinck, B.; Arras, W.; Ceuleers, H.; De Man, J.; Hold, G.L.; De Winter, B.Y.; Smet, A. The Role of Mucins in Gastrointestinal Barrier Function during Health and Disease. Lancet Gastroenterol. Hepatol. 2022, 7, 455–471. [Google Scholar] [CrossRef]
- Corfield, A.P. Mucins: A Biologically Relevant Glycan Barrier in Mucosal Protection. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2015, 1850, 236–252. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Phillipson, M.; Petersson, J.; Velcich, A.; Holm, L.; Hansson, G.C. The Inner of the Two Muc2 Mucin-Dependent Mucus Layers in Colon Is Devoid of Bacteria. Proc. Natl. Acad. Sci. USA 2008, 105, 15064–15069. [Google Scholar] [CrossRef]
- Atuma, C.; Strugala, V.; Allen, A.; Holm, L. The Adherent Gastrointestinal Mucus Gel Layer: Thickness and Physical State in Vivo. Am. J. Physiol.-Gastrointest. Liver Physiol. 2001, 280, G922–G929. [Google Scholar] [CrossRef]
- Ahluwalia, B.; Magnusson, M.K.; Öhman, L. Mucosal Immune System of the Gastrointestinal Tract: Maintaining Balance between the Good and the Bad. Scand. J. Gastroenterol. 2017, 52, 1185–1193. [Google Scholar] [CrossRef] [PubMed]
- Moniaux, N. Structural Organization and Classification of the Human Mucin Genes. Front. Biosci. 2001, 6, d1192. [Google Scholar] [CrossRef]
- Ermund, A.; Schütte, A.; Johansson, M.E.V.; Gustafsson, J.K.; Hansson, G.C. Studies of Mucus in Mouse Stomach, Small Intestine, and Colon. I. Gastrointestinal Mucus Layers Have Different Properties Depending on Location as Well as over the Peyer’s Patches. Am. J. Physiol.-Gastrointest. Liver Physiol. 2013, 305, G341–G347. [Google Scholar] [CrossRef] [PubMed]
- Faderl, M.; Noti, M.; Corazza, N.; Mueller, C. Keeping Bugs in Check: The Mucus Layer as a Critical Component in Maintaining Intestinal Homeostasis. IUBMB Life 2015, 67, 275–285. [Google Scholar] [CrossRef]
- Gustafsson, J.K.; Ermund, A.; Johansson, M.E.V.; Schütte, A.; Hansson, G.C.; Sjövall, H. An Ex Vivo Method for Studying Mucus Formation, Properties, and Thickness in Human Colonic Biopsies and Mouse Small and Large Intestinal Explants. Am. J. Physiol.-Gastrointest. Liver Physiol. 2012, 302, G430–G438. [Google Scholar] [CrossRef]
- Johansson, M.E.V. Fast Renewal of the Distal Colonic Mucus Layers by the Surface Goblet Cells as Measured by In Vivo Labeling of Mucin Glycoproteins. PLoS ONE 2012, 7, e41009. [Google Scholar] [CrossRef] [PubMed]
- Structure and Function of Intestinal Mucosal Epithelium. In Mucosal Immunology; Elsevier: Amsterdam, The Netherlands, 2005; pp. 131–151. ISBN 978-0-12-491543-5.
- Li, H.; Limenitakis, J.P.; Fuhrer, T.; Geuking, M.B.; Lawson, M.A.; Wyss, M.; Brugiroux, S.; Keller, I.; Macpherson, J.A.; Rupp, S.; et al. The Outer Mucus Layer Hosts a Distinct Intestinal Microbial Niche. Nat. Commun. 2015, 6, 8292. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1463–1482. [Google Scholar] [CrossRef]
- Klisuric, A.; Thierry, B.; Delon, L.; Prestidge, C.A.; Gibson, R.J. Identifying Human and Murine M Cells In Vitro. Exp. Biol. Med. 2019, 244, 554–564. [Google Scholar] [CrossRef]
- Jung, C.; Hugot, J.-P.; Barreau, F. Peyer’s Patches: The Immune Sensors of the Intestine. Int. J. Inflamm. 2010, 2010, 823710. [Google Scholar] [CrossRef]
- Mowat, A. Anatomical Basis of Tolerance and Immunity to Intestinal Antigens. Nat. Rev. Immunol. 2003, 3, 331–341. [Google Scholar] [CrossRef]
- Kobayashi, N.; Takahashi, D.; Takano, S.; Kimura, S.; Hase, K. The Roles of Peyer’s Patches and Microfold Cells in the Gut Immune System: Relevance to Autoimmune Diseases. Front. Immunol. 2019, 10, 2345. [Google Scholar] [CrossRef]
- Ermund, A.; Gustafsson, J.K.; Hansson, G.C.; Keita, Å.V. Mucus Properties and Goblet Cell Quantification in Mouse, Rat and Human Ileal Peyer’s Patches. PLoS ONE 2013, 8, e83688. [Google Scholar] [CrossRef]
- Gebert, A.; Rothkötter, H.-J.; Pabst, R. Cytokeratin 18 Is an M-Cell Marker in Porcine Peyer’s Patches. Cell Tissue Res. 1994, 276, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Rothkötter, H.-J. Anatomical Particularities of the Porcine Immune System—A Physician’s View. Dev. Comp. Immunol. 2009, 33, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Saliu, E.-M.; Schulze Holthausen, J.; Wilke, V.; Zentek, J. Performance and Nutrient Digestibility of Growing Pigs Fed Highly or Low Fermentable Coarse or Finely Ground Fibre-Rich Feedstuffs. Arch. Anim. Nutr. 2024, 78, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Ellner, C.; Martínez-Vallespín, B.; Saliu, E.-M.; Zentek, J.; Röhe, I. Effects of Cereal and Protein Source on Performance, Apparent Ileal Protein Digestibility and Intestinal Characteristics in Weaner Piglets. Arch. Anim. Nutr. 2021, 75, 263–277. [Google Scholar] [CrossRef]
- Bannert, E.; Tesch, T.; Kluess, J.; Frahm, J.; Kersten, S.; Kahlert, S.; Renner, L.; Rothkötter, H.-J.; Dänicke, S. Metabolic and Hematological Consequences of Dietary Deoxynivalenol Interacting with Systemic Escherichia Coli Lipopolysaccharide. Toxins 2015, 7, 4773–4796. [Google Scholar] [CrossRef]
- Cohen, M.; Varki, N.M.; Jankowski, M.D.; Gagneux, P. Using Unfixed, Frozen Tissues to Study Natural Mucin Distribution. JoVE 2012, 21, 3928. [Google Scholar] [CrossRef]
- Matsuo, K.; Ota, H.; Akamatsu, T.; Sugiyama, A.; Katsuyama, T. Histochemistry of the Surface Mucous Gel Layer of the Human Colon. Gut 1997, 40, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. In Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; pp. 229–235. ISBN 978-1-61779-512-1.
- Mantani, Y.; Yuasa, H.; Nishida, M.; Takahara, E.; Omotehara, T.; Udayanga, K.G.S.; Kawano, J.; Yokoyama, T.; Hoshi, N.; Kitagawa, H. Peculiar Composition of Epithelial Cells in Follicle-Associated Intestinal Crypts of Peyer’s Patches in the Rat Small Intestine. J. Vet. Med. Sci. 2014, 76, 833–838. [Google Scholar] [CrossRef]
- Baidoo, N.; Sanger, G.J. Age-Related Decline in Goblet Cell Numbers and Mucin Content of the Human Colon: Implications for Lower Bowel Functions in the Elderly. Exp. Mol. Pathol. 2024, 139, 104923. [Google Scholar] [CrossRef] [PubMed]
- Röhe, I.; Hüttner, F.J.; Plendl, J.; Drewes, B.; Zentek, J. Comparison of Different Histological Protocols for the Preservation and Quantification of the Intestinal Mucus Layer in Pigs. Eur. J. Histochem. 2018, 62, 2874. [Google Scholar] [CrossRef]
- Kahlert, S.; Nossol, C.; Krüger, M.; Kopp, S.; Grimm, D.; Wuest, S.L.; Rothkötter, H.-J. Dynamic Mechanical Load as a Trigger for Growth and Proliferation in Porcine Epithelial Cells. Biomolecules 2025, 15, 455. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, L.C.; Boulding, E.T. Mucin Degradation in Human Colon Ecosystems. J. Clin. Investig. 1981, 67, 163–172. [Google Scholar] [CrossRef]
- Hoskins, L.C.; Boulding, E.T.; Gerken, T.A.; Harouny, V.R.; Kriaris, M.S. Mucin Glycoprotein Degradation by Mucin Oligosaccharide-Degrading Strains of Human Faecal Bacteria. Characterisation of Saccharide Cleavage Products and Their Potential Role in Nutritional Support of Larger Faecal Bacterial Populations. Microb. Ecol. Health Dis. 1992, 5, 193–207. [Google Scholar] [CrossRef]
- Corfield, A.P.; Wagner, S.A.; Clamp, J.R.; Kriaris, M.S.; Hoskins, L.C. Mucin Degradation in the Human Colon: Production of Sialidase, Sialate O-Acetylesterase, N-Acetylneuraminate Lyase, Arylesterase, and Glycosulfatase Activities by Strains of Fecal Bacteria. Infect. Immun. 1992, 60, 3971–3978. [Google Scholar] [CrossRef] [PubMed]
- Kerss, S.; Allen, A.; Garner, A. A Simple Method for Measuring Thickness of the Mucus Gel Layer Adherent to Rat, Frog and Human Gastric Mucosa: Influence of Feeding, Prostaglandin, N-Acetylcysteine and Other Agents. Clin. Sci. 1982, 63, 187–195. [Google Scholar] [CrossRef]
- Rubinstein, A.; Tirosh, B. Mucus Gel Thickness and Turnover in the Gastrointestinal Tract of the Rat: Response to Cholinergic Stimulus and Implication for Mucoadhesion. Pharm. Res. 1994, 11, 794–799. [Google Scholar] [CrossRef]
- Schade, C.; Flemström, G.; Holm, L. Hydrogen Ion Concentration in the Mucus Layer on Top of Acid-Stimulated and -Inhibited Rat Gastric Mucosa. Gastroenterology 1994, 107, 180–188. [Google Scholar] [CrossRef]
- Chu, S.; Tanaka, S.; Kaunitz, J.D.; Montrose, M.H. Dynamic Regulation of Gastric Surface pH by Luminal pH. J. Clin. Investig. 1999, 103, 605–612. [Google Scholar] [CrossRef]
- Akiba, Y.; Guth, P.H.; Engel, E.; Nastaskin, I.; Kaunitz, J.D. Dynamic Regulation of Mucus Gel Thickness in Rat Duodenum. Am. J. Physiol.-Gastrointest. Liver Physiol. 2000, 279, G437–G447. [Google Scholar] [CrossRef]
- Jordan, N.; Newton, J.; Pearson, J.; Allen, A. A Novel Method for the Visualization of the in Situ Mucus Layer in Rat and Man. Clin. Sci. 1998, 95, 97–106. [Google Scholar] [CrossRef]
- Strugala, V.; Dettmar, P.W.; Pearson, J.P. Thickness and Continuity of the Adherent Colonic Mucus Barrier in Active and Quiescent Ulcerative Colitis and Crohn’s Disease: Colonic Mucus Thickness in IBD. Int. J. Clin. Pract. 2008, 62, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Varum, F.J.O.; McConnell, E.L.; Sousa, J.J.S.; Veiga, F.; Basit, A.W. Mucoadhesion and the Gastrointestinal Tract. Crit. Rev. Ther. Drug Carr. Syst. 2008, 25, 207–258. [Google Scholar] [CrossRef] [PubMed]
- Kararli, T.T. Comparison of the Gastrointestinal Anatomy, Physiology, and Biochemistry of Humans and Commonly Used Laboratory Animals. Biopharm. Drug Disp. 1995, 16, 351–380. [Google Scholar] [CrossRef]
- Snoeck, V.; Huyghebaert, N.; Cox, E.; Vermeire, A.; Saunders, J.; Remon, J.P.; Verschooten, F.; Goddeeris, B.M. Gastrointestinal Transit Time of Nondisintegrating Radio-Opaque Pellets in Suckling and Recently Weaned Piglets. J. Control. Release 2004, 94, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Iiboshi, Y.; Cui, L.; Wasa, M.; Okada, A. Role of Intestinal Mucus on the Uptake of Latex Beads by Peyer’s Patches and on Their Transport to Mesenteric Lymph Nodes in Rats. J. Parenter. Enter. Nutr. 1999, 23, 19–23. [Google Scholar] [CrossRef]
- Onori, P.; Franchitto, A.; Sferra, R.; Vetuschi, A.; Gaudio, E. Peyer’s Patches Epithelium in the Rat. Dig. Dis. Sci. 2001, 46, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Sansonetti, P.J.; Phalipon, A. M Cells as Ports of Entry for Enteroinvasive Pathogens: Mechanisms of Interaction, Consequences for the Disease Process. Semin. Immunol. 1999, 11, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Strugala, V.; Allen, A.; Dettmar, P.W.; Pearson, J.P. Colonic Mucin: Methods of Measuring Mucus Thickness. Proc. Nutr. Soc. 2003, 62, 237–243. [Google Scholar] [CrossRef]
- Varum, F.J.O.; Veiga, F.; Sousa, J.S.; Basit, A.W. Mucus Thickness in the Gastrointestinal Tract of Laboratory Animals. J. Pharm. Pharmacol. 2012, 64, 218–227. [Google Scholar] [CrossRef]
- Pullan, R.D.; Thomas, G.A.; Rhodes, M.; Newcombe, R.G.; Williams, G.T.; Allen, A.; Rhodes, J. Thickness of Adherent Mucus Gel on Colonic Mucosa in Humans and Its Relevance to Colitis. Gut 1994, 35, 353–359. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Hansson, G.C. Immunological Aspects of Intestinal Mucus and Mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Beyaz, F.; Ergün, E.; Bayraktaroğlu, A.G.; Ergün, L. Identification of Intestinal M Cells in Isolated Lymphoid Follicles and Peyer’s Patches of the Angora Rabbit. Cell Tissue Res. 2010, 341, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.K.; Johansson, M.E.V. The Role of Goblet Cells and Mucus in Intestinal Homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef]
- Specian, R.D.; Oliver, M.G. Functional Biology of Intestinal Goblet Cells. Am. J. Physiol.-Cell Physiol. 1991, 260, C183–C193. [Google Scholar] [CrossRef]
- Nyström, E.E.L.; Martinez-Abad, B.; Arike, L.; Birchenough, G.M.H.; Nonnecke, E.B.; Castillo, P.A.; Svensson, F.; Bevins, C.L.; Hansson, G.C.; Johansson, M.E.V. An Intercrypt Subpopulation of Goblet Cells Is Essential for Colonic Mucus Barrier Function. Science 2021, 372, 6539. [Google Scholar] [CrossRef] [PubMed]
- Law, G.K.; Bertolo, R.F.; Adjiri-Awere, A.; Pencharz, P.B.; Ball, R.O. Adequate Oral Threonine Is Critical for Mucin Production and Gut Function in Neonatal Piglets. Am. J. Physiol.-Gastrointest. Liver Physiol. 2007, 292, G1293–G1301. [Google Scholar] [CrossRef] [PubMed]
- Deplancke, B.; Gaskins, H.R. Microbial Modulation of Innate Defense: Goblet Cells and the Intestinal Mucus Layer. Am. J. Clin. Nutr. 2001, 73, 1131S–1141S. [Google Scholar] [CrossRef]
- Luo, C.; Cen, S.; Ding, G.; Wu, W. Mucinous Colorectal Adenocarcinoma: Clinical Pathology and Treatment Options. Cancer Commun. 2019, 39, 13. [Google Scholar] [CrossRef]
- Soans, S.; Galindo, L.M.; Garcia, F.U. Mucin Stain on Frozen Sections. Arch. Pathol. Lab. Med. 1999, 123, 378–380. [Google Scholar] [CrossRef]
Segment | Staining Method | Villus Height (μm) | Villus Width (μm) |
---|---|---|---|
Jejunum | AB-PAS | 217 ± 22 | 90 ± 6 |
MC | 229 ± 24 | 91 ± 7 | |
Ileum | AB-PAS | 212 ± 38 | 119 ± 35 |
MC | 197 ± 25 | 100 ± 7 |
Segment | Measurement Site | AB-PAS (μm) | MC (μm) |
---|---|---|---|
Jejunum | Peyer’s patch | 7 ± 1.1 | 8 ± 0.9 |
Ileum | Peyer’s patch | 11 ± 1.7 | 8.6 ± 0.8 |
Jejunum | Regular intestinal mucosa | 16 ± 4.7 | 17 ± 1.6 |
Ileum | Regular intestinal mucosa | 17 ± 3.6 | 18 ± 3.6 |
Colon | Mucosa | 106 ± 15 | 98 ± 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ginoski, V.; Cortés Sánchez, J.L.; Kahlert, S.; Schulze Holthausen, J.; Grześkowiak, Ł.; Zentek, J.; Rothkötter, H.-J. Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs. Animals 2025, 15, 2852. https://doi.org/10.3390/ani15192852
Ginoski V, Cortés Sánchez JL, Kahlert S, Schulze Holthausen J, Grześkowiak Ł, Zentek J, Rothkötter H-J. Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs. Animals. 2025; 15(19):2852. https://doi.org/10.3390/ani15192852
Chicago/Turabian StyleGinoski, Vladimir, José Luis Cortés Sánchez, Stefan Kahlert, Johannes Schulze Holthausen, Łukasz Grześkowiak, Jürgen Zentek, and Hermann-Josef Rothkötter. 2025. "Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs" Animals 15, no. 19: 2852. https://doi.org/10.3390/ani15192852
APA StyleGinoski, V., Cortés Sánchez, J. L., Kahlert, S., Schulze Holthausen, J., Grześkowiak, Ł., Zentek, J., & Rothkötter, H.-J. (2025). Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs. Animals, 15(19), 2852. https://doi.org/10.3390/ani15192852