Heat Stress and Betaine Affect Lipolysis in Pig Adipose Tissue Explants
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Adipose Tissue Isolation and Culture
2.2. Statistical Analysis
3. Results
3.1. The Effect of Heat Stress on Acute Lipolysis
3.2. The Effect of Betaine on Acute Lipolysis
3.3. The Regulation of Acute Lipolysis by Isoproterenol and Insulin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poullet, N.; Rauw, W.M.; Renaudeau, D.; Riquet, J.; Giorgi, M.; Billon, Y.; Gilbert, H.; Gourdine, J.L. Plasticity of Feeding Behaviour Traits in Response to Production Environment (Temperate vs. Tropical) in Group-Housed Growing Pigs. Sci. Rep. 2022, 12, 847. [Google Scholar] [CrossRef]
- Renaudeau, D.; Gourdine, J.L.; St-Pierre, N.R. A Meta-Analysis of the Effects of High Ambient Temperature on Growth Performance of Growing-Finishing Pig. J. Anim. Sci. 2011, 89, 2220–2230. [Google Scholar] [CrossRef]
- Renaudeau, D.; Leclercq-Smekens, M.; Herin, M. Differences in Skin Characteristics in European (Large White) and Caribbean (Creole) Growing Pigs with Reference to Thermoregulation. Anim. Res. 2006, 55, 209–217. [Google Scholar] [CrossRef]
- Pardo, Z.; Seiquer, I.; Lachica, M.; Nieto, R.; Lara, L.; Fernández-Fígares, I. Exposure of Growing Iberian Pigs to Heat Stress and Effects of Dietary Betaine and Zinc on Heat Tolerance. J. Therm. Biol. 2022, 106, 103230. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, W.; Le, H.H.; Cottrell, J.J.; Green, M.P.; Leury, B.J.; Dunshea, F.R.; Bell, A.W. Review: What Have We Learned About the Effects of Heat Stress on the Pig Industry? Animal 2022, 16, 100349. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a High Ambient Temperature on Lipid Metabolism in the Growing Pig. J. Anim. Sci. 2001, 79, 81–87. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Zheng, C.; Hu, Y.; Wang, L. Nutritional Regulation for Meat Quality and Nutrient Metabolism of Pigs Exposed to High Temperature Environment. J. Nutr. Food Sci. 2015, 5, 6–10. [Google Scholar] [CrossRef]
- Qu, H.; Donkin, S.S.; Ajuwon, K.M. Heat Stress Enhances Adipogenic Differentiation of Subcutaneous Fat Depot-Derived Porcine Stromovascular Cells. J. Anim. Sci. 2015, 93, 3832–3842. [Google Scholar] [CrossRef]
- Qu, H.; Ajuwon, K.M. Metabolomics of Heat Stress Response in Pig Adipose Tissue Reveals Alteration of Phospholipid and Fatty Acid Composition During Heat Stress. J. Anim. Sci. 2018, 96, 3184–3195. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fígares, I.; Lachica, M.; Martínez-Pérez, M.; Ramsay, T.G. Conjugated Linoleic Acid and Betaine Affect Lipolysis in Pig Adipose Tissue Explants. Animal 2019, 13, 2840–2846. [Google Scholar] [CrossRef]
- Dufau, J.; Shen, J.X.; Couchet, M.; de Castro Barbosa, T.; Mejhert, N.; Massier, L.; Griseti, E.; Mouisel, E.; Amri, E.Z.; Lauschke, V.M.; et al. In Vitro and Ex Vivo Models of Adipocytes. Am. J. Physiol. Cell Physiol. 2021, 320, C822–C841. [Google Scholar] [CrossRef]
- Lang, F. Mechanisms and significance of cell volume regulation. J. Am. Coll. Nutr. 2007, 26, 613S–623S. [Google Scholar] [CrossRef]
- Schwab, U.; Torronen, A.; Meririnne, E.; Saarinen, M.; Alfthan, G.; Aro, A.; Uusitupa, M. Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. J. Anim. Nutr. 2006, 136, 34–38. [Google Scholar] [CrossRef]
- Cholewa, J.M.; Guimarães-Ferreira, L.; Zanchi, N.E. Effects of Betaine on Performance and Body Composition: A Review of Recent Findings and Potential Mechanisms. Amino Acids 2014, 46, 1785–1793. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Song, M.; Zhu, Q.; Azad, M.A.K.; Gao, Q.; Kong, X. Dietary Betaine Addition Alters Carcass Traits, Meat Quality, and Nitrogen Metabolism of Bama Mini-Pigs. Front. Nutr. 2021, 8, 728477. [Google Scholar] [CrossRef]
- Craig, S.A. Betaine in human nutrition. Am. J. Clin. Nutr. 2004, 80, 539–549. [Google Scholar] [CrossRef]
- Eklund, M.; Bauer, E.; Wamatu, J.; Mosenthin, R. Potential nutritional and physiological functions of betaine in livestock. Nutr. Res. Rev. 2005, 18, 31–48. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.O.; Southern, L.L.; Bidner, T.D. Estimation of the total sulfur amino acid requierement and the effect of betaine in diets deficient in total sulfur amino acids for the weanling pig. J. Anim. Sci. 2001, 79, 1557–1565. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.O.; Southern, L.L.; Pontif, J.E.; Higbie, A.D.; Bidner, T.D. Interactive effects of betaine, crude protein, and net energy in finishing pigs. J. Anim. Sci. 1998, 76, 2444–2455. [Google Scholar] [CrossRef]
- Lachica, M.; Pardo, Z.; Lara, L.; Nieto, R.; Fernández-Fígares, I. Heat Production of Iberian Pig Exposed to High Temperature and Effect of Dietary Supplementation with Betaine or Zinc. Animals 2024, 14, 2033. [Google Scholar] [CrossRef]
- Schrama, J.W.; Heetkamp, M.J.W.; Simmins, P.H.; Gerrits, W.J.J. Dietary Betaine Supplementation Affects Energy Metabolism of Pigs. J. Anim. Sci. 2003, 81, 1202–1209. [Google Scholar] [CrossRef]
- Fernández-Fígares, I.; Wray-Cahen, D.; Steele, N.C.; Campbell, R.G.; Hall, D.D.; Virtanen, E.; Caperna, T.J. Effect of dietary betaine on nutrient utilization and partitioning in the young growing feed-restricted pig. J. Anim. Sci. 2002, 80, 421–428. [Google Scholar] [CrossRef]
- Fernández-Fígares, I.; Conde-Aguilera, J.A.; Nieto, R.; Lachica, M.; Aguilera, J.F. Synergistic effects of betaine and conjugated linoleic acid on the growth and carcass composition of growing Iberian pigs. J. Anim. Sci. 2008, 86, 102–111. [Google Scholar] [CrossRef]
- Rojas-Cano, M.L.; Lara, L.; Lachica, M.; Aguilera, J.F.; Fernández-Fígares, I. Influence of Betaine and Conjugated Linoleic Acid on Development of Carcass Cuts of Iberian Pigs Growing from 20 to 50 kg Body Weight. Meat Sci. 2011, 88, 525–530. [Google Scholar] [CrossRef]
- Fernández-Fígares, I.; Lachica, M.; Martín, A.; Nieto, R.; González-Valero, L.; Rodríguez-López, J.M.; Aguilera, J.F. Impact of dietary betaine and conjugated linoleic acid on insulin sensitivity, protein and fat metabolism of obese pigs. Animal 2012, 6, 1058–1067. [Google Scholar] [CrossRef]
- Rojas-Cano, M.L.; Lachica, M.; Lara, L.; Haro, A.; Fernández-Fígares, I. Portal-drained viscera heat production in Iberian pigs fed betaine- and conjugated linoleic acid-supplemented diets. J. Sci. Food Agric. 2017, 97, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Li, D.; Yin, J.; Ni, J.; Dong, B.; Zhang, J.; Du, M. CLA differently regulates adipogenesis in stromal vascular cells from porcine subcutaneous adipose and skeletal muscle. J. Lipid Res. 2007, 48, 1701–1709. [Google Scholar] [CrossRef] [PubMed]
- Buonaiuto, G.; Federiconi, A.; Vecchiato, C.G.; Benini, E.; Mordenti, A.L. Betaine Dietary Supplementation: Healthy Aspects in Human and Animal Nutrition. Antioxidants 2025, 14, 771. [Google Scholar] [CrossRef]
- Nieto, R.; Lara, L.; Barea, R.; García-Valverde, R.; Aguinaga, M.A.; Conde-Aguilera, J.A.; Aguilera, J.F. Response Analysis of the Iberian Pig Growing from Birth to 150 Kg Body Weight to Changes in Protein and Energy Supply. J. Anim. Sci. 2012, 90, 3809–3820. [Google Scholar] [CrossRef]
- Ramsay, T.G.; Richards, M.P. Hormonal Regulation of Leptin and Leptin Receptor Expression in Porcine Subcutaneous Adipose Tissue. J. Anim. Sci. 2004, 82, 3486–3492. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Yan, H.; Lu, H.; Donkin, S.S.; Ajuwon, K.M. Heat stress in pigs is accompanied by adipose tissue-specific responses that favor increased triglyceride storage. J. Anim. Sci. 2016, 94, 1884–1886. [Google Scholar] [CrossRef]
- Pearce; Gabler, N.K.; Ross, J.W.; Escobar, J.; Patience, J.F.; Rhoads, R.P.; Baumgard, L.H. The Effects of Heat Stress and Plane of Nutrition on Metabolism in Growing Pigs. J. Anim. Sci. 2013, 91, 2108–2118. [Google Scholar] [CrossRef] [PubMed]
- Baumgard, L.H.; Rhoads, R.P. Effects of Heat Stress on Postabsorptive Metabolism and Energetics. Annu. Rev. Anim. Biosci. 2013, 1, 311–337. [Google Scholar] [CrossRef]
- Mayorga, E.J.; Renaudeau, D.; Ramirez, B.C.; Ross, J.W.; Baumgard, L.H. Heat Stress Adaptations in Pigs. Anim. Front. 2019, 9, 54–61. [Google Scholar] [CrossRef]
- Torres-Rovira, L.; Gonzalez-Anover, P.; Astiz, S.; Caro, A.; Lopez-Bote, C.; Ovilo, C.; Pallares, P.; Perez-Solana, M.; Sanchez-Sanchez, R.; Gonzalez-Bulnes, A. Effect of an Obesogenic Diet During the Juvenile Period on Growth Pattern, Fatness and Metabolic, Cardiovascular and Reproductive Features of Swine with Obesity/Leptin Resistance. Endocr. Metab. Immune Disord.-Drug Targets 2013, 13, 143–151. [Google Scholar] [CrossRef]
- Switonski, M.; Stachowiak, M.; Cieslak, J.; Bartz, M. Genetics of Fat Tissue Accumulation in Pigs: A Comparative Approach. J. Appl. Genet. 2010, 51, 153–168. [Google Scholar] [CrossRef]
- Nakajima, I.; Kojima, M.; Oe, M.; Ojima, K.; Muroya, S.; Chikuni, K. Comparing Pig Breeds with Genetically Low and High Backfat Thickness: Differences in Expression of Adiponectin, Its Receptor, and Blood Metabolites. Domest. Anim. Endocrinol. 2019, 68, 54–63. [Google Scholar] [CrossRef]
- Serra, X.; Gil, F.; Pérez-Enciso, M.; Oliver, M.A.; Vázquez, J.M.; Gispert, M.; Díaz, I.; Moreno, F.; Latorre, R.; Noguera, J.L. A Comparison of Carcass, Meat Quality and Histochemical Characteristics of Iberian (Guadyerbas Line) and Landrace Pigs. Livest. Prod. Sci. 1998, 56, 215–223. [Google Scholar] [CrossRef]
- Barea, R.; Isabel, B.; Nieto, R.; López-Bote, C.; Aguilera, J.F. Evolution of the Fatty Acid Profile of Subcutaneous Back-Fat Adipose Tissue in Growing Iberian and Landrace × Large White Pigs. Animal 2013, 7, 688–698. [Google Scholar] [CrossRef]
- Pardo, Z.; Lara, L.; Nieto, R.; Fernández-Fígares, I.; Seiquer, I. Muscle Quality Traits and Oxidative Status of Iberian Pigs Supplemented with Zinc and Betaine Under Heat Stress. Meat Sci. 2023, 198, 109119. [Google Scholar] [CrossRef] [PubMed]
- Lachica, M.; Román, A.; Fernández-Fígares, I.; Nieto, R. Upper Critical Temperature of Iberian Pigs. Animals 2025, 15, 1374. [Google Scholar] [CrossRef]
- Sanz Fernandez, V.M.; Johnson, J.S.; Abuajamieh, M.; Stoakes, S.K.; Seibert, J.T.; Cox, L.; Kahl, S.; Elsasser, T.H.; Ross, J.W.; Isom, S.C.; et al. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs. Physiol. Rep. 2015, 3, e12315. [Google Scholar] [CrossRef]
- Streffer, C. Aspects of metabolic change after hyperthermia. Appl. Hyperth. Treat. Cancer 1988, 107, 7–16. [Google Scholar] [CrossRef]
- Hall, G.M.; Lucke, J.N.; Lovell, R.; Lister, D. Porcine malignant hyperthermia. VII: Hepatic metabolism. Br. J. Anaesth. 1980, 52, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Tunaru, S.; Tang, C.; Müller, M.; Gille, A.; Sassmann, A.; Hanson, J.; Offermanss, S. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab. 2010, 11, 311–319. [Google Scholar] [CrossRef]
- Pucci, E.; Chiovato, L.; Pinchera, A. Thyroid and lipid metabolism. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Kellner, T.A.; Gourley, G.G.; Wisdom, S.; Patience, J.F. Prediction of porcine carcass iodine value based on diet composition and fatty acid intake. J. Anim. Sci. 2016, 94, 5248–5261. [Google Scholar] [CrossRef]
- Pardo, Z.; Fernández-Fígares, I.; Lachica, M.; Lara, L.; Nieto, R.; Seiquer, I. Impact of Heat Stress on Meat Quality and Antioxidant Markers in Iberian Pigs. Antioxidants 2021, 10, 1911. [Google Scholar] [CrossRef]
- Pardo, Z.; Seiquer, I.; Nieto, R.; Manuel, L. Efectos Del Estrés Por Calor Sobre El Despiece de La Canal En Cerdo Ibérico. In Proceedings of the XIX Jornadas Sobre Producción Animal AIDA, Zaragoza, Spain, 1–2 June 2021; p. 235. [Google Scholar]
- Qu, H.; Ajuwon, K.M. Adipose Tissue-Specific Responses Reveal an Important Role of Lipogenesis during Heat Stress Adaptation in Pigs. J. Anim. Sci. 2018, 96, 975–989. [Google Scholar] [CrossRef]
- Poklukar, K.; Čandek-Potokar, M.; Lukač, N.B.; Tomažin, U.; Škrlep, M. Lipid Deposition and Metabolism in Local and Modern Pig Breeds: A Review. Animals 2020, 10, 424. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Hermier, D.; Le Dividich, J. Influence of a High Ambient Temperature on Stearoyl-CoA-Desaturase Activity in the Growing Pig. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 124, 7–13. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of Heat Stress on Animal Physiology, Metabolism, and Meat Quality: A Review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Cottrell, J.J.; Liu, F.; Hung, A.T.; DiGiacomo, K.; Chauhan, S.S.; Lury, B.J.; Furness, J.B.; Celi, P.; Dunshea, F.R. Nutritional strategies to alleviate heat stress in pigs. Anim. Prod. Sci. 2015, 55, 1391–1402. [Google Scholar] [CrossRef]
- Matthews, J.O.; Southern, L.L.; Higbie, A.D.; Persica, M.A.; Bidner, T.D. Effects of betaine on growth, carcass characteristics, pork quality and plasma metabolites of finishing pigs. J. Anim. Sci. 2001, 79, 722–728. [Google Scholar] [CrossRef]
- Brown-Brandl, T.M.; Nienaber, J.A.; Eigenberg, R.A.; Mader, T.L.; Morrow, J.L.; Dailey, J.W. Comparison of heat tolerance of feedlot heifers of different breeds. Lives Sci. 2006, 105, 19–26. [Google Scholar] [CrossRef]
- Sales, J. Ameta-analysis of the effects of dietary betaine supplementation on finishing performance and carcass characteristics of pigs. Anim. Feed. Sci. Technol. 2011, 165, 68–78. [Google Scholar] [CrossRef]
- Fu, R.; Chen, D.; Tian, G.; Zheng, P.; He, J.; Yu, J.; Mao, X.; Huang, Z.; Pu, J.; Yu, B. Betaine affects abdominal flare fat metabolism via regulating m6A RNA methylation in finishing pigs fed a low-energy diet. J. Funct. Foods 2023, 107, 105620. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Ji, Y.; Lin, X.; Zhao, Y. Effect of Betaine Diet on Growth Performance, Carcass Quality and Fat Deposition in Finishing Ningxiang Pigs. Animals 2021, 11, 3408. [Google Scholar] [CrossRef]
- Huang, Q.C.; Xu, Z.R.; Han, X.Y.; Li, W.F. Changes in Hormones, Growth Factor and Lipid Metabolism in Finishing Pigs Fed Betaine. Livest. Sci. 2006, 105, 78–85. [Google Scholar] [CrossRef]
- Rudman, D. Comparative Studies on the Physiology of Adipose Tissue. Adv. Lipid Res. 1967, 5, 35–117. [Google Scholar] [CrossRef] [PubMed]
- Fain, J.N.; García-Sainz, J.A. Adrenergic regulation of adipocyte metabolism. J. Lipid Res. 1983, 24, 945–966. [Google Scholar] [CrossRef] [PubMed]
- Mersmann, H.J. Specificity of β-Adrenergic Control of Lipolysis in Swine Adipose Tissue. Comp. Biochem. Physiol. C Comp. Pharmacol. 1984, 77, 39–42. [Google Scholar] [CrossRef]
- McNeel, R.L.; Mersmann, H.J. Distribution and quantification of β1-, β2-, and β3-adrenergic receptor subtype transcripts in porcine tissues. J. Anim. Sci. 1999, 77, 611–621. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Mills, S.E. Quantitative analysis of beta-adrenergic receptor subtypes in pig tissues. J. Anim. Sci. 2002, 80, 963–970. [Google Scholar] [CrossRef]
- Ortega, A.; Szabó, C. Metabolism and Endocrine Alterations in Growing and Finishing Pigs Under Different Duration of Heat Stress-a Review. Anim. Sci. Pap. Rep. 2023, 41, 5–16. [Google Scholar]
- Mills, S.E. Regulation of porcine adipocyte metabolism by insulin and adenosine. J. Anim. Sci. 1999, 77, 3201–3207. [Google Scholar] [CrossRef]
- Sanz Fernandez, M.; Johnson, J.; Abuajamieh, M.; Stoakes, S.K.; Seibert, J.T.; Cox, L.; Kahl, S.; Elsasser, T.; Ross, J.; Isom, S.; et al. Heat Stress Increases Insulin Sensitivity in Pigs. Physiol. Rep. 2015, 3, e12478. [Google Scholar] [CrossRef]
- Fernández-Fígares, I.; Lachica, M.; Nieto, R.; Rivera-Ferre, M.G.; Aguilera, J.F. Serum Profile of Metabolites and Hormones in Obese (Iberian) and Lean (Landrace) Growing Gilts Fed Balanced or Lysine Deficient Diets. Livest. Sci. 2007, 110, 73–81. [Google Scholar] [CrossRef]
- Wangsness, P.J.; Acker, W.A.; Burdette, J.H.; Krabill, L.F.; Vasilatos, R. Effect of Fasting on Hormones and Metabolites in Plasma of Fast Growing, Lean and Slow-Growing Obese Pigs. J. Anim. Sci. 1981, 52, 69–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, Z.; Lachica, M.; Nieto, R.; Seiquer, I.; Fernández-Fígares, I. Heat Stress and Betaine Affect Lipolysis in Pig Adipose Tissue Explants. Animals 2025, 15, 2845. https://doi.org/10.3390/ani15192845
Pardo Z, Lachica M, Nieto R, Seiquer I, Fernández-Fígares I. Heat Stress and Betaine Affect Lipolysis in Pig Adipose Tissue Explants. Animals. 2025; 15(19):2845. https://doi.org/10.3390/ani15192845
Chicago/Turabian StylePardo, Zaira, Manuel Lachica, Rosa Nieto, Isabel Seiquer, and Ignacio Fernández-Fígares. 2025. "Heat Stress and Betaine Affect Lipolysis in Pig Adipose Tissue Explants" Animals 15, no. 19: 2845. https://doi.org/10.3390/ani15192845
APA StylePardo, Z., Lachica, M., Nieto, R., Seiquer, I., & Fernández-Fígares, I. (2025). Heat Stress and Betaine Affect Lipolysis in Pig Adipose Tissue Explants. Animals, 15(19), 2845. https://doi.org/10.3390/ani15192845