Combination of Anti-Mycotoxin Additive in Diet Contaminated with Multiple Mycotoxins (Aflatoxin, Fumonisin, Zearalenone and Deoxynivalenol): Effects on Performance and Health of Lambs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Additive Characterization
2.2. Mycotoxin Inoculum Production and Challenge Dose
2.3. Animals and Installation
2.4. Experimental Design
2.5. Experimental Diet
2.6. Animal Performance
2.7. Hematological Profile and Serum Biochemistry
2.8. Oxidative Status Biomarkers
2.9. Mycotoxin Quantification in Diets
2.10. Statistical Analysis
3. Results
3.1. Performance
3.2. Hematological Profile
3.3. Seric Biochemistry
3.4. Oxidative Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dias, A.S. Micotoxinas em produtos de origem animal. Rev. Cient. Med. Veterinária 2018, 30, 1–15. [Google Scholar]
- Horky, P.; Skalickova, S.; Baholet, D.; Skladanka, J. Nanoparticles as a Solution for Eliminating the Risk of Mycotoxins. Nanomaterials 2018, 8, 727. [Google Scholar] [CrossRef]
- Ayalew, A. Mycotoxins and surface and internal fungi of maize from Ethiopia. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 4109–4123. [Google Scholar] [CrossRef]
- Murphy, P.A.; Hendrich, S.; Landgren, C.; Bryant, C.M. Food Mycotoxins: An Update. J. Food Sci. 2006, 71, R51–R65. [Google Scholar] [CrossRef]
- Tola, M.; Kebede, B. Occurrence, importance and control of mycotoxins: A review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Santúrio, J.M. Micotoxinas e micotoxicoses na avicultura. Rev. Bras. Ciência Avícola 2000, 2, 1–12. [Google Scholar] [CrossRef]
- Marceddu, R.; Dinolfo, L.; Carrubba, A.; Sarno, M.; Di Miceli, G. Milk Thistle (Silybum marianum L.) as a Novel Multipurpose Crop for Agriculture in Marginal Environments: A Review. Agronomy 2022, 12, 729. [Google Scholar] [CrossRef]
- Rao, P.R.; Viswanath, R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol. 2007, 12, 179. [Google Scholar]
- Liu, M.; Zhao, L.; Gong, G. Invited review: Remediation strategies for mycotoxin control in feed. J. Anim. Sci. Biotechnol. 2022, 13, 19. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Jentzsch, A.M.; Bachmann, H.; Fürst, P.; Biesalski, H.K. Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med. 1996, 20, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.F.; Lebel, C.P.; Bondy, S.C. Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicoly 1992, 113, 637–648. [Google Scholar]
- Tietze, F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: Applications to mammalian blood and other tissues. Anal. Biochem. 1969, 27, 502–522. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Santos, E.V.; Fontes, D.O.; Benfato, M.D.S.; Hackenhaar, F.S.; Salomon, T.; Jacob, D.V.; Prévéraud, D.; Araujo, W.A.G.; da Glória, E.M.; Domingos, R.L.; et al. Mycotoxin deactivator improves performance, antioxidant status, and reduces oxidative stress in nursery pigs fed diets containing mycotoxins. J. Anim. Sci. 2021, 99, skab277. [Google Scholar] [CrossRef]
- Fink-Gremmels, J. The role of mycotoxins in the health and performance of dairy cows. Vet. J. 2008, 176, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Pestka, J.J. Deoxynivalenol: Toxicity, mechanisms and animal health risks. Anim. Feed Sci. Technol. 2007, 137, 283–298. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Bertuzzi, T.; Moschini, M.; Masoero, F. Study of the effects of PR toxin, mycophenolic acid and roquefortine C on in vitro gas production parameters and their stability in the rumen environment. J. Agric. Sci. 2015, 153, 163–176. [Google Scholar] [CrossRef]
- Indresh, H.; Ruban, S. Effects of high-grade bentonite on performance, organ weights and serum biochemistry during aflatoxicosis in broilers. Vet. World 2013, 6, 313. [Google Scholar] [CrossRef]
- Gouda, G.A.; Khattab, H.M.; Abdel-Wahh, M.A.; Abo El-Nor, S.A.; El-Sayed, H.M.; Kholi, S.M. Clay minerals as sorbents for mycotoxins in lactating goat’s diets: Intake, digestibility, blood chemistry, ruminal fermentation, milk yield and composition, and milk aflatoxin M1 content. Small Rumin. Res. 2019, 175, 15–22. [Google Scholar] [CrossRef]
- Cunningham, J.K. Fisiologia Veterinária. 6° Edição; Elselvier: Barcelona, Spain, 2020. [Google Scholar]
- Falkauskas, R.; Bakutis, B.; Jovaišienė, J. Gerenciamento de risco de micotoxinas para vacas leiteiras por meio do monitoramento de parâmetros sanguíneos, status reprodutivo e CCS no leite. Arq. Bras. Med. Veterinária Zootec. 2022, 74, 281–290. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, H. Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J. Toxicol. Sci. 2014, 39, 875–886. [Google Scholar] [CrossRef]
- Wu, W.; He, K.; Zhou, H.R.; Berthiller, F.; Adam, G.; Sugita-Konishi, Y.; Watanabe, M.; Krantis, A.; Durst, T.; Zhang, H.; et al. Effects of oral exposure to naturally-occurring and synthetic deoxynivalenol congeners on proinflammatory cytokine and chemokine mRNA expression in the mouse. Toxicol. Appl. Pharmacol. 2014, 278, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Edrington, T.S.; Harvey, R.B.; Kubena, L.F. Effect of aflatoxin in growing lambs fed ruminally degradable or escape protein sources. J. Anim. Sci. 1994, 72, 1274–1281. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Y.M.; Nennich, T.D.; Li, Y.; Liu, J.X. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of adsorbent in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or MetaSmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef]
- Randhawa, S.N.S.; Ranjan, R.; Singh, R. Diagnosis and management of negative energy balance and associated production diseases in bovines. Intas Polivet 2014, 15, 497–503. [Google Scholar]
- Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem.-Biol. Interact. 2014, 224, 164–175. [Google Scholar] [CrossRef]
- Huang, S.; Zheng, N.; Fan, C.; Cheng, M.; Wang, S.; Jabar, A.; Wang, J.; Cheng, J. Effects of aflatoxin B1 combined with ochratoxin A and/or zearalenone on metabolism, immune function, and antioxidant status in lactating dairy goats. Asian-Australas. J. Anim. Sci. 2018, 31, 505–513. [Google Scholar] [CrossRef]
- Dasari, S. Glutathione S-transferases Detoxify Endogenous and Exogenous Toxic Agents- Minireview. J. Dairy Vet. Anim. Res. 2017, 5, 1–3. [Google Scholar] [CrossRef]
- Depreester, E.; Meyer, E.; Demeyere, K.; Van Eetvelde, M.; Hostens, M.; Opsomer, G. Flow cytometric assessment of myeloperoxidase in bovine blood neutrophils and monocytes. J. Dairy Sci. 2017, 100, 7638–7647. [Google Scholar] [CrossRef]
Ingredients | Composition (g/kg) |
---|---|
Corn silage | 0.430 |
Ground corn | 0.350 |
Soybean meal | 0.150 |
Wheat bran | 0.120 |
Mineral and vitamin premix | 0.030 |
Limestone | 0.010 |
Chemical Composition (%) 1 | Corn Silage | Concentrate Control | Concentrate Anti-Mycotoxin | Concentrate Mycotoxin |
---|---|---|---|---|
Dry matter (DM), % | 37.71 | 96.48 | 96.57 | 96.05 |
Crude protein, % | 9.14 | 16.87 | 17.11 | 17.50 |
Ethereal extract, % | 4.28 | 3.40 | 3.33 | 3.30 |
Ashes, % | 6.07 | 7.89 | 7.70 | 7.14 |
NDF, % | 44.56 | 13.50 | 12.35 | 13.15 |
ADF, % | 20.74 | 6.02 | 5.52 | 6.19 |
Variables | Control | Anti-Mycotoxin | Mycotoxin | SEM | p: Treat 3 | p: Treat × Day 4 |
---|---|---|---|---|---|---|
Body weight (kg) | 0.34 | 0.21 | ||||
d1 1 | 20.3 | 20.2 | 20.6 | 0.45 | ||
d14 2 | 22.7 | 22.8 | 22.9 | 0.42 | ||
d28 | 26.1 | 26.4 | 25.9 | 0.41 | ||
d48 | 31.6 | 31.7 | 30.9 | 0.41 | ||
ADG (kg) | ||||||
d14–48 | 0.261 a | 0.261 a | 0.235 b | 0.01 | 0.01 | NE |
DMI (kg DM) | ||||||
d14–48 | 1.07 | 1.11 | 1.08 | 0.03 | 0.83 | 0.94 |
Feed efficiency (kg/kg) | ||||||
d14–48 | 0.243 a | 0.235 ab | 0.217 b | 0.006 | 0.03 | NE |
Variables | Control | Anti-Mycotoxin | Mycotoxin | SEM | p: Treat 1 | p: Treat × Day 2 |
---|---|---|---|---|---|---|
Leukocytes (×103/µL) | 8.79 | 7.29 | 7.39 | 0.50 | 0.15 | 0.32 |
Lymphocytes (×103/µL) | 5.82 a | 4.89 b | 4.93 b | 0.19 | 0.05 | 0.26 |
Granulocytes (×103/µL) | 1.65 a | 1.43 b | 1.50 ab | 0.08 | 0.02 | 0.11 |
Monocytes (×103/µL) | 1.31 | 0.96 | 0.94 | 0.11 | 0.41 | 0.58 |
Erythrocytes (×106/µL) | 10.1 | 10.2 | 9.71 | 0.10 | 0.97 | 0.96 |
Hemoglobin (mg/dL) | 12.0 | 11.9 | 11.3 | 0.12 | 0.92 | 0.95 |
Hematocrit (%) | 29.2 | 29.4 | 27.9 | 0.32 | 0.73 | 0.46 |
Platelets (×103/µL) | 216 | 215 | 251 | 12.2 | 0.15 | 0.23 |
Variables | Control | Anti-Mycotoxin | Mycotoxin | SEM | p: Treat 1 | p: Treat × Day 2 |
---|---|---|---|---|---|---|
Albumin (g/dL) | 3.18 | 3.24 | 3.17 | 0.04 | 0.79 | 0.65 |
Total protein (g/dL) | 5.81 | 6.12 | 5.83 | 0.08 | 0.66 | 0.59 |
Globulin (g/dL) | 2.63 | 2.88 | 2.66 | 0.05 | 0.87 | 0.92 |
Creatine kinase (U/L) | 0.01 | 0.01 | ||||
d14 | 568 | 595 | 578 | 79.3 | ||
d28 | 394 b | 470 b | 747 a | 76.1 | ||
d48 | 194 b | 309 ab | 326 a | 41.5 | ||
Mean | 294 b | 395 ab | 537 a | 62.4 | ||
Cholesterol (mg/dL) | 77.0 ab | 74.5 b | 82.1 a | 2.36 | 0.05 | 0.11 |
Triglycerides (mg/dL) | 31.7 b | 32.4 b | 37.8 a | 1.78 | 0.04 | 0.12 |
Cholinesterase (U/L) | 182 | 172 | 183 | 8.41 | 0.55 | 0.72 |
Ferritin (µg/L) | 255 | 252 | 250 | 6.21 | 0.86 | 0.77 |
GGT (U/L) | 0.01 | 0.01 | ||||
d14 | 60.1 | 60.3 | 63.1 | 2.74 | ||
d28 | 55.8 | 64.7 | 66.1 | 3.25 | ||
d48 | 53.1 c | 66.1 b | 74.3 a | 2.19 | ||
Mean | 54.4 b | 65.4 ab | 70.2 a | 2.56 | ||
AST (U/L) | 0.01 | 0.01 | ||||
d14 | 91.2 | 89.1 | 94.2 | 2.68 | ||
d28 | 90 b | 90.1 b | 105 a | 2.74 | ||
d48 | 92.2 c | 104 b | 115 a | 2.98 | ||
Mean | 91.6 c | 98.5 b | 110 a | 2.19 | ||
ALT (U/L) | 20.1 | 20.9 | 22.1 | 0.69 | 0.23 | 0.15 |
Glucose (mg/dL) | 78.4 | 83.2 | 80.9 | 1.41 | 0.36 | 0.52 |
Urea (mg/dL) | 48.3 | 46.6 | 45.9 | 1.21 | 0.75 | 0.64 |
Bilirubin (mg/dL) | 0.045 | 0.046 | 0.046 | 0.002 | 0.98 | 0.94 |
Variables | Control | Anti-Mycotoxin | Mycotoxin | SEM | p: Treat 1 | p: Treat × Day 2 |
---|---|---|---|---|---|---|
PSH (µmol/L) | 4.61 | 4.01 | 4.27 | 0.28 | 0.91 | 0.83 |
ROS (Fluorescence) | 0.68 | 0.01 | ||||
d14 | 14.8 | 16.6 | 15.9 | 1.91 | ||
d28 | 12.2 | 10.4 | 10.7 | 0.58 | ||
d48 | 12.9 b | 12.1 b | 18.1 a | 0.94 | ||
Mean | 12.6 | 11.2 | 14.4 | 0.76 | ||
TBARS (nmol/mL) | 0.35 | 0.01 | ||||
d14 | 58.3 | 57.4 | 56.9 | 0.75 | ||
d28 | 59.6 | 61.5 | 63.8 | 5.07 | ||
d48 | 73.8 b | 72.2 b | 87.5 a | 2.01 | ||
Mean | 66.7 | 66.8 | 75.6 | 2.31 | ||
MPO (µM of quinoneimine/30 min) | 0.63 | 0.03 | ||||
d14 | 4.74 | 5.51 | 4.48 | 0.55 | ||
d28 | 2.92 | 2.29 | 2.61 | 0.35 | ||
d48 | 3.03 b | 2.21 b | 5.88 b | 0.34 | ||
Mean | 2.97 | 2.25 | 4.24 | 0.35 | ||
GSH (mmol/g protein) | 0.05 | 0.03 | ||||
d14 | 28.8 | 30.2 | 30.6 | 0.56 | ||
d28 | 30.7 ab | 33.2 a | 27.3 b | 0.77 | ||
d48 | 32.5 a | 30.1 ab | 28.2 b | 0.78 | ||
Mean | 31.6 a | 31.6 a | 27.7 b | 0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, S.d.O.; Deolindo, G.L.; Brunetto, A.L.R.; da Veiga, A.L.A.; de Jesus, R.S.; Da Gloria, E.M.; da Silva, G.B.; Bagatini, M.D.; Da Silva, A.S. Combination of Anti-Mycotoxin Additive in Diet Contaminated with Multiple Mycotoxins (Aflatoxin, Fumonisin, Zearalenone and Deoxynivalenol): Effects on Performance and Health of Lambs. Animals 2025, 15, 2835. https://doi.org/10.3390/ani15192835
Marques SdO, Deolindo GL, Brunetto ALR, da Veiga ALA, de Jesus RS, Da Gloria EM, da Silva GB, Bagatini MD, Da Silva AS. Combination of Anti-Mycotoxin Additive in Diet Contaminated with Multiple Mycotoxins (Aflatoxin, Fumonisin, Zearalenone and Deoxynivalenol): Effects on Performance and Health of Lambs. Animals. 2025; 15(19):2835. https://doi.org/10.3390/ani15192835
Chicago/Turabian StyleMarques, Suelyn de Oliveira, Guilherme Luiz Deolindo, Andrei Lucas Rebelatto Brunetto, Ana Lara Amaral da Veiga, Renato Santos de Jesus, Eduardo Micotti Da Gloria, Gilnei Bruno da Silva, Margarete Dulce Bagatini, and Aleksandro Schafer Da Silva. 2025. "Combination of Anti-Mycotoxin Additive in Diet Contaminated with Multiple Mycotoxins (Aflatoxin, Fumonisin, Zearalenone and Deoxynivalenol): Effects on Performance and Health of Lambs" Animals 15, no. 19: 2835. https://doi.org/10.3390/ani15192835
APA StyleMarques, S. d. O., Deolindo, G. L., Brunetto, A. L. R., da Veiga, A. L. A., de Jesus, R. S., Da Gloria, E. M., da Silva, G. B., Bagatini, M. D., & Da Silva, A. S. (2025). Combination of Anti-Mycotoxin Additive in Diet Contaminated with Multiple Mycotoxins (Aflatoxin, Fumonisin, Zearalenone and Deoxynivalenol): Effects on Performance and Health of Lambs. Animals, 15(19), 2835. https://doi.org/10.3390/ani15192835