Wild Birds Pose Unique Food Safety Threats in the US Southeast
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Bird Fecal Sample Collection
2.3. Characterizing Bird Communities
2.4. Linking Salmonella Prevalence to Local and Landscape Factors
3. Results
3.1. Bird Community Analysis
3.2. Factors Associated with Salmonella Prevalence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Outhwaite, C.L.; McCann, P.; Newbold, T. Agriculture and climate change are reshaping insect biodiversity worldwide. Nature 2022, 605, 97–102. [Google Scholar] [CrossRef]
- Anderson, A.; Carnus, T.; Helden, A.J.; Sheridan, H.; Purvis, G. The influence of conservation field margins in intensively managed grazing land on communities of five arthropod trophic groups. Insect Conserv. Divers. 2012, 6, 201–211. [Google Scholar] [CrossRef]
- Cole, L.J.; Brocklehurst, S.; Robertson, D.; Harrison, W.; McCracken, D.I. Exploring the interactions between resources availability and the utilization of semi-natural habitats by insect pollinators in an intensive agricultural landscape. Agric. Ecosyst. Environ. 2017, 246, 157–167. [Google Scholar] [CrossRef]
- Olimpi, E.; Garcia, K.; Gonthier, D.J.; Kremen, C.; Snyder, W.E.; Wilson-Rankin, E.E.; Karp, D.S. Semi-natural habitat surrounding farms promotes multifunctionality in avian ecosystem services. J. Appl. Ecol. 2022, 59, 898–908. [Google Scholar] [CrossRef]
- Kross, S.M.; Kelsey, T.R.; McColl, C.J.; Townsend, J.M. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agric. Ecosyst. Environ. 2016, 225, 140–149. [Google Scholar] [CrossRef]
- Langholz, J.A.; Jay-Russell, M.T. Potential role of wildlife in pathogenic contamination of fresh produce. Hum. Wildl. Interact. 2013, 7, 140–157. [Google Scholar]
- United Fresh Produce Association. Harvest Practices. In Commodity Specific Food Safety Guidelines for the Fresh Tomato Supply Chain, 3rd ed.; McEntire, J., Gombas, D., Anderson, R., Cotta, S., Danyluk, M., Davis, C., DeCosta, S., Doughtery, J., Lovelace, T., Luo, Y., et al., Eds.; Food and Drug Administration: Silver Spring, MD, USA, 2018; pp. 18–20. [Google Scholar]
- Karp, D.S.; Baur, P.; Atwill, E.R.; De Master, K.; Gennet, S.; Iles, A.; Nelson, J.L.; Sciligo, A.R.; Kremen, C. The unintended ecological and social impacts of food safety regulations in California’s central coast region. BioScience 2015, 65, 1173–1183. [Google Scholar] [CrossRef]
- Olimpi, E.; Garcia, K.; Gonthier, D.J.; De Master, K.T.; Echeverri, A.; Kremen, C.; Sciligo, A.R.; Snyder, W.E.; Wilson-Rankin, E.E.; Karp, D.S. Shifts in species interactions and farming contexts mediate net effects of birds in agroecosystems. Ecol. Appl. 2020, 30, e02115. [Google Scholar] [CrossRef]
- Smith, O.M.; Edworthy, A.; Taylor, J.M.; Jones, M.S.; Tormanen, A.; Kennedy, C.M.; Latimer, C.E.; Cornell, K.A.; Michelotti, L.A.; Sato, C.; et al. Agricultural intensification heightens food safety risks posed by wild birds. J. Appl. Ecol. 2020, 57, 2246–2257. [Google Scholar] [CrossRef]
- Olimpi, E.; Ke, A.; Baur, P.; Carlisle, L.; Esquivel, K.E.; Glaser, T.; Snyder, W.E.; Waterhouse, H.; Bowles, T.M.; Kremen, C.; et al. Ungrazed seminatural habitats around farms benefit bird conservation without enhancing foodborne pathogen risks. Landsc. Ecol. 2024, 39, 128. [Google Scholar] [CrossRef]
- Smith, O.M.; Kennedy, C.M.; Owen, J.P.; Northfield, T.M.; Latimer, C.E.; Snyder, W.E. Highly diversified crop-livestock farming systems reshape wild bird communities. Ecol. Appl. 2020, 30, e02031. [Google Scholar] [CrossRef]
- Smith, O.M.; Olimpi, E.M.; Navarro-Gonzalez, N.; Cornell, K.A.; Frishkoff, L.O.; Northfield, T.D.; Bowles, T.M.; Edworthy, M.; Eilers, J.; Fu, Z.; et al. A trait-based framework for predicting foodborne pathogen risk from wild birds. Ecol. Appl. 2022, 32, e2523. [Google Scholar] [CrossRef]
- Smith, O.M.; Snyder, W.E.; Owen, J.P. Are we overestimating the risk of enteric pathogen spillover from wild birds to humans? Biol. Rev. 2020, 95, 652–679. [Google Scholar] [CrossRef]
- Devarajan, N.; Weller, D.L.; Jones, M.; Adell, A.D.; Adhikari, A.; Allende, A.; Arnold, N.L.; Baur, P.; Beno, S.M.; Clements, D.; et al. Evidence for the efficacy of pre-harvest agricultural practices in mitigating food-safety risks to fresh produce in North America. Front. Sustain. Food Syst. 2023, 7, 1101435. [Google Scholar] [CrossRef]
- United States Department of Agriculture [USDA] National Agricultural Statistics Service. Southern Region News Release: Vegetables; National Agricultural Statistics Service: Athens, GA, USA, 2024.
- Hernandez, S.M.; Keel, K.; Sanchez, S.; Trees, E.; Gerner-Smidt, P.; Adams, J.K.; Cheng, Y. Epidemiology of a Salmonella enterica subsp. enterica serovar Typhimurium strain associated with a songbird outbreak. Appl. Environ. Microbiol. 2012, 78, 7290–7298. [Google Scholar] [PubMed]
- Hernandez, S.M.; Welch, C.N.; Peters, V.E.; Lipp, E.K.; Curry, S.; Yabsely, M.J.; Sanchez, S.; Presotto, A.; Gerner-Smidt, P.; Hise, K.B.; et al. Urbanized white ibses (Eudocimus albus) as carriers of Salmonella enterica of significance to public health and wildlife. PLoS ONE 2016, 11, e0164402. [Google Scholar] [CrossRef]
- Hudson, C.R.; Quist, C.; Lee, M.D.; Keyes, K.; Dodson, S.V.; Morales, C.; Sanchez, S.; White, D.G.; Maurer, J.J. Genetic relatedness of Salmonella isolates from nondomestic birds in Southeastern United States. J. Clin. Microbiol. 2000, 38, 1860–1865. [Google Scholar] [CrossRef]
- Smith, J.C.; Varriano, S.; Roach, K.; Snipes, Z.; Dawson, J.L.; Shealy, J.; Dunn, L.L.; Snyder, W.E.; Shariat, N.W. Prevalence and molecular characterization of Salmonella isolated from wild birds in fresh produce environments. Front. Microbiol. 2023, 14, 1272916. [Google Scholar] [CrossRef] [PubMed]
- North American Bird Conservation Initiative (2021). Bird Conservation Regions. Available online: https://nabci-us.org/resources/bird-conservation-regions-map/ (accessed on 15 October 2022).
- Zellweger-Fischer, J.; Hoffman, J.; Korner-Nievergelt, P.; Pfiffner, L.; Stoeckli, S.; Birrer, S. Identifying factors that influence bird richness and abundance on farms. Bird Study 2018, 65, 161–173. [Google Scholar] [CrossRef]
- Dewitz, J. US Geological Survey. National Land Cover Database [NLCD] Products, version 2.0; U.S. Geological Survey (USGS): Sioux Falls, SD, USA, 2021. [Google Scholar]
- Billerman, S.M.; Keeney, B.K.; Kirwan, G.M.; Medrano, F.; Sly, N.D.; Smith, M.G. (Eds.) Birds of the World [BOW]; Cornell Lab of Ornithology: Ithaca, NY, USA, 2022. [Google Scholar]
- McGarigal, K.; Cushman, S.A.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical Maps, Version 4.2; [Computer software]; University of Massachusetts: Amherst, MA, USA, 2023. Available online: https://www.fragstats.org.
- Oksanen, J.; Simpson, G.; Blanchet, H.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package, version 2.6-4; Comprehensive R Archive Network: Vienna, Austria, 2022.
- De Cáceres, M.; Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 2009, 90, 3566–3574. [Google Scholar] [CrossRef]
- Rosenstraus, M.; Wang, Z.; Chang, S.Y.; Debonville, D.; Spadoro, J.P. An internal control for routine diagnostic PCR: Design, properties, and effect on clinical performance. J. Clin. Microbiol. 1998, 36, 191–197. [Google Scholar] [CrossRef]
- Rahn, K.; De Grandis, S.A.; Clarke, R.C.; McEwen, S.A.; Galán, J.E.; Ginocchio, C.; Curtiss III, R.; Gyles, C.L. Amplification of an invA gene sequence of Salmonella Typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell Probes 1992, 6, 271–279. [Google Scholar] [CrossRef]
- Rinttilä, T.; Kassinen, A.; Malinen, E.; Krogius, L.; Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 2004, 97, 1166–1177. [Google Scholar] [CrossRef]
- Brooks, E.M.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechler, M.; Bolker, B.M. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 2017, 9, 378–400. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shacher, M.S.; Patil, I.; Waggoner, P.; Makoeski, D. performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Burham, K.P.; Anderson, D.R. Model Selection and Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Harrell, F., Jr. Hmisc: Harrell Miscellaneous, version 5.2-2; R Foundation for Statistical Computing: Vienna, Austria, 2025.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Sambell, C.E.; Holland, G.J.; Haslem, A.; Bennett, A.F. Diverse land-uses shape new bird communities in a changing rural region. Biodivers. Conserv. 2019, 28, 3479–3496. [Google Scholar] [CrossRef]
- Flohre, A.; Fischer, C.; Aavik, T.; Bengtsson, J.; Berendse, F.; Bommarco, R.; Ceryngier, P.; Clement, L.W.; Dennis, C.; Eggers, S.; et al. Agricultural intensification and biodiversity partitioning in European landscapes comparing plants, carabids, and birds. Ecol. Appl. 2011, 21, 1772–1781. [Google Scholar] [CrossRef]
- Gonthier, D.J.; Sciligo, A.R.; Karp, D.S.; Lu, A.; Garcia, K.; Juarez, G.; Chiba, T.; Gennet, S.; Kremen, C. Bird services and disservices to strawberry farming on Californian agricultural landscapes. J. Appl. Ecol. 2019, 56, 1948–1959. [Google Scholar] [CrossRef]
- Jones, G.A.; Sieving, K.E.; Jacobsen, S.K. Avian diversity and functional insectivory on north-central Florida farmlands. Conserv. Biol. 2005, 19, 1234–1245. [Google Scholar] [CrossRef]
- Wells, S.J.; Fedorka-Cray, P.J.; Dargatz, D.; Ferris, K.; Green, A. Fecal shedding of Salmonella spp. by dairy cows on farm and at cull cow markets. J. Food Prot. 2001, 64, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Skov, M.N.; Madsen, J.J.; Rahbek, C.; Lodal, J.; Jepersen, J.B.; Jørgensen, J.C.; Dietz, H.H.; Chriél, M.; Baggesen, D.L. Transmission of Salmonella between wildlife and meat-production animals in Denmark. J. Appl. Microbiol. 2008, 105, 1558–1568. [Google Scholar] [CrossRef]
- Bolton, D.J.; O’Neill, C.J.; Fanning, S. A preliminary study of Salmonella, verocytotoxigenic Escherichia coli/Escherichia coli O157 and Campylobacter on four mixed farms. Zoonoses Public Health 2011, 59, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Levantesi, C.; Bonadonna, L.; Briancesco, R.; Grohmann, E.; Toze, S.; Tandoi, V. Salmonella in surface and drinking water: Occurrence and water-mediated transmission. Food Res. Int. 2012, 45, 587–602. [Google Scholar] [CrossRef]
- Greene, S.K.; Daly, E.R.; Talbot, E.A.; Demma, L.J.; Holzbauer, S.; Patel, N.J.; Hill, T.A.; Walderhaug, M.O.; Hoekstra, R.M.; Lynch, M.F.; et al. Recurrent multistate outbreak of Salmonella Newport associated with tomatoes from contaminated fields, 2005. Epidemiol. Infect. 2007, 136, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Kovačić, A.; Huljev, A.; Sušić, E. Ground water as the source of an outbreak of Salmonella Enteritidis. J. Epidemiol. Glob. Health 2017, 7, 181–184. [Google Scholar] [CrossRef]
- United States Food and Drug Administration [FDA]. Outbreak Investigation of Salmonella: Cucumbers; United States Food and Drug Administration: Silver Spring, MD, USA, 2024.
- Fu, Y.; M’ikanatha, N.M.; Lorch, J.M.; Blehert, D.S.; Berlowski-Zier, B.; Whitehouse, C.A.; Li, S.; Deng, X.; Smith, J.C.; Shariat, N.W.; et al. Salmonella enterica serovar Typhimurium isolates from wild birds in the United States represent distinct lineages defined by bird type. Appl. Envion. Microbiol. 2022, 88, e01979-21. [Google Scholar] [CrossRef]
- Gorski, L.; Parker, C.T.; Liang, A.; Cooley, M.B.; Jay-Russell, M.T.; Gordus, A.G.; Atwill, E.R.; Mandrell, R.E. Prevalence, distribution, and diversity of Salmonella enterica in a major produce region of California. Appl. Environ. Microbiol. 2011, 77, 2734–2748. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gonzalez, N.; Wright, S.; Aminabadi, A.; Gwinn, A.; Suslow, T.V.; Jay-Russell, M.T. Carriage and subtypes of foodborne pathogens identified in wild birds residing near agricultural lands in California: A repeated cross-sectional study. Appl. Environ. Microbiol. 2020, 86, e01678-19. [Google Scholar] [CrossRef]
- Callaway, T.R.; Edrington, T.S.; Nisbet, D.J. Isolation of Escherichia coli O157:H7 and Salmonella from migratory brown-headed cowbirds (Molothrus ater), common grackles (Quiscalus quiscula), and cattle egrets (Bubulcus ibis). Foodborne Path. Dis. 2014, 11, 791–794. [Google Scholar] [CrossRef]
- Pao, S.; Waugh, J.; Kim, C.; Wildeus, S.; Ettinger, M.R.; Wilson, M.D.; Watts, B.D.; Whitley, N.C.; Porto-Fett, A.C.S.; Schwarz, J.G.; et al. Prevalence and molecular analyses of Campylobacter jejuni and Salmonella spp. in co-grazing small ruminants and wild-living birds. Livest. Sci. 2014, 160, 163–171. [Google Scholar] [CrossRef]
- Phalen, D.N.; Drew, M.L.; Simpson, B.; Roset, K.; Dubose, K.; Mora, M. Salmonella enterica subsp. Enterica in cattle egret (Bubulcus ibis) chicks from central Texas: Prevalence, serotypes, pathogenicity, and epizootic potential. J. Wildl. Dis. 2010, 46, 379–389. [Google Scholar]
- Roy, P.; Dhillon, A.D.; Lauerman, L.H.; Schaberg, D.M.; Bandli, D.; Johnson, S. Results of Salmonella isolation from poultry products, poultry, poultry environment, and other characteristics. Avian Dis. 2002, 46, 17–24. [Google Scholar] [CrossRef]
- Callaway, T.R.; Keen, J.E.; Edrington, T.S.; Baumgard, L.H.; Spicer, L.; Fonda, E.S.; Griswald, K.E.; Overton, T.R.; VanAmburgh, M.E.; Anderson, R.C.; et al. Fecal prevalence and diversity of Salmonella species in lactating dairy cattle in four states. J. Dairy Sci. 2005, 88, 3603–3608. [Google Scholar] [CrossRef] [PubMed]
- Gaukler, S.M.; Linz, G.M.; Sherwood, J.S.; Dyer, N.W.; Bleier, W.J.; Wannemuehler, Y.M.; Nolan, L.K.; Logue, C.M. Escherichia coli, Salmonella, and Mycobacterium avium subsp. paratuberculosis in wild European starlings at a Kansas cattle feedlot. Avian Dis. 2009, 53, 544–551. [Google Scholar]
- Carlson, J.C.; Franklin, A.B.; Hyatt, D.R.; Pettit, S.E.; Linz, G.M. The role of starlings in the spread of Salmonella within concentrated animal feeding operations. J. Appl. Ecol. 2010, 48, 479–486. [Google Scholar] [CrossRef]
- Carlson, J.C.; Engeman, R.M.; Hyatt, D.R.; Gilluland, R.L.; DeLiberto, T.J.; Clark, L.; Bodenchuk, M.J.; Linz, G.M. Efficacy of European starling control to reduce Salmonella enterica contamination in a concentrated animal feeding operation in the Texas panhandle. BMC Vet. Res. 2011, 7, 9. [Google Scholar] [CrossRef]
- Carlson, J.C.; Hyatt, D.R.; Bentler, K.; Mangan, A.M.; Russell, M.; Piaggio, A.J.; Linz, G.M. Molecular characterization of Salmonella enterica isolates associated with starling-livestock interactions. Vet. Microbiol. 2015, 179, 109–118. [Google Scholar]
- Spence, A.R.; McGarvey, J.A.; Lee, S.; Smith, O.M.; Olimpi, E.M.; Yang, W.; Zhang, M.; Karp, D.S. Assessing foodborne pathogen survival in bird faeces to co-manage farms for bird conservation, production, and food safety. J. Appl. Ecol. 2025, 62, 516–526. [Google Scholar] [CrossRef]
- Rivadeneira, P.; Hilson, C.; Justica-Allen, A.; Jay-Russell, M. Pathogen risks related to the movement of birds frequenting livestock and fresh produce growing areas in the Southwestern US. Proc. Vert. Pest Con. 2016, 27, 258–263. [Google Scholar]
- Fonseca, J.M.; Ravishankar, S.; Sanchez, C.A.; Park, E.; Nolte, K.D. Assessing the food safety risk posed by birds entering leafy greens fields in the US Southwest. Int. J. Environ. Public Health 2020, 17, 8711. [Google Scholar] [CrossRef]
- Grigar, M.K.; Cummings, K.J.; Rankin, S.C. Prevalence of Salmonella among waterfowl along the Texas Gulf coast. Zoonoses Public Health 2017, 64, 689–692. [Google Scholar] [CrossRef]
- Brobey, B.; Kucknoor, A.; Armacost, J. Prevalence of Trichomonas, Salmonella, and Listeria in wild birds from southeast Texas. Avian Dis. 2017, 61, 347–352. [Google Scholar] [CrossRef]
- Jeamsripong, S.; Chase, J.A.; Jay-Russell, M.T.; Buchanen, R.L.; Atwill, E.R. Experimental in-field transfer and survival of Escherichia coli from animal feces to romaine lettuce in Salinas Valley, California. Microorganisms 2019, 7, 408. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Siefer, O.; Olmos-Moya, N.; Fontúrbal, F.E.; Lavandero, B.; Pozo, R.A.; Celis-Diez, J.L. Bird-mediated effects of pest control services on crop productivity: A global synthesis. J. Pest Sci. 2021, 95, 567–576. [Google Scholar] [CrossRef]
- Navntoft, S.; Wratten, S.D.; Kristensen, K.; Esbjerg, P. Weed seed predation in organic and conventional fields. Biol. Control 2009, 49, 11–16. [Google Scholar] [CrossRef]
- Garcia, K.; Olimpi, E.M.; Karp, D.S.; Gonthier, D.J. The good, the bad, and the risky: Can birds be incorporated as biological control agents into integrated pest management programs? J. Integr. Pest Manag. 2020, 11, 11. [Google Scholar] [CrossRef]
TN | GA | SC | FL | Total | |
---|---|---|---|---|---|
# Farms | 4 | 26 | 10 | 3 | 43 |
0–4 ha | 0 | 6 | 2 | 0 | 8 |
4.1–20 ha | 1 | 12 | 4 | 1 | 18 |
20.1–40 ha | 0 | 7 | 2 | 1 | 10 |
40+ ha | 3 | 1 | 2 | 1 | 7 |
Cattle | 3 | 7 | 0 | 1 | 11 |
Chicken | 2 | 10 | 3 | 0 | 15 |
Other | 1 | 3 | 3 | 0 | 7 |
Monoculture | 3 | 19 | 2 | 2 | 26 |
Mixed crops | 1 | 7 | 8 | 1 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varriano, S.; Smith, J.C.; Smith, O.M.; Rodrigues, P.A.P.; Snipes, Z.; Roach, K.; Dawson, J.L.; Shealy, J.; Dunn, L.L.; Shariat, N.W.; et al. Wild Birds Pose Unique Food Safety Threats in the US Southeast. Animals 2025, 15, 2813. https://doi.org/10.3390/ani15192813
Varriano S, Smith JC, Smith OM, Rodrigues PAP, Snipes Z, Roach K, Dawson JL, Shealy J, Dunn LL, Shariat NW, et al. Wild Birds Pose Unique Food Safety Threats in the US Southeast. Animals. 2025; 15(19):2813. https://doi.org/10.3390/ani15192813
Chicago/Turabian StyleVarriano, Sofia, Jared C. Smith, Olivia M. Smith, Pedro A. P. Rodrigues, Zachary Snipes, Kerrie Roach, Joshua L. Dawson, Justin Shealy, Laurel L. Dunn, Nikki W. Shariat, and et al. 2025. "Wild Birds Pose Unique Food Safety Threats in the US Southeast" Animals 15, no. 19: 2813. https://doi.org/10.3390/ani15192813
APA StyleVarriano, S., Smith, J. C., Smith, O. M., Rodrigues, P. A. P., Snipes, Z., Roach, K., Dawson, J. L., Shealy, J., Dunn, L. L., Shariat, N. W., & Snyder, W. E. (2025). Wild Birds Pose Unique Food Safety Threats in the US Southeast. Animals, 15(19), 2813. https://doi.org/10.3390/ani15192813