Alternative Methodology for Cortisol Evaluation Before and After Sheep Shearing Using Raman Spectroscopy: A Feasibility Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Shearing Procedure
2.3. Blood Sampling
2.4. Raman Spectroscopy Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Etim, N.N.; Williams, M.E.; Akpabio, U.; Offiong, E.E.A. Haematological parameters and factors affecting their values. Agric. Sci. 2014, 2, 37–47. [Google Scholar] [CrossRef]
- Selye, H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 1946, 6, 117–230. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R.M.; Romero, L.M.; Munck, A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000, 21, 55–89. [Google Scholar] [CrossRef] [PubMed]
- Wingfield, J.C.; Kitaysky, A.S. Endocrine responses to unpredictable environmental events: Stress or anti-stress hormones? Integr. Comp. Biol. 2002, 42, 600–609. [Google Scholar] [CrossRef] [PubMed]
- Lay, D.C.; Friend, T.H.; Bowers, C.L.; Grissom, K.K.; Jenkins, O.C. A comparative physiological and behavioral study of freeze and hot-iron branding using dairy cows. J. Anim. Sci. 1992, 70, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Andanson, S.; Boissy, A.; Veissier, I. Conditions for assessing cortisol in sheep: The total form in blood v. the free form in saliva. Animal 2020, 14, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Möstl, E.; Maggs, J.L.; Schrötter, G.; Besenfelder, U.; Palme, R. Measurement of cortisol metabolites in faeces of ruminants. Vet. Res. Commun. 2002, 26, 127–139. [Google Scholar] [CrossRef]
- Lane, J. Can non-invasive glucocorticoid measures be used as reliable indicators of stress in animals? Anim. Welf. 2006, 15, 331–342. [Google Scholar] [CrossRef]
- Burnard, C.; Ralph, C.; Hynd, P.; Edwards, J.H.; Tilbrook, A. Hair cortisol and its potential value as a physiological measure of stress response in human and non-human animals. Anim. Prod. Sci. 2016, 57, 401–414. [Google Scholar] [CrossRef]
- El-Farhan, N.; Rees, D.A.; Evans, C. Measuring cortisol in serum, urine and saliva–are our assays good enough? Ann. Clin. Biochem. 2017, 54, 308–322. [Google Scholar] [CrossRef] [PubMed]
- Staritzbichler, R.; Hunold, P.; Estrela-Lopis, I.; Hildebrand, P.W.; Isermann, B.; Kaiser, T. Raman spectroscopy on blood serum samples of patients with end-stage liver disease. PLoS ONE 2021, 16, e0256045. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, A.; Maruyama, A.; Oikawa, D.; Oshima, Y.; Komachi, Y.; Kanai, G.; Sato, H.; Iwawaki, T. Detection of ER stress in vivo by Raman spectroscopy. Biochem. Biophys. Res. Commun. 2011, 405, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Potter, M.; Hanson, C.; Anderson, A.J.; Vargis, E.; Britt, D.W. Abiotic stressors impact outer membrane vesicle composition in a beneficial rhizobacterium: Raman spectroscopy characterization. Sci. Rep. 2020, 10, 21289. [Google Scholar] [CrossRef] [PubMed]
- Chean, K.T.; Aalinkeel, R.; Abbasi, S.; Sharikova, A.V.; Schwartz, S.A.; Khmaladze, A.; Mahajan, S.D. Raman spectroscopy based molecular signatures of methamphetamine and HIV induced mitochondrial dysfunction. Biochem. Biophys. Res. Commun. 2022, 621, 116–121. [Google Scholar] [CrossRef]
- Purohit, P.; Chandar, P.; Vilinska, A.; Ananthapadmanabhan, K.P.; Somasundaran, P. Effect of mixed surfactants on stratum corneum: A drying stress and Raman spectroscopy study. Int. J. Cosmet. Sci. 2014, 36, 379–385. [Google Scholar] [CrossRef]
- Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman spectroscopy for medical diagnostics--From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliv. Rev. 2015, 89, 121–134. [Google Scholar] [CrossRef]
- Orkoula, M.G.; Kontoyannis, C.G. Raman spectroscopy for the study of biological organisms (biogenic materials and biological tissues): A valuable analytical tool. Spectrosc. Eur. 2014, 26, 16–19. [Google Scholar]
- Pence, I.; Mahadevan-Jansen, A. Clinical instrumentation and applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. [Google Scholar] [CrossRef]
- Almond, L.M.; Hutchings, J.; Lloyd, G.; Barr, H.; Shepherd, N.; Day, J.; Stevens, O.; Sanders, S.; Wadley, M.; Stone, N.; et al. Endoscopic Raman spectroscopy enables objective diagnosis of dysplasia in Barrett’s esophagus. Gastrointest. Endosc. 2014, 79, 37–45. [Google Scholar] [CrossRef]
- Feng, X.; Moy, A.J.; Nguyen, H.T.M.; Zhang, Y.; Zhang, J.; Fox, M.C.; Sebastian, K.R.; Reichenberg, J.S.; Markey, M.K.; Tunnell, J.W. Raman biophysical markers in skin cancer diagnosis. J. Biomed. Opt. 2018, 23, 057002. [Google Scholar] [CrossRef]
- Anna, I.; Bartosz, P.; Lech, P.; Halina, A. Novel strategies of Raman imaging for brain tumor research. Oncotarget 2017, 8, 85290–85310. [Google Scholar] [CrossRef]
- Desroches, J.; Jermyn, M.; Pinto, M.; Picot, F.; Tremblay, M.A.; Obaid, S.; Marple, E.; Urmey, K.; Trudel, D.; Soulez, G.; et al. A new method using Raman spectroscopy for in vivo targeted brain cancer tissue biopsy. Sci. Rep. 2018, 8, 1792. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, S.; Yue, S. Raman Spectroscopy and Imaging for Cancer Diagnosis. J. Healthc. Eng. 2018, 2018, 8619342. [Google Scholar] [CrossRef]
- Pence, I.J.; Beaulieu, D.B.; Horst, S.N.; Bi, X.; Herline, A.J.; Schwartz, D.A.; Mahadevan-Jansen, A. Clinical characterization of in vivo inflammatory bowel disease with Raman spectroscopy. Biomed. Opt. Express 2017, 8, 524–535. [Google Scholar] [CrossRef]
- Fornasaro, S.; Vicario, A.; De Leo, L.; Bonifacio, A.; Not, T.; Sergo, V. Potential use of MCR-ALS for the identification of coeliac-related biochemical changes in hyperspectral Raman maps from pediatric intestinal biopsies. Integr. Biol. 2018, 10, 356–363. [Google Scholar] [CrossRef]
- Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S. Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chem. Neurosci. 2018, 9, 404–420. [Google Scholar] [CrossRef]
- Kuo, M.T.; Lin, C.C.; Liu, H.Y.; Chang, H.C. Tear analytical model based on Raman microspectroscopy for investigation of infectious diseases of the ocular surface. Investig. Ophthalmol. Vis. Sci. 2011, 52, 4942–4950. [Google Scholar] [CrossRef]
- Kloss, S.; Kampe, B.; Sachse, S.; Rösch, P.; Straube, E.; Pfister, W.; Kiehntopf, M.; Popp, J. Culture independent Raman spectroscopic identification of urinary tract infection pathogens: A proof of principle study. Anal. Chem. 2013, 85, 9610–9616. [Google Scholar] [CrossRef]
- Acri, G.; Sansotta, C.; Salmeri, F.M.; Romeo, M.; Ruello, E.V.; Denaro, L.; Testagrossa, B. Use of Raman Spectroscopy, Scanning Electron Microscopy and Energy Dispersive X-ray Spectroscopy in a Multi-Technique Approach for Physical Characterization of Purple Urine Bag Syndrome. Appl. Sci. 2022, 12, 4034. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Faenza, P.; Caridi, F. Spectroscopic analysis of pigments of the Antonello Gagini annunciation’s sculptural marble group, church of st. Theodore martyr (Bagaladi, Reggio Calabria, Italy): Case study. Mediterr. Archaeol. Archaeom. 2020, 20, 1–5. [Google Scholar] [CrossRef]
- Mapstone, M.; Cheema, A.K.; Fiandaca, M.S.; Zhong, X.; Mhyre, T.R.; MacArthur, L.H.; Hall, W.J.; Fisher, S.G.; Peterson, D.R.; Haley, J.M.; et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 2014, 20, 415–418. [Google Scholar] [CrossRef]
- Acri, G.; Romano, C.; Costa, S.; Pellegrino, S.; Testagrossa, B. Raman Spectroscopy Technique: A Non-Invasive Tool in Celiac Disease Diagnosis. Diagnostics 2021, 11, 1277. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yavuz, A.; Wang, M.C. Dissecting lipid droplet biology with coherent Raman scattering microscopy. J. Cell Sci. 2022, 135, jcs252353. [Google Scholar] [CrossRef]
- Kuhar, N.; Sil, S.; Verma, T.; Umapathy, S. Challenges in application of Raman spectroscopy to biology and materials. RSC Adv. 2018, 8, 25888–25908. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Giudice, E.; Arfuso, F.; Piccione, G.; Giannetto, C. Application of Raman Spectroscopy for the Evaluation of Metabolomic Dynamic Analysis in Athletic Horses. J. Equine Vet. Sci. 2021, 96, 103319. [Google Scholar] [CrossRef]
- Giannetto, C.; Acri, G.; Giudice, E.; Arfuso, F.; Testagrossa, B.; Piccione, G. Quantifying Serum Total Lipids and Tryptophan Concentrations by Raman Spectroscopy During Standardized Obstacle Course in Horses. J. Equine Vet. Sci. 2022, 108, 103820. [Google Scholar] [CrossRef]
- Acri, G.; Falcone, A.; Giannetto, C.; Giudice, E.; Piccione, G.; Testagrossa, B.; Cicero, L.; Cassata, G.; Di Pietro, S. Preliminary study for the application of Raman spectroscopy for the identification of Leishmania infected dogs. Sci. Rep. 2022, 12, 7489. [Google Scholar] [CrossRef]
- González-Vidal, J.J.; Pérez-Pueyo, R.; Soneira, M.J. Automatic morphology-based cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spectra. J. Raman Spectrosc. 2017, 48, 878–883. [Google Scholar] [CrossRef]
- Gautam, R.; Vanga, S.; Ariese, F.; Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2015, 2, 8. [Google Scholar] [CrossRef]
- Moore, T.J.; Sharma, B. Direct Surface Enhanced Raman Spectroscopic Detection of Cortisol at Physiological Concentrations. Anal. Chem. 2020, 92, 2052–2057. [Google Scholar] [CrossRef]
- Bruzual-Roa, R.; Castro-Ramos, J.; Narea-Jiménez, F.; Chavarría-Lizárraga, H.N. Caracterización del biomarcador cortisol con espectroscopía Raman. Artif. Intell. Electron. Photonics 2025, 1, 1–16. Available online: https://ai-photonics.com/index.php/aiep/article/view/2/1 (accessed on 18 September 2025).
- Kurouski, D.; Van Duyne, R.P.; Lednev, J.K. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: A review. Analyst 2015, 140, 4967–4980. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Zhu, X.; Fan, Q.; Wan, X. Raman spectra of amino acids and their aqueous solutions. Spectrochim. Acta A 2011, 78, 1187–1195. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wu, F.; Huang, Z.; Ma, S.; Zhang, J.; Yang, J.; Han, X.; Xu, G. Raman Spectroscopy Analysis of the Biochemical Characteristics of Experimental Keratomycosis. Curr. Eye Res. 2016, 41, 1408–1413. [Google Scholar] [CrossRef]
- Almeida, F.M.; Freire, P.T.C.; Lima, R.J.C.; Remédios, C.M.R.; Mendes Filho, J.; Melo, F.E.A. Raman spectra of L-isoleucine crystals. J. Raman Spectrosc. 2006, 37, 1296–1301. [Google Scholar] [CrossRef]
- Jing, P.P.; Li, Y.X.; Su, Y.H.; Liang, W.L.; Leng, Y.X. The role of metal ions in the behavior of bovine serum albumin molecules under physiological environment. Spectrochim. Acta A 2022, 267, 120604. [Google Scholar] [CrossRef]
- Acri, G.; Testagrossa, B.; Lucanto, M.C.; Cristadoro, S.; Pellegrino, S.; Ruello, E.; Costa, S. Raman Spectroscopy and Cystic Fibrosis Disease: An Alternative Potential Tool for Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Modulator Response Differentiation—A Pilot Study Based on Serum Samples. Molecules 2024, 29, 433. [Google Scholar] [CrossRef]
- Hargreaves, A.L.; Hutson, G.D. The stress response in sheep during routine handling procedures. Appl. Anim. Behav. Sci. 1990, 26, 83–90. [Google Scholar] [CrossRef]
- Carcangiu, V.; Vacca, G.M.; Parmeggiani, A.; Mura, M.C.; Pazzola, M.; Dettori, M.L.; Bini, P.P. The effect of shearing procedures on blood levels of growth hormone, cortisol and other stress haematochemical parameters in Sarda sheep. Animal 2008, 2, 606–612. [Google Scholar] [CrossRef]
- Fidan, A.F.; Kucukkurt, I.; Eryavuz, A.; Cigerci, I.H.; Yardimci, M.; Ozdemir, A. Effects of shearing procedures on oxidant-antioxidant status in Chios sheep. Rev. Méd. Vét. 2009, 160, 349–355. [Google Scholar]
- Sanger, M.E.; Doyle, R.E.; Hinch, G.N.; Lee, C. Sheep exhibit a positive judgement bias and stress-induced hyperthermia following shearing. Appl. Anim. Behav. Sci. 2011, 131, 94–103. [Google Scholar] [CrossRef]
- Yardimci, M.; Sahin, E.H.; Cetingul, I.S.; Bayram, I.; Aslan, R.; Sengor, E. Stress responses to comparative handling procedures in sheep. Animal 2013, 7, 143–150. [Google Scholar] [CrossRef]
- Hefnawy, A.; Helal, M.A.Y.; Sabek, A.; Shousha, S. Clinical, behavioral and biochemical alterations due to shearing stress in Ossimi sheep. J. Vet. Med. Sci. 2018, 80, 1281–1286. [Google Scholar] [CrossRef]
- Arfuso, F.; Fazio, F.; Chikhi, L.; Aymond, G.; Piccione, G.; Giannetto, C. Acute Stress Response of Sheep to Shearing Procedures: Dynamic Change of Cortisol Concentration and Protein Electrophoretic Pattern. Animals 2022, 12, 862. [Google Scholar] [CrossRef] [PubMed]
- Snoj, T.; Jenko, Z.; Cebulj-Kadunc, N. Fluctuations of serum cortisol, insulin and non-esterified fatty acid concentrations in growing ewes over the year. Ir. Vet. J. 2014, 67, 22. [Google Scholar] [CrossRef]
- Trevisi, E.; Bertoni, G. Some physiological and biochemical methods for acute and chronic stress evaluation in dairy cows. Ital. J. Anim. Sci. 2009, 8 (Suppl. S1), 265–286. [Google Scholar] [CrossRef]
- Etim, N.N.; Evans, E.I.; Offiong, E.E.A.; Williams, M.E. Stress and the neuroendocrine system: Implications for animal well-being. Am. J. Biol. Life Sci. 2013, 1, 20–26. [Google Scholar]
- Kumar, B.; Manuja, A.; Aich, P. Stress and its impact on farm animals. Front. Biosci. (Elite Ed.) 2012, 4, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Villa, J.E.L.; Garcia, I.; Jimenez de Aberasturi, D.; Pavlov, V.; Sotomayor, M.D.P.T.; Liz-Marzán, L.M. SERS-based immunoassay for monitoring cortisol-related disorders. Biosens. Bioelectron. 2020, 165, 112418. [Google Scholar] [CrossRef]
- Chen, F.; Chen, C.; Li, W.; Xiao, M.; Yang, B.; Yan, Z.; Gao, R.; Zhang, S.; Han, H.; Chen, C.; et al. Rapid detection of seven indexes in sheep serum based on Raman spectroscopy combined with DOSC-SPA-PLSR-DS model. Spectrochim. Acta A 2021, 248, 119260. [Google Scholar] [CrossRef]
- Li, C.; Hu, J.; Hu, N.; Zhao, J.; Li, Q.; Han, Y.; Liu, Y.; Hu, X.; Zheng, L.; Cao, Q. Aptamer-aided plasmonic nano-urchins for reporter-free surface-enhanced Raman spectroscopy analysis of cortisol. Anal. Methods 2024, 16, 3067–3073. [Google Scholar] [CrossRef] [PubMed]
- Sloan-Dennison, S.; Wallace, G.Q.; Hassanain, W.A.; Corrigan, T.D.; Li, J.; Shand, N.C.; Faulds, K.; Graham, D. Advancing SERS as a quantitative technique: Challenges, considerations, and correlative approaches to aid validation. Nano Converg. 2024, 11, 33. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhang, Y.; Dong, J.; Hu, Y.; Xu, W. Towards practical and sustainable SERS: A review of recent improvements and challenges. J. Mater. Chem. C 2021, 9, 8512–8529. [Google Scholar] [CrossRef]
Center Frequency (cm−1) | Tentative Assignment | References |
---|---|---|
520 | Disulfide band | [42] |
759 | Ring vibration of tryptophan | [36,43] |
830 and 850 | Tyrosine doublet | [37] |
1000 | Phenylalanine | [42,44] |
1213–1279 band | Leucine and isoleucine | [43,45] |
1300–1366 band | C-C-C symmetric stretching in the Cortisol A-ring | [40,41] |
1450 band | CH2 scissoring deformation | [46] |
1550 | Amide II vibration | [42] |
1650 | Amide I vibration | [34] |
2930 | C-H stretching vibration | [34,47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Acri, G.; Testagrossa, B.; Scoglio, A.; Attanzio, A.; Arfuso, F.; Rizzo, M.; Piccione, G.; Giannetto, C. Alternative Methodology for Cortisol Evaluation Before and After Sheep Shearing Using Raman Spectroscopy: A Feasibility Study. Animals 2025, 15, 2776. https://doi.org/10.3390/ani15192776
Acri G, Testagrossa B, Scoglio A, Attanzio A, Arfuso F, Rizzo M, Piccione G, Giannetto C. Alternative Methodology for Cortisol Evaluation Before and After Sheep Shearing Using Raman Spectroscopy: A Feasibility Study. Animals. 2025; 15(19):2776. https://doi.org/10.3390/ani15192776
Chicago/Turabian StyleAcri, Giuseppe, Barbara Testagrossa, Alberto Scoglio, Alessandro Attanzio, Francesca Arfuso, Maria Rizzo, Giuseppe Piccione, and Claudia Giannetto. 2025. "Alternative Methodology for Cortisol Evaluation Before and After Sheep Shearing Using Raman Spectroscopy: A Feasibility Study" Animals 15, no. 19: 2776. https://doi.org/10.3390/ani15192776
APA StyleAcri, G., Testagrossa, B., Scoglio, A., Attanzio, A., Arfuso, F., Rizzo, M., Piccione, G., & Giannetto, C. (2025). Alternative Methodology for Cortisol Evaluation Before and After Sheep Shearing Using Raman Spectroscopy: A Feasibility Study. Animals, 15(19), 2776. https://doi.org/10.3390/ani15192776