Dynamic Changes in the Crop Milk and Salivary Microbiota of Breeding Pigeons During the Raising Brooding Period
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Sample Collection
2.2. The 16S rRNA Extraction
2.3. The 16S rRNA Sequencing
2.4. High-Throughput Data Processing
2.5. Data Analysis
3. Results
3.1. Microbial Diversity Analysis of Crop Milk and Saliva
3.2. Microbial Composition of Crop Milk and Saliva
3.3. Microbial Differences Between Crop Milk and Saliva
3.4. Evolutionary Analysis of Microbes in Crop Milk and Saliva
3.5. Prediction of Microbial Function in Crop Milk and Saliva
3.6. Correlation Analysis of Microbes in Crop Milk and Saliva
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillespie, M.J.; Stanley, D.; Chen, H.L.; Donald, J.A.; Nicholas, K.R.; Moore, R.J.; Crowley, T.M. Functional similarities between pigeon ‘milk’ and mammalian milk: Induction of immune gene expression and modification of the microbiota. PLoS ONE 2012, 7, e48363. [Google Scholar]
- Goudswaard, J.; van der Donk, J.A.; van der Gaag, I.; Noordzij, A. Peculiar IgA transfer in the pigeon from mother to squab. Dev. Comp. Immunol. 1979, 3, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Davies, W.L. The composition of the crop milk of pigeons. Biochem. J. 1939, 33, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.M.; Liao, N.; Zheng, Y.M.; Yang, L.Y.; Zhou, H.; Xu, K.; Han, C.X.; Luo, H.X.; Qin, C.; Tang, C.H.; et al. The composition and function of pigeon milk microbiota transmitted from parent pigeons to squabs. Front. Microbiol. 2020, 11, 1789. [Google Scholar] [CrossRef]
- Miklavcic, J.J.; Badger, T.M.; Bowlin, A.K.; Matazel, K.S.; Cleves, M.A.; LeRoith, T.; Saraf, M.K.; Chintapalli, S.V.; Piccolo, B.D.; Shankar, K.; et al. Human breast-milk feeding enhances the humoral and cell-mediated immune response in neonatal piglets. J. Nutr. 2018, 148, 1860–1870. [Google Scholar]
- Fu, Y.T.; Song, Y.; Jiang, D.L.; Pan, J.Q.; Li, W.Y.; Zhang, X.M.; Chen, W.B.; Tian, Y.B.; Shen, X.; Huang, Y.M.; et al. Comprehensive transcriptomic and metabolomic analysis revealed the functional differences in pigeon lactation between male and female during the reproductive cycle. Animals 2024, 14, 75. [Google Scholar]
- Walker, W.A.; Meng, D. Breast milk and microbiota in the premature gut: A method of preventing necrotizing enterocolitis. Nestle Nutr. Inst. Workshop Ser. 2020, 94, 103–112. [Google Scholar]
- Homer, B.; Judd, J.; Dehcheshmeh, M.M.; Ebrahimie, E.; Trott, D.J. Gut microbiota and behavioural issues in production, performance, and companion animals: A systematic review. Animals 2023, 13, 1458. [Google Scholar] [CrossRef] [PubMed]
- Mahdy, M.; Mohammed, E. Anatomical, histological, and scanning electron microscopic features of the esophagus and crop in young and adult domestic pigeons (Columba livia Domestica). BMC Vet. Res. 2024, 20, 428. [Google Scholar]
- Baele, M.; Devriese, L.A.; Haesebrouck, F. Lactobacillus agilis is an important component of the pigeon crop flora. J. Appl. Microbiol. 2001, 91, 488–491. [Google Scholar] [CrossRef]
- Lu, M.Y.; Xuan, S.Y.; Wang, Z. Oral microbiota: A new view of body health. Food Sci. Hum. Wellness 2019, 8, 8–15. [Google Scholar] [CrossRef]
- Kato, S.; Nagasawa, T.; Uehara, O.; Shimizu, S.; Sugiyama, N.; Hasegawa-Nakamura, K.; Noguchi, K.; Hatae, M.; Kakinoki, H.; Furuichi, Y. Increase in bifidobacterium is a characteristic of the difference in the salivary microbiota of pregnant and non-pregnant women. BMC Oral Health 2022, 22, 260. [Google Scholar] [CrossRef]
- Kubo, Y.; Kanazawa, N.; Fukuda, H.; Inaba, Y.; Mikita, N.; Jinnin, M.; Furukawa, F.; Kuraishi, Y.; Yoshihara, S. Saliva contact during infancy and allergy development in school-age children. J. Allergy Clin. Immunol. Glob. 2023, 2, 100108. [Google Scholar] [CrossRef] [PubMed]
- Braathen, G.; Ingildsen, V.; Twetman, S.; Ericson, D.; Jorgensen, M.R. Presence of Lactobacillus reuteri in saliva coincide with higher salivary IgA in young adults after intake of probiotic lozenges. Benef. Microbes 2017, 8, 17–22. [Google Scholar] [CrossRef]
- Lan, Y.F.; Li, Y.A.; Yu, G.; Zhang, Z.Y.; Irshad, I. Dynamic changes of gut fungal community in horse at different health states. Front. Vet. Sci. 2022, 9, 1047412. [Google Scholar]
- Li, M.H.; Meng, J.X.; Wang, W.; He, M.; Zhao, Z.Y.; Ma, N.; Lv, Q.B.; Qin, Y.F.; Zhao, Q.; Ni, H.B.; et al. Dynamic description of temporal changes of gut microbiota in broilers. Poult. Sci. 2022, 101, 102037. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.S.; Shi, L.Z.; Ge, Y.L.; Leng, D.; Zeng, B.; Wang, T.; Jie, H.; Li, D.Y. Dynamic changes in the gut microbial community and function during broiler growth. Microbiol. Spectr. 2022, 10, e01005-22. [Google Scholar] [CrossRef]
- Khan, A.; Mi, H.Y.; Gao, F.; Hu, Q.; Gu, X.; Ma, F.; Qu, L.H.; Li, S.T.; Dai, Y.H.; Hao, H. Dynamic changes of the gut microbial colonization in preterm infants with different time points after birth. Front. Microbiol. 2023, 14, 1078426. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, Y.; Chen, W.; Lan, T.; Wang, Y.; Wu, Y.B.; Liao, X.D.; Mi, J.D. The dynamic changes of gut microbiota during the perinatal period in sows. Animals 2020, 10, 2254. [Google Scholar] [CrossRef]
- Murugan, R.; Priya, P.S.; Boopathi, S.; Haridevamuthu, B.; Kumar, T.; Arockiaraj, J. Unraveling the etiology of shrimp diseases: A review through the perspectives of gut microbial dynamics. Aquac. Int. 2024, 32, 5579–5602. [Google Scholar] [CrossRef]
- Salari, A.; Cremer, J. Diurnal variations in digestion and flow drive microbial dynamics in the gut. PRX Life 2025, 3, 0223012. [Google Scholar] [CrossRef]
- Xu, H.; You, J.; He, W.Q.; Pei, L.P.; Han, Y.; Wang, X.; Tian, Z.G.; Zheng, X.W.; Wu, E.Q.; Ling, Y.Q. Dynamic changes in the migratory microbial components of colon tissue during different periods of sepsis in an LPS-induced rat model. Front. Cell. Infect. Microbiol. 2024, 13, 1330087. [Google Scholar] [CrossRef]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996. [Google Scholar] [CrossRef]
- Wang, Q.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [PubMed]
- Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar]
- Xu, X.Q.; Wang, Z.H.; Jian, Y.; Zhang, L.; Zhou, C.Q.; Liu, L.; Liu, H. Establishment and maturation of gut microbiota in white king pigeon squabs: Role of pigeon milk. Front. Microbiol. 2025, 15, 1481529. [Google Scholar] [CrossRef] [PubMed]
- Dietz, M.W.; Matson, K.D.; Versteegh, M.A.; van der Velde, M.; Parmentier, H.K.; Arts, J.A.J.; Salles, J.F.; Tieleman, B.I. Gut microbiota of homing pigeons shows summer-winter variation under constant diet indicating a substantial effect of temperature. Anim. Microbiome 2022, 4, 64. [Google Scholar]
- Kolypetri, P.; Weiner, H.L. Monocyte regulation by gut microbial signals. Trends Microbiol. 2023, 31, 1044–1057. [Google Scholar] [CrossRef]
- Tian, S.Q.; Jiang, Y.H.; Han, Q.N.; Meng, C.; Ji, F.; Zhou, B.; Ye, M.H. Putative probiotic Ligilactobacillus salivarius strains isolated from the intestines of meat-type pigeon squabs. Probiotics Antimicrob. Proteins 2024. [Google Scholar] [CrossRef]
- Fan, W.; Zhu, Y.H.; Hou, H.B.; Yao, J.F.; Zhu, L.H.; Liu, H.L.; Yan, H.X. Treatment and prevention of pigeon diarrhea through the application of Lactobacillus SNK-6. Poult. Sci. 2024, 103, 103476. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, M.G.; Passot, S.; Campoy, S.; Olivares, M.; Fonseca, F. Ligilactobacillus salivarius functionalities, applications, and manufacturing challenges. Appl. Microbiol. Biotechnol. 2022, 106, 57–80. [Google Scholar] [CrossRef] [PubMed]
- He, T.N.; Hu, X.Y.; Mi, J.L.; Hu, H.J.; Wang, H.; Qi, X.L.; Gao, L.; Zhang, Y.P.; Liu, C.J.; Wang, S.Y.; et al. Ligilactobacillus salivarius XP132 with antibacterial and immunomodulatory activities inhibits horizontal and vertical transmission of Salmonella pullorum in chickens. Poult. Sci. 2024, 103, 104086. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.M.; Xu, P.; Wen, H.B.; He, J.Y.; Chen, J.X.; Kong, C.X.; Li, X.W.; Wang, H.; Guo, X.X.; Su, Y.; et al. Gut microbe Rikenellaceae_RC9_gut_group and Knoellia-mediated acetic acid regulates glucose and lipid metabolism in the muscle of freshwater drum (Aplodinotus grunniens) under high-fat diets. Aquac. Nutr. 2025, 2025, 9667909. [Google Scholar]
- Williams, T.A.; Davin, A.A.; Szánthó, L.L.; Stamatakis, A.; Wahl, N.A.; Woodcroft, B.; Soo, R.M.; Eme, L.; Sheridan, P.O.; Gubry-Rangin, C.; et al. Phylogenetic reconciliation: Making the most of genomes to understand microbial ecology and evolution. ISME J. 2024, 18, wrae129. [Google Scholar] [CrossRef]
- Mouahid, M.; Bisgaard, M.; Morley, A.J.; Mutters, R.; Mannheim, W. Occurrence of v-factor (NAD) independent strains of Haemophilus paragallinarum. Vet. Microbiol. 1992, 31, 363–368. [Google Scholar] [CrossRef]
- Clark, S.E. Commensal bacteria in the upper respiratory tract regulate susceptibility to infection. Curr. Opin. Immunol. 2020, 66, 42–49. [Google Scholar] [CrossRef]
- Ding, S.J.; Yan, W.X.; Ma, Y.; Fang, J. The impact of probiotics on gut health via alternation of immune status of monogastric animals. Anim. Nutr. 2021, 7, 24–30. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Yang, L.; Jing, Y.; Mo, Q.; Song, Q.; Wang, C.; Zhu, M. Dynamic Changes in the Crop Milk and Salivary Microbiota of Breeding Pigeons During the Raising Brooding Period. Animals 2025, 15, 2772. https://doi.org/10.3390/ani15192772
Ma W, Yang L, Jing Y, Mo Q, Song Q, Wang C, Zhu M. Dynamic Changes in the Crop Milk and Salivary Microbiota of Breeding Pigeons During the Raising Brooding Period. Animals. 2025; 15(19):2772. https://doi.org/10.3390/ani15192772
Chicago/Turabian StyleMa, Weiqing, Liu Yang, Yadi Jing, Qianyuan Mo, Qingsheng Song, Changfa Wang, and Mingxia Zhu. 2025. "Dynamic Changes in the Crop Milk and Salivary Microbiota of Breeding Pigeons During the Raising Brooding Period" Animals 15, no. 19: 2772. https://doi.org/10.3390/ani15192772
APA StyleMa, W., Yang, L., Jing, Y., Mo, Q., Song, Q., Wang, C., & Zhu, M. (2025). Dynamic Changes in the Crop Milk and Salivary Microbiota of Breeding Pigeons During the Raising Brooding Period. Animals, 15(19), 2772. https://doi.org/10.3390/ani15192772