Effects of Palm Kernel Cake on Nutrient Utilization and Performance in Confined Cattle, Sheep and Goats: A Comparative Meta-Analytical Approach
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Selection of Studies and Development of the Dataset
2.3. Statistical Analysis
3. Results
3.1. Dry Matter and Nutrients Intake
3.2. Dry Matter and Nutrient Digestibility
3.3. Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, R.D.X.; Medeiros, A.N.; Oliveira, R.L.; Araújo, G.G.L.; Queiroga, R.C.E.; Ribeiro, M.D.; Silva, T.M.; Bezerra, L.R.; Oliveira, R.L. Palm Kernel Cake from the Biodiesel Industry in Goat Kid Diets. Part 2: Physicochemical Composition, Fatty Acid Profile and Sensory Attributes of Meat. Small Rumin. Res. 2018, 165, 1–7. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K. Advancement of Biodiesel Fuel Quality and NOx Emission Control Techniques. Renew. Sustain. Energy Rev. 2023, 178, 113235. [Google Scholar] [CrossRef]
- Krehbiel, C.R. Invited review: Applied Nutrition of Ruminants: Fermentation and Digestive Physiology. Prof. Anim. Sci. 2014, 30, 129–139. [Google Scholar] [CrossRef]
- Lisboa, M.; Silva, R.R.; Silva, F.F.; Carvalho, G.G.P.; Silva, J.W.D.; Paixão, T.R.; Silva, A.P.G.; Carvalho, V.M.; Santos, L.V.; Conceição Santos, M.; et al. Replacing Sorghum with Palm Kernel Cake in the Diet Decreased Intake without Altering Crossbred Cattle Performance. Trop. Anim. Health Prod. 2021, 53, 45. [Google Scholar] [CrossRef]
- Santos, R.d.C.d.; Alves, K.S.; Mezzomo, R.; Oliveira, L.R.S.; Cutrim, D.O.; Gomes, D.I.; Leite, G.P.; Araújo, M.Y.S. Performance of Feedlot Lambs Fed Palm Kernel Cake-Based Diets. Trop. Anim. Health Prod. 2016, 48, 367–372. [Google Scholar] [CrossRef]
- Pimentel, L.R.; Silva, F.F.; Silva, R.R.; Porto, A.F.; Costa, E.G.L.; Schio, A.R.; Souza, D.D.; Rodrigues, E.S.D.O.; Silva, G.M.; Menezes, M.D.A. Production Performance of Crossbred Dairy Cows Fed Palm Kernel Cake in Feedlots. Semin. Cienc. Agrar. 2018, 39, 2103–2112. [Google Scholar] [CrossRef]
- Ferreira, F.G.; Leite, L.C.; Alba, H.D.R.; Pina, D.d.S.; Santos, S.A.; Tosto, M.S.L.; Rodrigues, C.S.; Júnior, D.M.d.L.; de Oliveira, J.S.; Júnior, J.E.d.F.; et al. Palm Kernel Cake in Diets for Lactating Goats: Intake, Digestibility, Feeding Behavior, Milk Production, and Nitrogen Metabolism. Animals 2022, 12, 2323. [Google Scholar] [CrossRef]
- Abreu, G.; Silva, F.F.; Azevêdo, J.A.G.; Silva, J.W.D.; Paixão, T.R.; Costa, G.D.; Santos, L.V.; Silva, A.P.G.; Carvalho, G.G.P.; Lima, D.M.; et al. Effect of Palm Kernel Cake Inclusion on Intake, Digestibility, Nitrogen Balance, Feeding Behavior, and Weight Gain of Feedlot Heifers. Rev. Bras. Zootec. 2024, 53, e20230132. [Google Scholar] [CrossRef]
- Vargas, J.A.C.; Mezzomo, R. Effects of Palm Kernel Cake on Nutrient Utilization and Performance of Grazing and Confined Cattle: A Meta-Analysis. Trop. Anim. Health Prod. 2023, 55, 110. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Pina, D.; Alba, H.D.R.; Araújo, M.L.G.M.L.; Silva, W.P.; Nascimento, C.O.; Rodrigues, C.S.; Carvalho, G.G.P. Palm Kernel Cake in High-Concentrate Diets Improves Animal Performance without Affecting the Meat Quality of Goat Kids. Anim. Prod. Sci. 2021, 62, 78–89. [Google Scholar] [CrossRef]
- Freitas, T.B.; Felix, T.L.; Pedreira, M.S.; Silva, R.R.; Silva, F.F.; Silva, H.G.O.; Moreira, B.S. Effects of Increasing Palm Kernel Cake Inclusion in Supplements Fed to Grazing Lambs on Growth Performance, Carcass Characteristics, and Fatty Acid Profile. Anim. Feed. Sci. Technol. 2017, 226, 71–80. [Google Scholar] [CrossRef]
- Boval, M.; Sauvant, D. Ingestive Behaviour of Grazing Ruminants: Meta-Analysis of the Components Linking Bite Mass to Daily Intake. Anim. Feed. Sci. Technol. 2021, 278, 115014. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Manteca, X. Links between Ruminants’ Food Preference and Their Welfare. Animal 2010, 4, 1240–1247. [Google Scholar] [CrossRef]
- Hofmann, R.R.; Streich, W.J.; Fickel, J.; Hummel, J.; Clauss, M. Convergent Evolution in Feeding Types: Salivary Gland Mass Differences in Wild Ruminant Species. J. Morphol. 2008, 269, 240–257. [Google Scholar] [CrossRef]
- Tolkamp, B.J.; Brouwer, B.O. Statistical Review of Digestion in Goats Compared with Other Ruminants. Small Rumin. Res. 1993, 11, 107–123. [Google Scholar] [CrossRef]
- Huston, J.E.; Rector, B.S.; Ellis, W.C.; Allen, M.L. Dynamics of Digestion in Cattle, Sheep, Goats and Deer. J. Anim. Sci. 1986, 62, 208–215. [Google Scholar] [CrossRef]
- Pereira, E.S.; Teixeira, I.A.M.A.; Azevêdo, J.A.G.; Santos, S.A. Exigências Nutricionais de Caprinos e Ovinos-BR-Caprinos & Ovinos, 1st ed.; Editora Scienza: São Carlos, SP, Brazil, 2024; ISBN 978-65-5668-184-9. [Google Scholar]
- NRC. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2015; ISBN 978-0-309-31702-3. [Google Scholar]
- Abdeltawab, A.M.; Khattab, M.S.A. Utilization of Palm Kernel Cake as a Ruminant Feed for Animal: A Review. Asian J. Biol. Sci. 2018, 11, 157–164. [Google Scholar] [CrossRef]
- Saeed, O.; Jaber, B.T.; Sani, U.M.; Sazili, A.Q.; Akit, H.; Alimon, A.R.; Samsudin, A.A. Histopathological Effects of Different Levels of Palm Kernel Cake Fed to Dorper Lambs. Yyu J. Agric. Sci. 2021, 31, 807–812. [Google Scholar] [CrossRef]
- Sauvant, D.; Letourneau-Montminy, M.P.; Schmidely, P.; Boval, M.; Loncke, C.; Daniel, J.B. Review: Use and Misuse of Meta-Analysis in Animal Science. Animal 2020, 14, s207–s222. [Google Scholar] [CrossRef] [PubMed]
- Stogiannis, D.; Siannis, F.; Androulakis, E. Heterogeneity in Meta-Analysis: A Comprehensive Overview. Int. J. Biostat. 2024, 20, 169–199. [Google Scholar] [CrossRef]
- Conn, V.S.; Valentine, J.C.; Cooper, H.M.; Rantz, M.J. Grey Literature in Meta-Analyses. Nurs. Res. 2003, 52, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Landerdahl, S.S.; Richardson, M.X.; Redekop, K.; Ehn, M.; Wamala-Andersson, S. Gray Literature in Evaluating Effectiveness in Digital Health and Health and Welfare Technology: A Source Worth Considering. J. Med. Internet Res. 2022, 24, e29307. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Riaz, M.Q.; Südekum, K.-H.; Clauss, M.; Jayanegara, A. Voluntary Feed Intake and Digestibility of Four Domestic Ruminant Species as Influenced by Dietary Constituents: A Meta-Analysis. Livest. Sci. 2014, 162, 76–85. [Google Scholar] [CrossRef]
- Nudda, A.; Carta, S.; Correddu, F.; Caratzu, M.F.; Cesarani, A.; Hidalgo, J.; Pulina, G.; Lunesu, M.F. A Meta-Analysis on Use of Agro-Industrial by-Products Rich in Polyphenols in Dairy Small Ruminant Nutrition. Animal 2025, 19, 101522. [Google Scholar] [CrossRef] [PubMed]
- St-Pierre, N.R. Invited Review: Integrating Quantitative Findings from Multiple Studies Using Mixed Model Methodology. J. Dairy Sci. 2001, 84, 741–755. [Google Scholar] [CrossRef]
- Oliveira, A.P.; Cunha, C.S.; Pereira, E.S.; Biffani, S.; Medeiros, A.N.; Silva, A.M.A.; Marcondes, M.I. Meta-Analysis of Dry Matter Intake and Neutral Detergent Fiber Intake of Hair Sheep Raised in Tropical Areas. PLoS ONE 2020, 15, e0244201. [Google Scholar] [CrossRef]
- St-Pierre, N.R. Meta-Analyses of Experimental Data in the Animal Sciences. Rev. Bras. Zootec. 2007, 36, 343–358. [Google Scholar] [CrossRef]
- Vargas, J.A.C.; Almeida, A.K.; Souza, A.P.; Fernandes, M.H.M.R.; Resende, K.T.; Teixeira, I.A.M.A. Sex Effects on Macromineral Requirements for Growth in Saanen Goats: A Meta-Analysis. J. Anim. Sci. 2017, 95, 4646–4657. [Google Scholar] [CrossRef]
- Jayanegara, A.; Leiber, F.; Kreuzer, M. Meta-Analysis of the Relationship between Dietary Tannin Level and Methane Formation in Ruminants from in Vivo and in Vitro Experiments. J. Anim. Physiol. Anim. Nutr. 2012, 96, 365–375. [Google Scholar] [CrossRef]
- Patra, A.K. A Meta-Analysis of the Effect of Dietary Fat on Enteric Methane Production, Digestibility and Rumen Fermentation in Sheep, and a Comparison of These Responses between Cattle and Sheep. Livest. Sci. 2014, 162, 97–103. [Google Scholar] [CrossRef]
- López, A.; Arroquy, J.I.; Hernández, O.; Nasca, J.A.; Juárez-Sequeira, A.V.; DiLorenzo, N.; Distel, R.A. A Meta-Analytical Evaluation of the Effects of High-Salt Water Intake on Beef Cattle. J. Anim. Sci. 2021, 99, skab215. [Google Scholar] [CrossRef]
- Tedeschi, L.O. Assessment of the Adequacy of Mathematical Models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Yoon, S.M. On the Interdependence between Biofuel, Fossil Fuel and Agricultural Food Prices: Evidence from Quantile Tests. Renew. Energy 2022, 199, 536–545. [Google Scholar] [CrossRef]
- Prusty, S.; Swain, P.S.; Sharma, V.K. Non-Conventional Meals and Cakes in Ruminants. Indian J. Anim. Sci. 2019, 89, 1035–1044. [Google Scholar] [CrossRef]
- Sauvant, D.; Schmidely, P.; Daudin, J.J.; St-Pierre, N.R. Meta-Analyses of Experimental Data in Animal Nutrition. Animal 2008, 2, 1203–1214. [Google Scholar] [CrossRef]
- Holling, H.; Böhning, W.; Böhning, D. Meta-Analysis of Diagnostic Studies Based upon SROC-Curves: A Mixed Model Approach Using the Lehmann Family. Stat. Model. 2012, 12, 347–375. [Google Scholar] [CrossRef]
- Schwarzer, G.; Carpenter, J.R.; Rücker, G. Meta-Analysis with R; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-21415-3. [Google Scholar]
- Kirkham, J.J.; Dwan, K.M.; Altman, D.G.; Gamble, C.; Dodd, S.; Smyth, R.; Williamson, P.R. The Impact of Outcome Reporting Bias in Randomised Controlled Trials on a Cohort of Systematic Reviews. BMJ 2010, 340, c365. [Google Scholar] [CrossRef]
- Wilson, D.B. Missing a Critical Piece of the Pie: Simple Document Search Strategies Inadequate for Systematic Reviews. J. Exp. Criminol. 2009, 5, 429–440. [Google Scholar] [CrossRef]
- Allen, M.S. Review: Control of Feed Intake by Hepatic Oxidation in Ruminant Animals: Integration of Homeostasis and Homeorhesis. Animal 2020, 14, s55–s64. [Google Scholar] [CrossRef]
- Toghiani, S.; VanRaden, P.M.; VandeHaar, M.J.; Baldwin, R.L.; Weigel, K.A.; White, H.M.; Peñagaricano, F.; Koltes, J.E.; Santos, J.E.P.; Parker Gaddis, K.L.; et al. Dry Matter Intake in US Holstein Cows: Exploring the Genomic and Phenotypic Impact of Milk Components and Body Weight Composite. J. Dairy Sci. 2024, 107, 7009–7021. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Romero-Pérez, G.A.; Chouinard, P.Y.; Hassanat, F.; Eugene, M.; Petit, H.V.; Côrtes, C. Supplementation of Increasing Amounts of Linseed Oil to Dairy Cows Fed Total Mixed Rations: Effects on Digestion, Ruminal Fermentation Characteristics, Protozoal Populations, and Milk Fatty Acid Composition. J. Dairy Sci. 2012, 95, 4578–4590. [Google Scholar] [CrossRef]
- Dias-Silva, T.P.; Abdalla-Filho, A.L. Sheep and Goat Feeding Behavior Profile in Grazing Systems. Acta Sci. Anim. Sci. 2020, 43, e51265. [Google Scholar] [CrossRef]
- Silva, L.F.P.; Dixon, R.M.; Costa, D.F.A. Nitrogen Recycling and Feed Efficiency of Cattle Fed Protein-Restricted Diets. Anim. Prod. Sci. 2019, 59, 2093. [Google Scholar] [CrossRef]
- Marini, J.C.; Van Amburgh, M.E. Partition of Nitrogen Excretion in Urine and the Feces of Holstein Replacement Heifers. J. Dairy Sci. 2005, 88, 1778–1784. [Google Scholar] [CrossRef]
- Souza, V.C.; Aguilar, M.; Van Amburgh, M.; Nayananjalie, W.A.D.; Hanigan, M.D. Milk Urea Nitrogen Variation Explained by Differences in Urea Transport into the Gastrointestinal Tract in Lactating Dairy Cows. J. Dairy Sci. 2021, 104, 6715–6726. [Google Scholar] [CrossRef]
- Hristov, A.N.; Bannink, A.; Crompton, L.A.; Huhtanen, P.; Kreuzer, M.; McGee, M.; Nozière, P.; Reynolds, C.K.; Bayat, A.R.; Yáñez-Ruiz, D.R.; et al. Invited Review: Nitrogen in Ruminant Nutrition: A Review of Measurement Techniques. J. Dairy Sci. 2019, 102, 5811–5852. [Google Scholar] [CrossRef]
- Silva, A.L.; Marcondes, M.I.; Detmann, E.; Campos, M.M.; Machado, F.S.; Filho, S.C.V.; Castro, M.M.D.; Dijkstra, J. Determination of Energy and Protein Requirements for Crossbred Holstein × Gyr Preweaned Dairy Calves. J. Dairy Sci. 2017, 100, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.R.G.F.; Pereira, E.S.; Silva, A.M.A.; Paulino, P.V.R.; Mizubuti, I.Y.; Pimentel, P.G.; Pinto, A.P.; Rocha Junior, J.N. Body Composition and Net Energy and Protein Requirements of Morada Nova Lambs. Small Rumin. Res. 2013, 114, 206–213. [Google Scholar] [CrossRef]
- Souza, A.P.; St-Pierre, N.R.; Fernandes, M.H.R.M.; Almeida, A.K.; Vargas, J.A.C.; Resende, K.T.; Teixeira, I.A.M.A. Sex Effects on Net Protein and Energy Requirements for Growth of Saanen Goats. J. Dairy Sci. 2017, 100, 4574–4586. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Ren, A.; Zhu, J.; Ran, T.; Shen, W.; Zhou, C.; Zhang, B.; Tan, Z. Effects of Different Protein Sources on Nutrient Disappearance, Rumen Fermentation Parameters and Microbiota in Dual-Flow Continuous Culture System. AMB Express 2022, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Woods, V.B.; Moloney, A.P.; Mulligan, F.J.; Kenny, M.J.; O’mara, F.P. The Effect of Animal Species (Cattle or Sheep) and Level of Intake by Cattle on in Vivo Digestibility of Concentrate Ingredients. Anim. Feed. Sci. Technol. 1999, 80, 135–150. [Google Scholar] [CrossRef]
- Sathitkowitchai, W.; Nitisinprasert, S.; Keawsompong, S. Improving Palm Kernel Cake Nutrition Using Enzymatic Hydrolysis Optimized by Taguchi Method. 3 Biotech. 2018, 8, 407. [Google Scholar] [CrossRef] [PubMed]
- Palmquist, D.L. Influence of Source and Amount of Dietary Fat on Digestibility in Lactating Cows. J. Dairy Sci. 1991, 74, 1354–1360. [Google Scholar] [CrossRef]
- Palmquist, D.L. Conference: Regulating Lipid Metabolism to Increase Productive Efficiency. J. Nutr. 1994, 124, 1371S. [Google Scholar] [CrossRef]
- Toral, P.G.; Bernard, L.; Belenguer, A.; Rouel, J.; Hervás, G.; Chilliard, Y.; Frutos, P. Comparison of Ruminal Lipid Metabolism in Dairy Cows and Goats Fed Diets Supplemented with Starch, Plant Oil, or Fish Oil. J. Dairy Sci. 2016, 99, 301–316. [Google Scholar] [CrossRef]
- Freitas, J.E.; Takiya, C.S.; Del Valle, T.A.; Barletta, R.V.; Venturelli, B.C.; Vendramini, T.H.A.; Mingoti, R.D.; Calomeni, G.D.; Gardinal, R.; Gandra, J.R.; et al. Ruminal Biohydrogenation and Abomasal Flow of Fatty Acids in Lactating Cows Fed Diets Supplemented with Soybean Oil, Whole Soybeans, or Calcium Salts of Fatty Acids. J. Dairy Sci. 2018, 101, 7881–7891. [Google Scholar] [CrossRef]
- Dohme, F.; Machmüller, A.; Sutter, F.; Kreuzer, M. Digestive and Metabolic Utilization of Lauric, Myristic and Stearic Acid in Cows, and Associated Effects on Milk Fat Quality. Arch. Anim. Nutr. 2004, 58, 99–116. [Google Scholar] [CrossRef]
- Hristov, A.N.; Lee, C.; Cassidy, T.; Long, M.; Heyler, K.; Corl, B.; Forster, R. Effects of Lauric and Myristic Acids on Ruminal Fermentation, Production, and Milk Fatty Acid Composition in Lactating Dairy Cows. J. Dairy Sci. 2011, 94, 382–395. [Google Scholar] [CrossRef]
- Vadroňová, M.; Šťovíček, A.; Výborná, A.; Tyrolová, Y.; Tichá, D.; Joch, M. Insights into Effects of Combined Capric and Lauric Acid on Rumen Bacterial Composition. Microorganisms 2024, 12, 1085. [Google Scholar] [CrossRef]
- Doreau, M.; Chilliard, Y. Digestion and Metabolism of Dietary Fat in Farm Animals. Br. J. Nutr. 1997, 78, S15–S35. [Google Scholar] [CrossRef] [PubMed]
- Palmonari, A.; Federiconi, A.; Formigoni, A. Animal Board Invited Review: The Effect of Diet on Rumen Microbial Composition in Dairy Cows. Animal 2024, 18, 101319. [Google Scholar] [CrossRef]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited Review: Plant Polyphenols and Rumen Microbiota Responsible for Fatty Acid Biohydrogenation, Fiber Digestion, and Methane Emission: Experimental Evidence and Methodological Approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef]
- Clauss, M.; Hummel, J. Physiological Adaptations of Ruminants and Their Potential Relevance for Production Systems. Rev. Bras. Zootec. 2017, 46, 606–613. [Google Scholar] [CrossRef]
- Firkins, J.L.; Henderson, E.L.; Duan, H.; Pope, P.B. International Symposium on Ruminant Physiology: Current Perspective on Rumen Microbial Ecology to Improve Fiber Digestibility. J. Dairy Sci. 2025, 108, 7511–7529. [Google Scholar] [CrossRef]
- VanSoest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994; ISBN 9781501732355. [Google Scholar]
- Santra, A.; Karim, S.A.; Mishra, A.S.; Chaturvedi, O.H.; Prasad, R. Rumen Ciliate Protozoa and Fibre Utilization in Sheep and Goats. Small Rumin. Res. 1998, 30, 13–18. [Google Scholar] [CrossRef]
- Wuliji, T.; Goetsch, A.L.; Sahlu, T.; Puchala, R.; Soto-Navarro, S.; Merkel, R.C.; Detweiler, G.; Gipson, T. Effects of Different Quality Diets Consumed Continuously or after a Lower Quality Diet on Characteristics of Growth of Young Spanish Goats. Small Rumin. Res. 2003, 50, 83–96. [Google Scholar] [CrossRef]
- Almeida, A.K.; Resende, K.T.; Tedeschi, L.O.; Fernandes, M.H.; Regadas Filho, J.G.; Teixeira, I.A. Using Body Composition to Determine Weight at Maturity of Male and Female Saanen Goats. J. Anim. Sci. 2016, 94, 2564–2571. [Google Scholar] [CrossRef]
- Honig, A.C.; Inhuber, V.; Spiekers, H.; Windisch, W.; Götz, K.-U.; Schuster, M.; Ettle, T. Body Composition and Composition of Gain of Growing Beef Bulls Fed Rations with Varying Energy Concentrations. Meat Sci. 2022, 184, 108685. [Google Scholar] [CrossRef]
- Addis, A.H.; Blair, H.T.; Kenyon, P.R.; Morris, S.T.; Schreurs, N.M. Optimization of Profit for Pasture-Based Beef Cattle and Sheep Farming Using Linear Programming: Young Beef Cattle Production in New Zealand. Agriculture 2021, 11, 849. [Google Scholar] [CrossRef]
- Ojo, A.O.; Mulim, H.A.; Campos, G.S.; Junqueira, V.S.; Lemenager, R.P.; Schoonmaker, J.P.; Oliveira, H.R. Exploring Feed Efficiency in Beef Cattle: From Data Collection to Genetic and Nutritional Modeling. Animals 2024, 14, 3633. [Google Scholar] [CrossRef]
- Nascimento, M.L.; Souza, A.R.D.L.; Chaves, A.S.; Cesar, A.S.M.; Tullio, R.R.; Medeiros, S.R.; Mourão, G.B.; Rosa, A.N.; Feijó, G.L.D.; Alencar, M.M.; et al. Feed Efficiency Indexes and Their Relationships with Carcass, Non-Carcass and Meat Quality Traits in Nellore Steers. Meat Sci. 2016, 116, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Harmon, D.L.; Swanson, K.C. Review: Nutritional Regulation of Intestinal Starch and Protein Assimilation in Ruminants. Animal 2020, 14, s17–s28. [Google Scholar] [CrossRef]
- Guinguina, A.; Yan, T.; Bayat, A.R.; Lund, P.; Huhtanen, P. The Effects of Energy Metabolism Variables on Feed Efficiency in Respiration Chamber Studies with Lactating Dairy Cows. J. Dairy Sci. 2020, 103, 7983–7997. [Google Scholar] [CrossRef]
- Jiang, W.; Zhang, Y.; Cheng, H.; Hu, X.; You, W.; Song, E.; Hu, Z.; Jiang, F. Fermented Palm Kernel Cake Improves the Rumen Microbiota and Metabolome of Beef Cattle. Animals 2024, 14, 3088. [Google Scholar] [CrossRef]
- Sathitkowitchai, W.; Ayimbila, F.; Nitisinprasert, S.; Keawsompong, S. Selection of pretreatment method and mannanase enzyme to improve the functionality of palm kernel cake. J. Biosci. Bioeng. 2022, 134, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, N.; Hutagalung, R.I. Rumen Fermentation, Urease Activity and Performance of Cattle given Palm Kernel Cake-Based Diet. Anim. Feed. Sci. Technol. 1988, 20, 79–86. [Google Scholar] [CrossRef]
- Correia, B.R.; Oliveira, R.L.; Jaeger, S.M.P.L.; Bagaldo, A.R.; Carvalho, G.G.P.; Oliveira, G.J.C.; Lima, F.H.S.; Oliveira, P.A. Consumo, Digestibilidade e pH Ruminal de Novilhos Submetidos a Dietas com Tortas Oriundas da Produção do Biodiesel em Substituição ao Farelo de Soja. Arq. Bras. Med. Vet. Zootec. 2011, 63, 356–363. [Google Scholar] [CrossRef]
- Fereira, A.C.; Lopes, R.O.; Regina, A.B.; Giordano-Pinto, G.C.; Nunes-Vaz, R.S.; Andrade, P.O. Intake, Digestibility and Intake Behaviour in Cattle Fed Different Levels of Palm Kernel Cake. Rev. MVZ Córdoba 2012, 17, 3105–3112. [Google Scholar] [CrossRef]
- Maciel, R.P.; Neuman, J.; Neiva, M.; Araujo, V.L.; Fagner, O.; Cunha, R.; Paiva, J.; Restle, J.; Mendes, C.Q.; Lôbo, N.B. Intake, Nutrient Digestibility and Performance of Dairy Heifers Fed Diets Containing Palm Kernel Cake. Rev. Bras. Zootec. 2012, 41, 698–706. [Google Scholar] [CrossRef]
- Cruz, C.H. Desempenho Bioeconômico de Novilhos Submetidos a Dietas com Níveis de Torta de Dendê, Oriunda da Produção do Biodiesel. Master’s Thesis, Federal University of Bahia, Salvador, BA, Brazil, 2013. [Google Scholar]
- Cunha, O.F.R.; Neiva, J.N.M.; Maciel, R.P.; Restle, J.; Araújo, V.L.; Paiva, J.; Miotto, F.R.C. Palm (Elaeis guineensis L.) Kernel Cake in Diets for Dairy Cows. Semin. Cienc. Agrar. 2013, 34, 445–454. [Google Scholar] [CrossRef]
- Santana Filho, N.B. Características de Carcaça e Qualidade da Carne de Tourinhos Nelore Submetidos a Dietas com Níveis de Torta de Dendê, Oriunda da Produção do Biodiesel. Master’s Thesis, Federal University of Recôncavo da Bahia, Cruz das Almas, BA, Brazil, 2013. [Google Scholar]
- Pimentel, L.R.; Silva, F.F.; Silva, R.R.; Schio, A.R.; Oliveira Rodrigues, E.S.; Oliveira, P.A. Comportamento Ingestivo de Vacas Lactantes Alimentadas com Níveis de Torta de Dendê na Dieta. Acta Sci. Anim. Sci. 2015, 37, 83–89. [Google Scholar] [CrossRef]
- Martins, L.F.D. Torta de Dendê em Dietas para Vacas Lactantes Confinadas. Ph.D. Dissertation, Southwest Bahia State University, Itapetinga, BA, Brazil, 2016. [Google Scholar]
- Sani, R.T.; Lamidi, O.S.; Dung, D.D.; Hassan, M.R. Performance of Yearling Bunaji Bulls Fed Diets Containing Graded Level of Palm Kernel Cake. Nigerian J. Anim. Sci. 2017, 2017, 235–246. [Google Scholar]
- Sani, R.T.; Lamidi, O.S.; Dung, D.D.; Hassan, M.R. Nutrient Digestibility and Nitrogen Balance in Yearling Bunaji Bulls Fed Diets Containing Graded Levels of Palm Kernel Cake. Niger. J. Anim. Prod. 2018, 12, 720–723. [Google Scholar]
- Cruz, C.H.; Silva, T.M.; Santana Filho, N.B.; Leão, A.G.; Ribeiro, O.L.; Carvalho, G.G.P.; Bezerra, L.R.; Oliveira, R.L. Effects of Palm Kernel Cake (Elaeis guineensis) on Intake, Digestibility, Performance, Ingestive Behaviour and Carcass Traits in Nellore Bulls. J. Agric. Sci. 2018, 156, 1145–1152. [Google Scholar] [CrossRef]
- Hussein, A.M.; Mousa, S.A.; Fahmy, K.N.; Ismail, E.Y. Influence of Dietary Inclusion of Palm Kernel Meal (PKM) and Live Yeast on Growth Performance, Rumen Fermentation Parameter, Nutrient Digestibility and Blood Biochemical Indices in Beef Calves. J. Egypt. Vet. Med. Assoc. 2018, 78, 609–621. [Google Scholar]
- Iqbal, Z.; Rashid, M.A.; Pasha, T.N.; Bhatti, J.A. Effect of Feeding Varying Levels of Palm Kernel Cake on Production Performance and Blood Metabolites of Lactating Crossbred Dairy Cattle. J. Anim. Plant Sci. 2019, 29, 419–424. [Google Scholar]
- Santos, L.V.; Silva, R.R.; Silva, F.F.; Silva, J.W.D.; Barroso, D.S.; Silva, A.P.G.; Souza, S.O.; Santos, M.C. Increasing Levels of Palm Kernel Cake (Elaeis guineensis Jacq.) in Diets for Feedlot Cull Cows. Chil. J. Agric. Res. 2019, 79, 628–635. [Google Scholar] [CrossRef]
- Sani, R.T.; Okin-Aminu, H.O.; Idowu, W.; Achi, N.P.; Ahmed, S.A.; Bello, S.S. Feed Intake, Rumen Metabolite and Some Blood Parameters of Yearling Bunaji Bulls Fed Graded Levels of Palm Kernel Cake. Niger. J. Anim. Prod. 2021, 48, 311–327. [Google Scholar] [CrossRef]
- Gunawan; Winarti, E.; Sofyan, A.; Putridinanti, A.D.; Andarwati, S.; Noviandi, C.T.; Agus, A.; Harper, K.J.; Poppi, D.P. Improving Growth Rates of Ongole Crossbred Bulls by Formulation and Level of Supplement of By-Products. Anim. Prod. Sci. 2023, 64, AN23229. [Google Scholar] [CrossRef]
- Carvalho, G.G.P.; Pires, A.J.V.; Silva, F.F.; Veloso, C.M.; Silva, R.R.; Silva, H.G.O.; Bonomo, P.; Mendonça, S.S. Comportamento Ingestivo de Cabras Leiteiras Alimentadas com Farelo de Cacau ou Torta de Dendê. Pesqui. Agropecu. Bras. 2004, 39, 919–925. [Google Scholar] [CrossRef]
- Silva, H.G.O.; Pires, A.J.V.; Silva, F.F.; Veloso, C.M.; Carvalho, G.G.P.; Cezário, A.S.; Santos, C.C. Digestibilidade Aparente de Dietas Contendo Farelo de Cacau ou Torta de Dendê em Cabras Lactantes. Pesqui. Agropecu. Bras. 2005, 40, 405–411. [Google Scholar] [CrossRef]
- Silva, H.G.O.; Pires, A.J.V.; Silva, F.F.; Veloso, C.M.; Carvalho, G.G.P.; Cezário, A.S.; Santos, C.C. Farelo de Cacau (Theobroma cacao L.) e Torta de Dendê (Elaeis guineensis, Jacq) na Alimentação de Cabras em Lactação: Consumo e Produção de Leite. Rev. Bras. Zootec. 2005, 34, 1786–1794. [Google Scholar] [CrossRef]
- Chanjula, P.; Mesang, A.; Pongprayoon, S. Effects of Dietary Inclusion of Palm Kernel Cake on Nutrient Utilization, Rumen Fermentation Characteristics and Microbial Populations of Goats Fed Paspalum Plicatulum Hay-Based Diet. Songklanakarin J. Sci. Technol. 2010, 32, 527–536. [Google Scholar]
- Chanjula, P.; Siriwathananukul, Y.; Lawpetchara, A. Effect of Feeding Rubber Seed Kernel and Palm Kernel Cake in Combination on Nutrient Utilization, Rumen Fermentation Characteristics, and Microbial Populations in Goats Fed on Briachiaria Humidicola Hay-Based Diets. Asian-Australas. J. Anim. Sci. 2010, 24, 73–81. [Google Scholar] [CrossRef]
- Chanjula, P.; Pengnoo, A. Influence of Replacing Soybean Meal with Yeast Fermented Palm Kernel Cake in Concentrate on Nutrient Utilization and Rumen Fermentation Characteristics in Goats. In Proceedings of the the 1st International Conference on Animal Nutrition and Environment, Khon Kaen, Thailand, 14–15 September 2012; pp. 487–490. [Google Scholar]
- Abubakr, A.R.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Digestibility, Rumen Protozoa, and Ruminal Fermentation in Goats Receiving Dietary Palm Oil by-Products. J. Saudi Soc. Agric. Sci. 2013, 12, 147–154. [Google Scholar] [CrossRef]
- Abubakr, A.R.; Alimon, A.R.; Yaakub, H.; Abdullah, N.; Ivan, M. Growth, Nitrogen Metabolism and Carcass Composition of Goats Fed Palm Oil by-Products. Small Rumin. Res. 2013, 112, 91–96. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abdullah, R.B.; Wan Embong, W.K.; Nakagawa, T.; Akashi, R. Effect of Palm Kernel Cake as Protein Source in a Concentrate Diet on Intake, Digestibility and Live Weight Gain of Goats Fed Napier Grass. Trop. Anim. Health Prod. 2013, 45, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Abdullah, R.B.; Wan Khadij, W.E.; Nakagawa, T.; Akashi, R. Feed Intake, Digestibility and Growth Performance of Goats Offered Napier Grass Supplemented with Molasses Protected Palm Kernel Cake and Soya Waste. Asian J. Anim. Vet. Adv. 2013, 8, 527–534. [Google Scholar] [CrossRef]
- Oliveira, R.L.; Carvalho, G.G.P.; Oliveira, R.L.; Tosto, M.S.L.; Santos, E.M.; Ribeiro, R.D.X.; Silva, T.M.; Correia, B.R.; Rufino, L.M.A. Palm Kernel Cake Obtained from Biodiesel Production in Diets for Goats: Feeding Behavior and Physiological Parameters. Trop. Anim. Health Prod. 2017, 49, 1401–1407. [Google Scholar] [CrossRef]
- Ribeiro, R.D.X.; Oliveira, R.L.; Oliveira, R.L.; Carvalho, G.G.P.; Medeiros, A.N.; Correia, B.R.; Silva, T.M.; Bezerra, L.R. Palm Kernel Cake from the Biodiesel Industry in Diets for Goat Kids. Part 1: Nutrient Intake and Utilization, Growth Performance and Carcass Traits. Small Rumin. Res. 2018, 165, 17–23. [Google Scholar] [CrossRef]
- Olawoye, S.O.; Okeniyi, F.A.; Adeloye, A.A.; Alabi, O.O.; Shoyombo, A.J.; Animashahun, R.A.; Yousuf, M.B. Effects of Formulated Concentrate and Palm Kernel Cake Supplementation on Performance Characteristics of Growing West African Dwarf (WAD) Goat Kids. Niger. J. Anim. Sci. 2020, 22, 287–295. [Google Scholar]
- Silva, L.O.; Carvalho, G.G.P.; Tosto, M.S.L.; Lima, V.G.O.; Cirne, L.G.A.; Pina, D.S.; Santos, S.A.; Rodrigues, C.S.; Ayres, M.C.C.; Azevedo, J.A.G. Digestibility, Nitrogen Metabolism, Ingestive Behavior and Performance of Feedlot Goats Fed High-Concentrate Diets with Palm Kernel Cake. Livest. Sci. 2020, 241, 104226. [Google Scholar] [CrossRef]
- Rodrigues, T.C.G.C.; Santos, S.A.; Cirne, L.G.A.; Santos-Pina, D.; Alba, H.D.R.; Araújo, M.L.G.M.L.; Silva, W.P.; Oliveira Nascimento, C.; Rodrigues, C.S.; Tosto, M.S.L.; et al. Palm Kernel Cake in High-Concentrate Diets for Feedlot Goat Kids: Nutrient Intake, Digestibility, Feeding Behavior, Nitrogen Balance, Blood Metabolites, and Performance. Trop. Anim. Health Prod. 2021, 53, 454. [Google Scholar] [CrossRef]
- Arief, R.P.; Jamarun, N.; Rizqan, N.J. Production Performance, Feed Intake and Nutrient Digestibility of Etawa Crossbreed Dairy Goats Fed Tithonia (Tithonia diversifolia), Cassava Leaves and Palm Kernel Cake Concentrate. Int. J. Vet. Sci. 2023, 12, 428–435. [Google Scholar] [CrossRef]
- Arief, R.P.; Rizqan, N.J.; Magistri, P.M. Production Performance, Nutrient Digestibility and Food Consumption of Etawa Crosbreed Dairy Goats Fed Gliricidia sepium, Concentrate of Palm Kernel Cake and Cassava Leaves. Int. J. Vet. Sci. 2024, 13, 471–478. [Google Scholar] [CrossRef]
- Lakshmi, P.V.; Krishna, N. Evaluation of Complete Rations Containing Varying Levels of Palm Kernel-Cake as a Replacement for Groundnut-Cake in Sheep. Indian J. Anim. Sci. 1995, 65, 1161–1164. [Google Scholar]
- Umunna, N.N.; Magaji, I.Y.; Adu, I.F.; Njoku, P.C.; Balogun, T.F.; Alawa, J.P.; Iji, P.A. Utilization of Palm Kernel Meal by Sheep. J. Appl. Anim. Res. 1994, 5, 1–11. [Google Scholar] [CrossRef]
- Carvalho, G.G.P.; Pires, A.J.V.; Silva, R.R.; Veloso, C.M.; Silva, H.G.O. Comportamento Ingestivo de Ovinos Alimentados com Dietas Compostas de Silagem de Capim-Elefante Amonizada ou Não e Subprodutos Agroindustriais. Rev. Bras. Zootec. 2006, 35, 1805–1812. [Google Scholar] [CrossRef]
- Costa, D.A.; Ferreira, G.D.G.; Araújo, C.V.; Colodo, J.C.N.; Moreira, G.R.; Figueiredo, M.R.P. Intake and Digestibility of Diets with Levels of Palm Kernel Cake in Sheep. Rev. Bras. Saúde Prod. Anim. 2010, 11, 783–792. [Google Scholar]
- Bringel, L.M.L.; Neiva, J.N.M.; Araújo, V.L.; Bomfim, M.A.D.; Restle, J.; Ferreira, A.C.H.; Lôbo, R.N.B. Consumo, Digestibilidade e Balanço de Nitrogênio Em Borregos Alimentados com Torta de Dendê em Substituição à Silagem de Capim-Elefante. Rev. Bras. Zootec. 2011, 40, 1975–1983. [Google Scholar] [CrossRef]
- Macome, F.; Oliveira, R.L.; Regina, B.A.; Garcia-Leal, A.G.; Pires, B.L.; Costa-Alves, S.M. Productive Performance and Carcass Characteristics of Lambs Fed Diets Containing Different Levels of Palm Kernel Cake. Rev. MVZ Cordoba 2011, 16, 2659–2667. [Google Scholar] [CrossRef]
- Nunes, A.S.; Oliveira, R.L.; Borja, M.S.; Bagaldo, A.R.; Macome, F.M.; Jesus, I.B.; Silva, T.M.; Barbosa, L.P.; Garcez Neto, A.F. Consumo, Digestibilidade e Parâmetros Sanguíneos de Cordeiros Submetidos a Dietas com Torta de Dendê. Arch. Zootec. 2011, 60, 903–912. [Google Scholar] [CrossRef]
- Macome, F.M.; Oliveira, R.L.; Araujo, G.G.L.; Barbosa, L.P.; Carvalho, G.G.P.; Garcez Neto, A.F.; Silva, T.M. Respostas de Ingestão e Fisiologicas de Cordeiros Alimentados com Torta de Dendê (Elaeis guineensis). Arch. Zootec. 2012, 61, 335–342. [Google Scholar] [CrossRef]
- Visoná-Oliveira, M.; Ferreira, I.C.; Macedo Junior, G.L.; Sousa, L.F.; Sousa, J.T.L.; Santos, R.P. Consumo e Digestibilidade de Nutrientes da Torta de Dendê na Dieta de Ovinos. Cien Anim. Bras. 2015, 16, 179–192. [Google Scholar] [CrossRef]
- Pinho, B.D.; Ramos, A.F.O.; Lourenço Júnior, J.D.B.; Faturi, C.; Silva, A.G.M.; Nahúm, B.D.S.; Manno, M.C.; Lima, K.R.S.; Sousa, L.F.; Silva, J.A.R.; et al. Feeding Behavior of Sheep Fed Diets with Elaeis Guineensis Palm Kernel Meal. Semin. Cienc. Agrar. 2016, 37, 2513. [Google Scholar] [CrossRef]
- Omotoso, S.O.; Ajayi, F.T.; Kenneth-Obosi, O.; Oladele-Bukola, M.O. Nutritional Potential of Kenaf Grain Meal as a Replacement for Palm Kernel Cake in Cassava Peel-Based Concentrate for Sheep. Agric. Trop. Subtrop. 2021, 54, 174–183. [Google Scholar] [CrossRef]
- Castro, V.C.G.; Budel, J.C.C.; Rodrigues, T.C.G.C.; Silva, B.A.; de Lima, A.C.S.; de Souza, S.M.; Silva, J.A.R.; Joele, M.R.S.P.; Silva, A.G.M.; Lourenço-Junior, J.B. Nutrient Intake, Digestibility, Performance, Carcass Traits and Sensory Analysis of Meat from Lambs Fed with Co-Products of Amazon Oilseeds. Front. Vet. Sci. 2023, 10, 1181765. [Google Scholar] [CrossRef]
Parameter | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Cattle | ||||
PKC inclusion in the diet (g/kg DM) | 132.9 | 156.9 | 0.00 | 890.0 |
Mean BW (kg) | 365.7 | 140.3 | 149.4 | 566.8 |
Daily feed intake (g/kg BW0.75) | ||||
Dry matter | 111.7 | 29.27 | 54.64 | 193.2 |
Crude protein | 12.98 | 4.47 | 3.13 | 24.97 |
Ether extract | 4.77 | 1.91 | 2.34 | 9.22 |
Neutral detergent fiber | 45.89 | 16.67 | 20.19 | 84.83 |
Total digestible nutrients | 75.84 | 19.39 | 42.07 | 120.3 |
Digestibility (g/kg DM) | ||||
Dry matter | 641.8 | 74.26 | 440.0 | 762.0 |
Crude protein | 673.5 | 89.85 | 516.1 | 853.0 |
Ether extract | 761.6 | 92.33 | 576.4 | 953.4 |
Neutral detergent fiber | 582.1 | 106.5 | 357.6 | 746.1 |
Total digestible concentration | 683.9 | 64.09 | 571.6 | 798.6 |
Performance | ||||
Average daily gain (g/day) | 933.2 | 341.7 | 141.1 | 1540 |
Feed efficiency (g gain/kg feed) | 135.5 | 30.1 | 67.70 | 249.4 |
Goats | ||||
PKC inclusion in the diet (g/kg DM) | 137.3 | 114.4 | 0.00 | 506.3 |
Mean BW (kg) | 30.2 | 15.2 | 7.48 | 60.0 |
Daily feed intake (g/kg BW0.75) | ||||
Dry matter | 77.48 | 21.95 | 45.21 | 135.7 |
Crude protein | 11.93 | 4.87 | 4.94 | 27.83 |
Ether extract | 3.61 | 1.22 | 1.92 | 6.02 |
Neutral detergent fiber | 33.22 | 9.79 | 13.77 | 48.85 |
Total digestible nutrients | 55.55 | 16.36 | 26.79 | 78.89 |
Digestibility (g/kg DM) | ||||
Dry matter | 674.4 | 55.50 | 545.6 | 756.2 |
Crude protein | 693.7 | 77.96 | 521.0 | 862.0 |
Ether extract | 867.8 | 81.76 | 584.0 | 949.2 |
Neutral detergent fiber | 555.4 | 106.6 | 285.0 | 730.3 |
Total digestible concentration | 675.6 | 61.87 | 576.5 | 771.0 |
Performance | ||||
Average daily gain (g/day) | 77.0 | 60.3 | 10.2 | 219.0 |
Feed efficiency (g gain/kg feed) | 123.5 | 70.7 | 20.02 | 226.0 |
Sheep | ||||
PKC inclusion in the diet (g/kg DM) | 175.8 | 173.0 | 0.00 | 650.0 |
Mean BW (kg) | 26.4 | 6.97 | 10.3 | 36.9 |
Daily feed intake (g/kg BW0.75) | ||||
Dry matter | 82.35 | 19.32 | 41.00 | 119.7 |
Crude protein | 12.58 | 4.30 | 6.07 | 21.26 |
Ether extract | 3.26 | 1.09 | 1.50 | 5.66 |
Neutral detergent fiber | 47.82 | 12.86 | 22.24 | 78.64 |
Total digestible nutrients | 66.39 | 19.29 | 36.91 | 106.6 |
Digestibility (g/kg DM) | ||||
Dry matter | 700.1 | 87.55 | 478.0 | 838.0 |
Crude protein | 732.4 | 87.83 | 478.9 | 860.6 |
Ether extract | 872.7 | 45.92 | 799.0 | 945.8 |
Neutral detergent fiber | 686.3 | 86.20 | 513.0 | 813.2 |
Total digestible concentration | 663.9 | 70.34 | 577.7 | 792.0 |
Performance | ||||
Average daily gain (g/day) | 124.1 | 56.70 | 16.07 | 185.0 |
Feed efficiency (g gain/kg feed) | 107.8 | 44.20 | 26.34 | 178.6 |
Species | Equations a,b | N c | Statistics d | p Value (Species) e | ||||
---|---|---|---|---|---|---|---|---|
CCC | R2 | RMSE | Intercept | Linear Slope | Quadratic Slope | |||
Cattle, goats and sheep | CPIntake = 14.26 (±0.894 **) − 0.0124 (±0.00181 **) × PKC | 104 | 0.942 | 0.899 | 1.49 | 0.765 | 0.807 | - |
Cattle | EEIntake = 3.705 (±0.547 **) + 0.0120 (±0.00264 **) × PKC − 0.00003 (±9.578 × 10−6 **) × PKC2 | 42 | 0.958 | 0.922 | 0.54 | 0.462 | 0.013 | 0.075 |
Goats | EEIntake f = 3.732 (±0.558 **) | 19 | - | - | - | |||
Sheep | EEIntake = 2.846 (±0.452 **) + 0.00345 (±0.00069 **) × PKC | 26 | 0.951 | 0.907 | 0.33 | |||
Cattle | NDFIntake = 43.82 (±4.74 **) + 0.0642 (±0.0199 **) × PKC − 0.00026 (±0.00007 **) × PKC2 | 43 | 0.968 | 0.939 | 4.03 | 0.143 | 0.578 | 0.027 |
Goats and sheep | NDFIntake = 37.76 (±3.079 **) + 0.0155 (±0.00606 **) × PKC | 74 | 0.930 | 0.879 | 4.98 | |||
Cattle | TDNIntake = 86.15 (±5.503 **) − 0.0841 (±0.0119 **) × PKC | 39 | 0.946 | 0.904 | 6.15 | 0.106 | 0.024 | - |
Goats | TDNIntake = 69.72 (±8.841 **) − 0.102 (±0.0202 **) × PKC | 14 | 0.903 | 0.821 | 7.20 | |||
Sheep | TDNIntake = 68.79 (±7.266 **) − 0.0417 (±0.0139 **) × PKC | 25 | 0.966 | 0.940 | 5.47 |
Species | Equations a,b | N c | Statistics d | p Value (Species) e | |||
---|---|---|---|---|---|---|---|
CCC | R2 | RMSE | Intercept | Linear Slope | |||
Digestibility (g/kg DM) | |||||||
Cattle, goats and sheep | CPDig = 701.3 (±15.45 **) − 0.0560 (±0.0272 **) × PKC | 132 | 0.934 | 0.882 | 30.22 | 0.460 | 0.114 |
Cattle | EEDig = 717.6 (±23.09 **) + 0.313 (±0.0580 **) × PKC | 48 | 0.919 | 0.857 | 35.99 | 0.002 | 0.044 |
Goats | EEDig = 829.9 (±31.48 **) + 0.116 (±0.0593 *) × PKC | 27 | 0.920 | 0.881 | 28.96 | ||
Sheep | EEDig = 852.1 (±38.16 **) + 0.142 (±0.0688 *) × PKC | 19 | 0.922 | 0.859 | 19.37 | ||
Cattle | NDFDig = 581.0 (±31.08 **) − 0.126 (±0.0796 *) × PKC | 48 | 0.885 | 0.804 | 50.94 | 0.062 | 0.037 |
Goats and sheep | NDFDig = 586.5 (±25.63 **) + 0.125 (±0.0574 **) × PKC | 75 | 0.937 | 0.888 | 42.03 | ||
Cattle | TDNConc = 693.5 (±23.50 **) − 0.0930 (±0.03882 **) × PKC | 28 | 0.957 | 0.920 | 16.55 | 0.191 | <0.001 |
Goats | TDNConc = 694.2 (±28.48 **) − 0.161 (±0.0496 **) × PKC | 17 | 0.966 | 0.935 | 16.28 | ||
Sheep | TDNConc = 632.1 (±27.93 **) + 0.122 (±0.0335 **) × PKC | 22 | 0.967 | 0.939 | 17.41 | ||
Performance | |||||||
Cattle | ADG (g/day) = 961.7 (±79.10 **) − 0.157 (±0.0783 *) × PKC | 46 | 0.949 | 0.908 | 104.5 | <0.001 | 0.243 |
Goats | ADG (g/day) = 99.26 (±104.8 **) − 0.157 (±0.0783 *) × PKC | 24 | 0.953 | 0.914 | 18.57 | ||
Sheep | ADG (g/day) = 129.1 (±112.6 **) − 0.157 (±0.0783 *) × PKC | 24 | 0.982 | 0.967 | 10.58 | ||
Cattle and sheep | FE (g gain/kg feed) = 113.4 (±12.03 **) + 0.0302 (±0.0174 **) × PKC | 66 | 0.938 | 0.886 | 13.07 | 0.431 | 0.001 |
Goats | FE (g gain/kg feed) = 139.2 (±17.80 **) − 0.0628 (±0.0192 **) × PKC | 24 | 0.968 | 0.940 | 17.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas, J.A.C.; Souza, A.P. Effects of Palm Kernel Cake on Nutrient Utilization and Performance in Confined Cattle, Sheep and Goats: A Comparative Meta-Analytical Approach. Animals 2025, 15, 2764. https://doi.org/10.3390/ani15182764
Vargas JAC, Souza AP. Effects of Palm Kernel Cake on Nutrient Utilization and Performance in Confined Cattle, Sheep and Goats: A Comparative Meta-Analytical Approach. Animals. 2025; 15(18):2764. https://doi.org/10.3390/ani15182764
Chicago/Turabian StyleVargas, Julián Andrés Castillo, and Anaiane Pereira Souza. 2025. "Effects of Palm Kernel Cake on Nutrient Utilization and Performance in Confined Cattle, Sheep and Goats: A Comparative Meta-Analytical Approach" Animals 15, no. 18: 2764. https://doi.org/10.3390/ani15182764
APA StyleVargas, J. A. C., & Souza, A. P. (2025). Effects of Palm Kernel Cake on Nutrient Utilization and Performance in Confined Cattle, Sheep and Goats: A Comparative Meta-Analytical Approach. Animals, 15(18), 2764. https://doi.org/10.3390/ani15182764