Association Analysis of the FTO Gene Polymorphisms with Growth and Carcass Traits of Heying Black Chicken and Tissue Expression Profile
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Genomic DNA Extraction
2.3. Primer Design
2.4. PCR Amplification and Sequencing
2.5. Analysis Software
2.6. Statistical Model and Analysis
- The data were statistically analyzed using the general linear model (GLM) and Multiple Comparisons (version SPSS 25). The model was Yijk = μ + Gj + Sk + eijk [23], where Yijk was the individual phenotypic record, μ was the population mean, Gj was the effect of genotype, Sk was the sex effect, and eijk was the random error. Differences among genotypes were indicated by superscript letters: different uppercase letters represented highly significant differences (p < 0.01), different lowercase letters represented significant differences (p < 0.05), and the same letters indicated no significant difference (p > 0.05)
- Polymorphism information content (PIC) was calculated using the formula
- Effective number of alleles (Ne) was calculated using the formula
- Average heterozygosity was calculated using the formula
2.7. Spatiotemporal Expression Differences and Tissue Expression Profiles
3. Results
3.1. PCR Amplification Results
3.2. Genotyping and Allele Frequency Analysis of the FTO Gene
3.3. Association Analysis Between the FTO Gene Polymorphisms and Chicken Carcass Traits
3.3.1. Association Analysis of g.57337C>A SNP and Carcass Traits of Heying Black Chicken
3.3.2. Association Analysis of g.64757T>G SNP and Carcass Traits of Heying Black Chicken
3.3.3. Association Analysis Between g.97213G>A SNP and Carcass Traits of Heying Black Chicken
3.3.4. Association Analysis Between g.220985G>A SNP and Carcass Traits of Heying Black Chicken
3.4. Association Analysis of the FTO Gene Polymorphism and Growth Traits of Heying Black Chicken
3.4.1. Association Analysis of g.57337C>A SNP and Growth Traits of Heying Black Chicken
3.4.2. Association Analysis Between g.64757T>G SNP and Growth Traits of Heying Black Chicken
3.4.3. Association Analysis Between g.97213G>A SNP and Growth Traits of Heying Black Chicken
3.4.4. Association Analysis of g.2220985G>A SNP and Growth Traits of Heying Black Chicken
3.5. Spatiotemporal Expression Differences and Tissue Expression Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collins, F.S.; Guyer, M.S.; Charkravarti, A. Variations on a theme: Cataloging human DNA sequence variation. Science 1997, 278, 1580–1581. [Google Scholar] [CrossRef] [PubMed]
- Shastry, B.S. SNPs: Impact on gene function and phenotype. Methods Mol. Biol. 2009, 578, 3–22. [Google Scholar] [CrossRef]
- Kim, S.; Misra, A. SNP genotyping: Technologies and biomedical applications. Annu. Rev. Biomed. Eng. 2007, 9, 289–320. [Google Scholar] [CrossRef]
- Vossen, R.H. Genotyping DNA Variants with High-Resolution Melting Analysis. Methods Mol. Biol. 2017, 1492, 17–28. [Google Scholar] [CrossRef]
- Ye, S.; Yuan, X.; Lin, X.; Gao, N.; Luo, Y.; Chen, Z.; Li, J.; Zhang, X.; Zhang, Z. Imputation from SNP chip to sequence: A case study in a Chinese indigenous chicken population. J. Anim. Sci. Biotechnol. 2018, 9, 30. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, H.; Lin, S.; Liang, L.; Ye, S.; Xu, Z.; Ji, C.; Zhang, Z.; Zhang, D.; Zhang, X. Polymorphisms of AMY1A gene and their association with growth, carcass traits and feed intake efficiency in chickens. Genomics 2021, 113, 583–594. [Google Scholar] [CrossRef]
- Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 2011, 7, 885–887. [Google Scholar] [CrossRef] [PubMed]
- Gerken, T.; Girard, C.A.; Tung, Y.C.; Webby, C.J.; Saudek, V.; Hewitson, K.S.; Yeo, G.S.; McDonough, M.A.; Cunliffe, S.; McNeill, L.A.; et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007, 318, 1469–1472. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Pulido, L.; Andrade-Navarro, M.A. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem. 2007, 8, 23. [Google Scholar] [CrossRef]
- Jia, G.; Yang, C.G.; Yang, S.; Jian, X.; Yi, C.; Zhou, Z.; He, C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett. 2008, 582, 3313–3319. [Google Scholar] [CrossRef]
- Han, Z.; Niu, T.; Chang, J.; Lei, X.; Zhao, M.; Wang, Q.; Cheng, W.; Wang, J.; Feng, Y.; Chai, J. Crystal structure of the FTO protein reveals basis for its substrate specificity. Nature 2010, 464, 1205–1209. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.; Yeo, G.S. The bigger picture of FTO: The first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 2014, 10, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Naaz, K.; Kumar, A.; Choudhury, I. Assessment of FTO Gene Polymorphism and its Association with Type 2 Diabetes Mellitus in North Indian Populations. Indian J. Clin. Biochem. 2019, 34, 479–484. [Google Scholar] [CrossRef]
- Daoud, H.; Zhang, D.; McMurray, F.; Yu, A.; Luco, S.M.; Vanstone, J.; Jarinova, O.; Carson, N.; Wickens, J.; Shishodia, S.; et al. Identification of a pathogenic FTO mutation by next-generation sequencing in a newborn with growth retardation and developmental delay. J. Med. Genet. 2016, 53, 200–207. [Google Scholar] [CrossRef]
- Peng, S.; Xiao, W.; Ju, D.; Sun, B.; Hou, N.; Liu, Q.; Wang, Y.; Zhao, H.; Gao, C.; Zhang, S.; et al. Identification of entacapone as a chemical inhibitor of FTO mediating metabolic regulation through FOXO1. Sci. Transl. Med. 2019, 11, eaau7116. [Google Scholar] [CrossRef]
- He, D.; Fu, M.; Miao, S.; Hotta, K.; Chandak, G.R.; Xi, B. FTO gene variant and risk of hypertension: A meta-analysis of 57,464 hypertensive cases and 41,256 controls. Metabolism 2014, 63, 633–639. [Google Scholar] [CrossRef]
- Ma, Z.; Chai, Z.; Yang, H.; Zhang, X.; Zhao, H.; Luo, X.; Zhong, J.; Wu, Z. Comprehensive analysis of the expression patterns and function of the FTO-LINE1 axis in yak tissues and muscle satellite cells. Front. Vet. Sci. 2024, 11, 1448587. [Google Scholar] [CrossRef] [PubMed]
- Dvořáková, V.; Bartenschlager, H.; Stratil, A.; Horák, P.; Stupka, R.; Cítek, J.; Sprysl, M.; Hrdlicová, A.; Geldermann, H. Association between polymorphism in the FTO gene and growth and carcass traits in pig crosses. Genet. Sel. Evol. 2012, 44, 13. [Google Scholar] [CrossRef]
- Jevsinek Skok, D.; Kunej, T.; Kovac, M.; Malovrh, S.; Potocnik, K.; Petric, N.; Zgur, S.; Dovc, P.; Horvat, S. FTO gene variants are associated with growth and carcass traits in cattle. Anim. Genet. 2016, 47, 219–222. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, D.; Zhang, X.; Li, F.; Xu, D.; Zhao, L.; Li, X.; Zhang, Y.; Wang, J.; Yang, X.; et al. Expression features of the ovine FTO gene and association between FTO polymorphism and tail fat deposition related-traits in Hu sheep. Gene 2022, 826, 146451. [Google Scholar] [CrossRef]
- Zhang, G.W.; Gao, L.; Chen, S.Y.; Zhao, X.B.; Tian, Y.F.; Wang, X.; Deng, X.S.; Lai, S.J. Single nucleotide polymorphisms in the FTO gene and their association with growth and meat quality traits in rabbits. Gene 2013, 527, 553–557. [Google Scholar] [CrossRef]
- Gan, W.; Song, Q.; Zhang, N.N.; Xiong, X.P.; Wang, D.M.; Li, L. Association between FTO polymorphism in exon 3 with carcass and meat quality traits in crossbred ducks. Genet. Mol. Res. 2015, 14, 6699–6714. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhang, G.X.; Zhang, T.; Wang, J.Y.; Fan, Q.C.; Tang, Y.; Ding, F.X.; Zhang, L. Myf5 and MyoG gene SNPs associated with Bian chicken growth trait. Genet. Mol. Res. 2016, 15, 10–4238. [Google Scholar] [CrossRef] [PubMed]
- Reuter, É.M.; Reuter, C.P.; de Castro Silveira, J.F.; Carroll, S.; Hobkirk, J.P.; Todendi, P.F.; de Moura Valim, A.R.; de Mello, E.D. FTO gene polymorphism and longitudinal changes in nutritional/obesity status in children and adolescents: Schoolchildren’s health cohort study. Eur. J. Pediatr. 2021, 180, 3325–3333. [Google Scholar] [CrossRef]
- Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.; Elliott, K.S.; Lango, H.; Rayner, N.W.; et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007, 316, 889–894. [Google Scholar] [CrossRef]
- Velazquez-Roman, J.; Angulo-Zamudio, U.A.; León-Sicairos, N.; Medina-Serrano, J.; DeLira-Bustillos, N.; Villamil-Ramírez, H.; Canizales-Quinteros, S.; Macías-Kauffer, L.; Campos-Romero, A.; Alcántar-Fernández, J.; et al. Association of FTO, ABCA1, ADRB3, and PPARG variants with obesity, type 2 diabetes, and metabolic syndrome in a Northwest Mexican adult population. J. Diabetes Complicat. 2021, 35, 108025. [Google Scholar] [CrossRef]
- Chung, E.R. Novel SNP in the coding region of the FTO gene is associated with marbling score in Hanwoo (Korean cattle). J. Anim. Sci. Technol. 2014, 56, 27. [Google Scholar] [CrossRef]
- Fan, B.; Onteru, S.K.; Plastow, G.S.; Rothschild, M.F. Detailed characterization of the porcine MC4R gene in relation to fatness and growth. Anim. Genet. 2009, 40, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Li, L.; Ren, S. Effect of FTO Expression and Polymorphism on Fat Deposition in Suzhong Pigs. Asian-Australas J. Anim. Sci. 2013, 26, 1365–1373. [Google Scholar] [CrossRef]
- Kennedy, O.B.; Stewart-Knox, B.J.; Mitchell, P.C.; Thurnham, D.I. Flesh colour dominates consumer preference for chicken. Appetite 2005, 44, 181–186. [Google Scholar] [CrossRef]
- Ju, H.; Yang, Y.; Sheng, A.; Jiang, X. Role of microRNAs in skeletal muscle development and rhabdomyosarcoma (review). Mol. Med. Rep. 2015, 11, 4019–4024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Y.; Li, Y.; Wu, J.; Wang, X.; Bian, C.; Tian, Y.; Sun, G.; Han, R.; Liu, X.; et al. Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F(2) chicken population. Heredity 2021, 126, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, S.; Yuan, T.; Sun, X. Genetic effects of FTO gene insertion/deletion (InDel) on fat-tail measurements and growth traits in Tong sheep. Anim. Biotechnol. 2021, 32, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, A.; Krzysik-Walker, S.M.; Ramachandran, R. Cloning and characterization of chicken fat mass and obesity associated (Fto) gene: Fasting affects Fto expression. Domest. Anim. Endocrinol. 2012, 42, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, K.; Yuan, L.; Everaert, N.; Buyse, J.; Grossmann, R.; Zhao, R. Chicken FTO gene: Tissue-specific expression, brain distribution, breed difference and effect of fasting. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 163, 246–252. [Google Scholar] [CrossRef]
Primer | Sequences (5′–3′) | Tm (°C) | Length (bp) |
---|---|---|---|
P1 | F: GAGAAGGTTTCCACAACTACCACC R: GTGTGGATGTGTGTGTGACGG | 59 | 205 |
P2 | F: TGCAGTCCTTCAAATACATGATGCT R: CCTCTGGTACGTAACAGCTGC | 59 | 205 |
P3 | F: GGCATATCTATACTTGTGTACTACCCC R: CAGTACTCACCATAAGCTCCATTTTTC | 59 | 209 |
P4 | F: TGGGCAATGTGAACTGGCACTC R: GCACCATGCTTCATGAGCTGTTG | 59 | 202 |
P5 | F: TTTCCTGCACTCAAGGTTTCCTCT R: TGCAGTTCTGGACAAGGCAA | 59 | 218 |
P6 | F: ACTGTCCTTATTTGCTTATGGGCT R: TTACGCAGCCTTTGTCGCTC | 59 | 202 |
P7 | F: ACTGCACAAACGTATCCTTGCTGAG R: AGGCTGGAAGGTGACCTGATATCC | 59 | 253 |
Locus | Genotype | N | Genotypic Frequency | Allele | Allelic Frequency | χ2 Value | p Value | H | PIC | Ne |
---|---|---|---|---|---|---|---|---|---|---|
g.57337C>A | AA | 18 | 0.102 | A | 0.236 | 11.81 | 0.003 | 0.360 | 0.295 | 1.563 |
AC | 47 | 0.267 | C | 0.764 | ||||||
CC | 111 | 0.631 | ||||||||
g.64757T>G | TT | 21 | 0.119 | T | 0.261 | 12.29 | 0.002 | 0.386 | 0.312 | 1.629 |
TG | 50 | 0.284 | G | 0.739 | ||||||
GG | 105 | 0.597 | ||||||||
g.97213G>A | GG | 159 | 0.903 | G | 0.952 | 0.45 | 0.798 | 0.091 | 0.087 | 1.101 |
GA | 17 | 0.097 | A | 0.048 | ||||||
g.220985G>A | GG | 158 | 0.898 | G | 0.949 | 0.51 | 0.744 | 0.097 | 0.092 | 1.107 |
GA | 18 | 0.102 | A | 0.051 |
Traits | Genotype | ||
---|---|---|---|
CC (18) | CA (47) | AA (111) | |
Slaughter weights (g) | 1171.67 ± 170.68 b | 1230.11 ± 266.58 ab | 1255.39 ± 230.24 a |
Live weights (g) | 1348.61 ± 188.01 b | 1430.15 ± 262.60 a | 1447 ± 241.98 a |
Eviscerated weights (g) | 880.96 ± 131.11 | 939.04 ± 182.82 | 942.60 ± 174.96 |
Semi-eviscerated weights (g) | 1064.98 ± 163.20 | 1127.60 ± 217.13 | 1139.87 ± 207.96 |
Breast muscle weights (g) | 62.75 ± 10.65 b | 71.57 ± 13.88 a | 70.70 ± 11.13 a |
Leg muscle weights (g) | 89.77 ± 13.59 b | 98.54 ± 22.70 a | 99.33 ± 23.79 a |
Head weights (g) | 38.86 ± 7.97 b | 44.07 ± 12.22 a | 44.30 ± 15.43 a |
Foot weights (g) | 40.51 ± 7.18 | 43.75 ± 11.28 | 42.87 ± 10.97 |
Heart weights (g) | 5.96 ± 0.94 B | 7.06 ± 2.41 A | 6.99 ± 2.33 A |
Liver weights (g) | 22.12 ± 3.29 b | 23.17 ± 5.33 ab | 23.74 ± 4.94 a |
Spleen weights (g) | 2.70 ± 0.68 | 2.80 ± 0.72 | 2.77 ± 0.75 |
Abdominal fat weights (g) | 38.49 ± 21.71 | 29.60 ± 20.73 | 34.74 ± 22.99 |
Wing weights (g) | 55.22 ± 6.51 | 56.92 ± 10.27 | 57.19 ± 10.73 |
Stomach weights (g) | 34.38 ± 5.62 | 32.40 ± 5.66 | 31.24 ± 5.87 |
Traits | Genotype | ||
---|---|---|---|
GG (105) | TG (50) | TT (21) | |
Slaughter weights (g) | 1253.79 ± 236.98 a | 1191.30 ± 250.25 b | 1302.14 ± 183.56 a |
Live weights (g) | 1447.30 ± 256.28 ab | 1387.70 ± 239.45 b | 1487.00 ± 182.61 a |
Eviscerated weights (g) | 941.44 ± 181.32 ab | 906.17 ± 170.28 b | 984.42 ± 139.18 a |
Semi-eviscerated weights (g) | 1138.99 ± 213.88 ab | 1091.48 ± 208.60 b | 1182.19 ± 165.66 a |
Breast muscle weights (g) | 69.88 ± 12.35 | 68.52 ± 12.21 | 73.40 ± 11.81 |
Leg muscle weights (g) | 98.68 ± 22.57 | 95.77 ± 24.20 | 103.25 ± 21.12 |
Head weights (g) | 43.73 ± 13.79 | 44.00 ± 15.16 | 43.52 ± 13.44 |
Foot weights (g) | 43.83 ± 11.66 | 41.05 ± 9.55 | 44.15 ± 8.54 |
Heart weights (g) | 6.90 ± 2.34 | 6.79 ± 2.14 | 7.37 ± 2.44 |
Liver weights (g) | 23.45 ± 5.29 | 22.95 ± 4.71 | 24.74 ± 3.09 |
Spleen weights (g) | 2.78 ± 0.80 | 2.65 ± 0.63 | 3.00 ± 0.61 |
Abdominal fat weights (g) | 34.83 ± 22.95 | 30.19 ± 19.76 | 37.94 ± 24.96 |
Wing weights (g) | 57.73 ± 11.50 a | 54.76 ± 10.28 b | 59.17 ± 8.80 a |
Stomach weights (g) | 32.21 ± 5.55 | 30.74 ± 5.83 | 32.41 ± 7.09 |
Traits | Genotype | |
---|---|---|
GG (160) | GA (16) | |
Slaughter weights (g) | 1232.05 ± 227.43 B | 1339.06 ± 249.43 A |
Live weights (g) | 1424.88 ± 233.30 b | 1537.75 ± 258.91 a |
Eviscerated weights (g) | 929.13 ± 165.55 b | 1015.52 ± 201.60 a |
Semi-eviscerated weights (g) | 1122.34 ± 198.34 b | 1223.16 ± 231.42 a |
Breast muscle weights (g) | 69.84 ± 11.99 | 71.25 ± 13.21 |
Leg muscle weights (g) | 97.51 ± 22.47 b | 106.24 ± 21.89 a |
Head weights (g) | 43.47 ± 13.93 | 46.21 ± 15.00 |
Foot weights (g) | 42.57 ± 10.35 | 47.01 ± 11.93 |
Heart weights (g) | 6.84 ± 2.19 | 7.56 ± 2.79 |
Liver weights (g) | 23.27 ± 4.70 | 25.43 ± 5.58 |
Spleen weights (g) | 2.76 ± 0.74 | 2.93 ± 0.72 |
Abdominal fat weights (g) | 33.66 ± 22.35 | 38.14 ± 23.65 |
Wing weights (g) | 56.38 ± 10.17 b | 64.11 ± 14.01 a |
Stomach weights (g) | 31.79 ± 5.86 | 32.24 ± 5.33 |
Traits | Genotype | |
---|---|---|
GA (23) | GG (153) | |
Slaughter weights (g) | 1160.43 ± 261.05 b | 1253.02 ± 229.92 a |
Live weights (g) | 1376.26 ± 224.17 b | 1442.77 ± 245.89 a |
Eviscerated weights (g) | 892.24 ± 157.07 | 942.29 ± 175.44 |
Semi-eviscerated weights (g) | 1074.85 ± 200.41 | 1138.03 ± 207.42 |
Breast muscle weights (g) | 68.57 ± 12.34 | 70.10 ± 12.23 |
Leg muscle weights (g) | 94.65 ± 16.74 | 98.80 ± 23.55 |
Head weights (g) | 41.04 ± 12.78 | 44.08 ± 14.20 |
Foot weights (g) | 40.20 ± 9.58 | 43.42 ± 10.88 |
Heart weights (g) | 6.34 ± 2.01 | 7.01 ± 2.31 |
Liver weights (g) | 22.27 ± 4.69 | 23.64 ± 4.95 |
Spleen weights (g) | 2.68 ± 0.59 | 2.78 ± 0.76 |
Abdominal fat weights (g) | 30.32 ± 21.94 | 34.55 ± 22.40 |
Wing weights (g) | 55.73 ± 11.93 | 57.26 ± 10.73 |
Stomach weights (g) | 30.80 ± 7.06 | 32.00 ± 5.64 |
Weight | Genotype | ||
---|---|---|---|
CC (17) | CA (45) | AA (114) | |
0 week (g) | 26.14 ± 2.23 | 24.39 ± 1.81 | 25.24 ± 2.12 |
2 weeks (g) | 110.49 ± 15.88 | 109.56 ± 15.86 | 109.37 ± 16.11 |
4 weeks (g) | 236.68 ± 35.88 | 242.01 ± 38.53 | 235.34 ± 41.03 |
6 weeks (g) | 407.77 ± 50.36 | 428.80 ± 59.01 | 416.84 ± 69.54 |
8 weeks (g) | 621.54 ± 66.31 b | 687.45 ± 101.79 a | 665.46 ± 109.55 ab |
10 weeks (g) | 836.01 ± 85.83 b | 921.08 ± 135.18 a | 901.32 ± 139.28 a |
16 weeks (g) | 1348.61 ± 188.01 b | 1430.15 ± 262.60 a | 1447 ± 241.98 a |
Weight | Genotype | ||
---|---|---|---|
GG (106) | TG (47) | TT (23) | |
0 week (g) | 25.14 ± 2.15 | 25.07 ± 2.10 | 24.98 ± 2.24 |
2 weeks (g) | 107.47 ± 18.73 | 112.59 ± 15.62 | 109.90 ± 19.18 |
4 weeks (g) | 236.03 ± 38.36 | 240.18 ± 39.22 | 237.80 ± 48.29 |
6 weeks (g) | 418.39 ± 62.39 | 423.02 ± 65.45 | 425.95 ± 82.78 |
8 weeks (g) | 671.33 ± 104.62 | 665.96 ± 108.58 | 672.18 ± 107.91 |
10 weeks (g) | 899.77 ± 137.56 | 911.09 ± 142.86 | 906.77 ± 125.44 |
16 weeks (g) | 1447.30 ± 256.28 ab | 1387.70 ± 239.45 b | 1487.00 ± 182.61 a |
Weight | Genotype | |
---|---|---|
GG (159) | GA (17) | |
0 week (g) | 25.14 ± 2.09 | 24.61 ± 2.29 |
2 weeks (g) | 109.38 ± 16.14 | 116.11 ± 12.85 |
4 weeks (g) | 236.15 ± 40.77 | 252.25 ± 25.70 |
6 weeks (g) | 415.92 ± 65.60 | 453.46 ± 56.75 |
8 weeks (g) | 661.68 ± 102.45 b | 732.12 ± 111.30 a |
10 weeks (g) | 893.42 ± 130.42 b | 976.14 ± 170.47 a |
16 weeks (g) | 1424.88 ± 233.30 b | 1537.75 ± 258.91 a |
Weight | Genotype | |
---|---|---|
GG (153) | GA (23) | |
0 week (g) | 25.31 ± 2.07 | 23.68 ± 1.83 |
2 weeks (g) | 110.41 ± 16.16 | 108.19 ± 14.53 |
4 weeks (g) | 239.91 ± 40.36 | 225.46 ± 32.68 |
6 weeks (g) | 423.24 ± 67.39 | 398.34 ± 45.99 |
8 weeks (g) | 674.60 ± 107.66 a | 631.47 ± 77.56 b |
10 weeks (g) | 910.29 ± 139.14 a | 844.80 ± 103.84 b |
16 weeks (g) | 1442.77 ± 245.89 a | 1376.26 ± 224.17 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, H.; Chen, L.; Chen, C.; Zhang, T.; Chen, W.; Zhang, G.; Wang, J.; Xie, K. Association Analysis of the FTO Gene Polymorphisms with Growth and Carcass Traits of Heying Black Chicken and Tissue Expression Profile. Animals 2025, 15, 2718. https://doi.org/10.3390/ani15182718
Ding H, Chen L, Chen C, Zhang T, Chen W, Zhang G, Wang J, Xie K. Association Analysis of the FTO Gene Polymorphisms with Growth and Carcass Traits of Heying Black Chicken and Tissue Expression Profile. Animals. 2025; 15(18):2718. https://doi.org/10.3390/ani15182718
Chicago/Turabian StyleDing, Hao, Lan Chen, Can Chen, Tao Zhang, Weilin Chen, Genxi Zhang, Jinyu Wang, and Kaizhou Xie. 2025. "Association Analysis of the FTO Gene Polymorphisms with Growth and Carcass Traits of Heying Black Chicken and Tissue Expression Profile" Animals 15, no. 18: 2718. https://doi.org/10.3390/ani15182718
APA StyleDing, H., Chen, L., Chen, C., Zhang, T., Chen, W., Zhang, G., Wang, J., & Xie, K. (2025). Association Analysis of the FTO Gene Polymorphisms with Growth and Carcass Traits of Heying Black Chicken and Tissue Expression Profile. Animals, 15(18), 2718. https://doi.org/10.3390/ani15182718