Maternal Lecithin Supplementation in Sows Regulates the Hepatic Glycolipid Metabolism of Offspring
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Collection
2.3. Sample Analysis
2.3.1. Serum Biochemical Profile
2.3.2. Hepatic GLU, Glycine, TG and TC Contens
2.3.3. Serum and Hepatic Medium and Long-Chain Fatty Acids Proportion
2.3.4. Quantitative Real-Time PCR (qRT-PCR)
2.3.5. Statistical Analysis
3. Results
3.1. Productive Performance of Sows
3.2. Serum Biochemical Parameters of Sow at Late Pregnancy and Lactating
3.3. Serum Biochemical Parameters of Umbilical Cord and Suckling Piglets at 21 d
3.4. Serum and Hepatic Fatty Acid Profiles in Sow and Suckling Piglets
3.5. Hepatic TC, TG, GLU, GLY Contents and the Related Metabolic Gene Expression in Weaned Piglets
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, A.V.; Lauridsen, C.; Sørensen, M.T.; Bach Knudsen, K.E.; Theil, P.K. Effects of nutrient supply, plasma metabolites, and nutritional status of sows during transition on performance in the next lactation. J. Anim. Sci. 2012, 90, 466–480. [Google Scholar] [CrossRef]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porc. Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef]
- Theil, P.K.; Sejrsen, K.; Hurley, W.L.; Labouriau, R.; Thomsen, B.; Sørensen, M.T. Role of suckling in regulating cell turnover and onset and maintenance of lactation in individual mammary glands of sows. J. Anim. Sci. 2006, 84, 1691–1698. [Google Scholar] [CrossRef]
- Alexopoulos, J.G.; Lines, D.S.; Hallett, S.; Plush, K.J. A Review of Success Factors for Piglet Fostering in Lactation. Animals 2018, 8, 38. [Google Scholar] [CrossRef]
- Yu, C.; Wang, D.; Shen, C.; Luo, Z.; Zhang, H.; Zhang, J.; Xu, W.; Xu, J. Remodeling of Hepatic Glucose Metabolism in Response to Early Weaning in Piglets. Animals 2024, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Wang, J.; Tan, B.; Li, J.; Liao, S.; Liu, Y.; Yin, Y. Dietary glutamine, glutamate, and aspartate supplementation improves hepatic lipid metabolism in post-weaning piglets. Anim. Nutr. 2020, 6, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Wang, X.; Liao, S.; Qi, M.; Zha, A.; Zuo, G.; Liao, P.; Chen, Y.; Guo, C.; Tan, B. Effects of Medium-Chain Fatty Acid Glycerides on Nutrient Metabolism and Energy Utilization in Weaned Piglets. Front. Vet. Sci. 2022, 9, 938888. [Google Scholar] [CrossRef]
- Vickers, M.H. Developmental programming of the metabolic syndrome—Critical windows for intervention. World J. Diabetes 2011, 2, 137–148. [Google Scholar] [CrossRef]
- Jansson, T.; Aye, I.L.; Goberdhan, D.C. The emerging role of mTORC1 signaling in placental nutrient-sensing. Placenta 2012, 33, e23–e29. [Google Scholar] [CrossRef]
- Christoforou, E.R.; Sferruzzi-Perri, A.N. Molecular mechanisms governing offspring metabolic programming in rodent models of in utero stress. Cell. Mol. Life Sci. 2020, 77, 4861–4898. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.V.L.; Dyson, R.M.; Weth, F.R.; Berry, M.J.; Gray, C. Maternal Fructose Intake, Programmed Mitochondrial Function and Predisposition to Adult Disease. Int. J. Mol. Sci. 2022, 23, 12215. [Google Scholar] [CrossRef]
- de Paula Simino, L.A.; de Fante, T.; Figueiredo Fontana, M.; Oliveira Borges, F.; Torsoni, M.A.; Milanski, M.; Velloso, L.A.; Souza Torsoni, A. Lipid overload during gestation and lactation can independently alter lipid homeostasis in offspring and promote metabolic impairment after new challenge to high-fat diet. Nutr. Metab. 2017, 14, 16. [Google Scholar] [CrossRef]
- Frobish, L.T.; Hays, V.W.; Speer, V.C.; Ewan, R.C. Effect of diet form and emulsifying agents on fat utilization by young pigs. J. Anim. Sci. 1969, 29, 320–324. [Google Scholar] [CrossRef]
- Jones, D.B.; Hancock, J.D.; Harmon, D.L.; Walker, C.E. Effects of exogenous emulsifiers and fat sources on nutrient digestibility, serum lipids, and growth performance in weanling pigs. J. Anim. Sci. 1992, 70, 3473–3482. [Google Scholar] [CrossRef] [PubMed]
- Gajda, B.; Smorąg, Z. Oocyte and embryo cryopreservation-state of art and recent developments in domestic animals. J. Anim. Feed. Sci. 2009, 18, 371–387. [Google Scholar] [CrossRef]
- Cherian, G. Hatching egg polyunsaturated fatty acids and the broiler chick. J. Anim. Sci. Biotechnol. 2022, 13, 98. [Google Scholar] [CrossRef]
- Papadopoulos, G.A.; Wealleans, A.L.; Delis, G.A.; Janssens, G.P.J.; di Benedetto, M.; Fortomaris, P. Effects of Dietary Lysolecithin Supplementation during Late Gestation and Lactation on Sow Reproductive Performance, Sow Blood Metabolic Parameters and Piglet Performance. Animals 2022, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, H.; Tan, B.; Dong, X.; Xie, S.; Deng, W. Effects of enzymatic soybean phospholipid replacing soybean oil on growth performance, glycolipid metabolism and intestinal flora of largemouth bass (Micropterus salmoides). Aquac. Rep. 2024, 38, 102280. [Google Scholar] [CrossRef]
- Gao, L.M.; Liu, G.Y.; Wang, H.L.; Wassie, T.; Wu, X. Maternal pyrimidine nucleoside supplementation regulates fatty acid, amino acid and glucose metabolism of neonatal piglets. Anim. Nutr. 2022, 11, 309–321. [Google Scholar] [CrossRef]
- Myrie, S.B.; MacKay, D.S.; Van Vliet, B.N.; Bertolo, R.F. Early programming of adult blood pressure in the low birth weight Yucatan miniature pig is exacerbated by a post-weaning high-salt-fat-sugar diet. Br. J. Nutr. 2012, 108, 1218–1225. [Google Scholar] [CrossRef]
- Gao, L.; Lin, X.; Xie, C.; Zhang, T.; Wu, X.; Yin, Y. The time of Calcium Feeding Affects the Productive Performance of Sows. Animals 2019, 9, 337. [Google Scholar] [CrossRef]
- Deng, D.; Yao, K.; Chu, W.; Li, T.; Huang, R.; Yin, Y.; Liu, Z.; Zhang, J.; Wu, G. Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. J. Nutr. Biochem. 2009, 20, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xie, C.; Liang, X.; Li, Z.; Li, B.; Wu, X.; Yin, Y. Yeast-based nucleotide supplementation in mother sows modifies the intestinal barrier function and immune response of neonatal pigs. Anim. Nutr. 2021, 7, 84–93. [Google Scholar] [CrossRef]
- Coffey, M.T.; Britt, J.H. Enhancement of sow reproductive performance by beta-carotene or vitamin A. J. Anim. Sci. 1993, 71, 1198–1202. [Google Scholar] [CrossRef]
- Saseendran, A.; Ally, K.; Gangadevi, P.; Banakar, P.S. Effect of supplementation of lecithin and carnitine on growth performance and nutrient digestibility in pigs fed high-fat diet. Vet. World 2017, 10, 149–155. [Google Scholar] [CrossRef]
- Jia, Y.; Cong, R.; Li, R.; Yang, X.; Sun, Q.; Parvizi, N.; Zhao, R. Maternal low-protein diet induces gender-dependent changes in epigenetic regulation of the glucose-6-phosphatase gene in newborn piglet liver. J. Nutr. 2012, 142, 1659–1665. [Google Scholar] [CrossRef]
- Petersen, M.C.; Vatner, D.F.; Shulman, G.I. Regulation of hepatic glucose metabolism in health and disease. Nat. Rev. Endocrinol. 2017, 13, 572–587. [Google Scholar] [CrossRef]
- McCurdy, C.E.; Bishop, J.M.; Williams, S.M.; Grayson, B.E.; Smith, M.S.; Friedman, J.E.; Grove, K.L. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J. Clin. Investig. 2009, 119, 323–335. [Google Scholar] [CrossRef]
- Harasym, J.; Banaś, K. Lecithin’s Roles in Oleogelation. Gels 2024, 10, 169. [Google Scholar] [CrossRef] [PubMed]
- Shi, B.M.; Wang, C.; Teng, T.; Liu, T.; Zhang, X.; Shan, A. Effects of dietary soybean lecithin oil on the immunoglobulin level and fat globule size of milk in lactating sows. Food Agric. Immunol. 2019, 30, 774–785. [Google Scholar] [CrossRef]
- You, M.; Fischer, M.; Deeg, M.A.; Crabb, D.W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 2002, 277, 29342–29347. [Google Scholar] [CrossRef]
- Horton, J.D.; Shimomura, I.; Ikemoto, S.; Bashmakov, Y.; Hammer, R.E. Overexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver. J. Biol. Chem. 2003, 278, 36652–36660. [Google Scholar] [CrossRef]
- Kallwitz, E.R.; McLachlan, A.; Cotler, S.J. Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease. World J. Gastroenterol. 2008, 14, 22–28. [Google Scholar] [CrossRef]
- Anghel, S.I.; Wahli, W. Fat poetry: A kingdom for PPAR gamma. Cell Res. 2007, 17, 486–511. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Nara, T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004, 24, 345–376. [Google Scholar] [CrossRef]
- Šarenac, T.M.; Mikov, M. Bile Acid Synthesis: From Nature to the Chemical Modification and Synthesis and Their Applications as Drugs and Nutrients. Front. Pharmacol. 2018, 9, 939. [Google Scholar] [CrossRef] [PubMed]
- Shughoury, A.; Sevgi, D.D.; Ciulla, T.A. Molecular Genetic Mechanisms in Age-Related Macular Degeneration. Genes 2022, 13, 1233. [Google Scholar] [CrossRef] [PubMed]
- Inácio Lunkes, G.; Stefanello, F.; Sausen Lunkes, D.; Maria Morsch, V.; Schetinger, M.R.; Gonçalves, J.F. Serum cholinesterase activity in diabetes and associated pathologies. Diabetes Res. Clin. Pract. 2006, 72, 28–32. [Google Scholar] [CrossRef]
- Stuebe, A.M.; Rich-Edwards, J.W. The reset hypothesis: Lactation and maternal metabolism. Am. J. Perinatol. 2009, 26, 81–88. [Google Scholar] [CrossRef]
- Taylor, V.J. Lactation from the inside out: Maternal homeorhetic gastrointestinal adaptations regulating energy and nutrient flow into milk production. Mol. Cell. Endocrinol. 2023, 559, 111797. [Google Scholar] [CrossRef]
Item | Content |
---|---|
Ingredients 1 | |
Yellow corn | 65.0 |
Soybean meal | 24.3 |
Soybean oil | 2.5 |
Steam fish meal | 3.0 |
Fine stone powder | 1.2 |
Glucose | 1.0 |
DL-Methionine | 0.08 |
L-Threonine | 0.07 |
L-Lysine·HCL | 0.35 |
CaHPO4 | 1.0 |
NaCL | 0.5 |
Vitamin–mineral premix1 | 1.0 |
Total | 100.0 |
Nutrient levels 2 | |
ME, MJ/kg | 13.4 |
Crude protein | 17.0 |
Total P | 0.66 |
Ca | 0.85 |
Genes | Accession No. | Nucleotide Sequence of Primers (5′-3′) |
---|---|---|
ELOVL5 | XM_021098832.1 | F: TACCACCATGCCACTATGCT |
R: GACGTGGATGAAGCTGTTGA | ||
FADS1 | NM_001113041.1 | F: GTCACTGCCTGGCTCATTCT |
R: AGGTGGTTCCACGTAGAGGT | ||
FADS2 | NM_001171750.1 | F: ACGGCCTTCATCCTTGCTAC R: GTTGGCAGAGGCACCCTTTA |
SREBP-1c | XM_021066226.1 | F: GACCGGCTCTCCATAGACAA |
R: CCTCTGTCTCTCCTGCAACC | ||
AKT | NP_001315268 | F: TCAAGAACGACGGCACCTTCATC |
R: CGCCACGGAGAAGTTGTTGAGG | ||
FAT/CD36 | XM_021102279.1 | F: CTGGTGCTGTCATTGGAGCAGT |
R: CTGTCTGTAAACTTCCGTGCCTGTT | ||
PPAR-γ | XM_005669788.3 | F: GTGGAGACCGCCCAGGTTTG |
R: GGGAGGACTCTGGGTGGTTCA | ||
PC | NP_999234 | F: CCGCAAGATGGGAGACAAGGT |
R: GGAAGCCGATGGTGTTGGAAGAA | ||
PCK1 | NP_999306 | F: TCAGCACGACTCCAGCCTTCA |
R: GCTCAAGCAGTCTGGGCATTCT | ||
G6PC | NM_001113445.1 | F: AAGCCAAGCGAAGGTGTGAGC |
R: GGAACGGGAACCACTTGCTGAG | ||
GLUT1 | XM_021096908.1 | F: GCAGGAGATGAAGGAGGAGAGC |
R: ACCAACAGCGACACGACAGT | ||
GLUT2 | XM_021092392.1 | F: GCCCTGAAAGTCCTCGGTTCCT |
R: ACACGGCGTTGATGCCAGAGA | ||
PEPCK-c | NP_001180252 | F: AGTGGGATGGTGCAACTTGA |
R: CACATCACATCCACAGGGTG | ||
PEPCK-m | NP_001180253 | F: ATGGGCGGGTGCAACTTGA |
R: TCAGGTTGCCACAGGGTGG | ||
HMGCR | NP_001245011 | F: AAACCTGCTGCTGTAAACTGG |
R: GACCTCAACCATCGCTTCTG | ||
GAPDH | NM_001206359.1 | F: GTCTGGAGAAACCTGCCAAA |
R: CCCTGTTGCTGTAGCCAAAT | ||
FABP2 | NM_213979.1 | F: TCCACCGCACGCTGGTCTAT |
R: CCAGTCCTCCTGCCTTCTCCAT | ||
ICDH-γ | NM_001164007.1 | F: TGTGGTTCCTGGTGAGAG |
R: CGAGATTGAGATGCCGTAG |
Item | Treatment | p-Value | |
---|---|---|---|
CON | Lecithin | ||
Total born, n | 13.42 ± 0.679 | 13.36 ± 0.801 | 0.960 |
Born alive, n | 12.17 ± 0.747 | 12.82 ± 0.698 | 0.533 |
Stillbirth, n | 0.42 ± 0.193 | 0.27 ± 0.141 | 0.559 |
Stillbirth rate, % | 1.03 ± 0.679 | 1.97 ± 1.029 | 0.446 |
IUGR piglet, n | 0.42 ± 0.193 | 0.09 ± 0.011 | 0.153 |
IUGR rate, % | 2.19 ± 1.242 | 0.53 ± 0.035 | 0.248 |
Item | Treatment | p-Value | |
---|---|---|---|
CON | Lecithin | ||
Litter birth weight, kg | 23.41 ± 0.37 | 21.64 ± 0.60 | 0.227 |
Birth weight, kg | 1.75 ± 0.192 | 1.74 ± 0.235 | 0.943 |
7 d Litter weight, kg | 32.21 ± 0.68 | 30.65 ± 2.38 | 0.339 |
14 d Litter weight, kg | 58.80 ± 1.24 | 59.85 ± 3.29 | 0.677 |
21 d Litter weight, kg | 75.56 ± 1.85 | 77.14 ± 3.90 | 0.617 |
1–7 d average daily gain, g | 140.15 ± 11.636 | 181.15 ± 7.925 | 0.011 |
7–14 d average daily gain, g | 431.94 ± 24.834 | 454.54 ± 13.129 | 0.409 |
14–21 d average daily gain, g | 236.95 ± 15.698 | 242.690 ± 12.011 | 0.408 |
1–21 d average daily gain, g | 254.66 ± 14.693 | 261.72 ± 7.191 | 0.282 |
Item | Treatment | p-Value | Treatment | p-Value | ||
---|---|---|---|---|---|---|
CON | Lecithin | CON | Lecithin | |||
TG, mmol/L | 0.30 ± 0.07 | 0.18 ± 0.04 | 0.184 | 0.16 ± 0.03 | 0.12 ± 0.02 | 0.393 |
TC, mmol/L | 1.76 ± 0.11 | 1.33 ± 0.10 | 0.018 | 1.76 ± 0.22 | 2.57 ± 0.32 | 0.065 |
LDL, mmol/L | 0.98 ± 0.05 | 0.81 ± 0.10 | 0.116 | 0.79 ± 0.09 | 1.17 ± 0.17 | 0.072 |
HDL, mmol/L | 0.77 ± 0.08 | 0.50 ± 0.04 | 0.019 | 0.98 ± 0.16 | 1.51 ± 0.20 | 0.066 |
GLU, mmol/L | 4.92 ± 0.31 | 4.42 ± 0.59 | 0.428 | 2.60 ± 0.33 | 3.58 ± 0.36 | 0.071 |
CHE, U/L | 484.62 ± 23.77 | 419.17 ± 42.76 | 0.179 | 408.33 ± 58.32 | 585.50 ± 48.20 | 0.041 |
LACT, mmol/L | 3.12 ± 0.60 | 2.47 ± 0.48 | 0.433 | 5.07 ± 0.74 | 5.67 ± 0.52 | 0.055 |
LIPC, U/L | 6.67 ± 1.09 | 8.77 ± 3.00 | 0.481 | 3.67 ± 0.55 | 6.28 ± 0.69 | 0.522 |
TBA, Umol/L | 12.68 ± 2.98 | 20.90 ± 5.39 | 0.180 | 27.17 ± 4.16 | 37.35 ± 8.53 | 0.014 |
Item | Umbilical Cord | p-Value | Serum of Suckling Pig | p-Value | ||
---|---|---|---|---|---|---|
CON | Lecithin | CON | Lecithin | |||
TG, mmol/L | 0.26 ± 0.03 | 0.33 ± 0.05 | 0.205 | 0.89 ± 0.12 | 0.89 ± 0.07 | 0.981 |
TC, mmol/L | 1.04 ± 0.15 | 1.39 ± 0.14 | 0.208 | 6.44 ± 0.43 | 5.85 ± 0.52 | 0.399 |
LDL, mmol/L | 0.53 ± 0.09 | 0.74 ± 0.10 | 0.198 | 4.73 ± 0.45 | 3.83 ± 0.53 | 0.225 |
HDL, mmol/L | 0.37 ± 0.07 | 0.48 ± 0.05 | 0.416 | 2.22 ± 0.20 | 2.48 ± 0.14 | 0.303 |
GLU, mmol/L | 0.21 ± 0.04 | 0.23 ± 0.10 | 0.911 | 5.60 ± 0.45 | 7.00 ± 0.43 | 0.050 |
CHE, U/L | 228.50 ± 30.66 | 308.00 ± 52.72 | 0.264 | 597.67 ± 29.89 | 614.17 ± 27.44 | 0.693 |
LACT, mmol/L | 20.13 ± 0.95 | 18.05 ± 3.22 | 0.624 | 15.53 ± 2.22 | 11.77 ± 1.91 | 0.228 |
LIPC, U/L | 2.38 ± 0.24 | 4.68 ± 1.17 | 0.065 | 5.07 ± 0.53 | 5.12 ± 0.27 | 0.935 |
TBA, Umol/L | 4.88 ± 0.96 | 4.50 ± 1.12 | 0.804 | 29.15 ± 5.56 | 33.23 ± 2.45 | 0.517 |
Item | Plasma of Piglets | p-Value | Liver of Piglets | p-Value | ||
---|---|---|---|---|---|---|
CON | Lecithin | CON | Lecithin | |||
C6:0 | — | — | — | 0.09 ± 0.01 | 0.08 ± 0.01 | 0.406 |
C12:0 | — | — | — | 0.09 ± 0.00 | 0.08 ± 0.01 | 0.150 |
C14:0 | — | — | — | 0.25 ± 0.03 | 0.22 ± 0.02 | 0.443 |
C15:0 | — | — | — | 0.03 ± .0.01 | 0.04 ± 0.01 | 0.422 |
C16:0 | 22.87 ± 1.20 | 21.12 ± 0.57 | 0.214 | 15.73 ± 0.31 | 15.80 ± 0.33 | 0.869 |
C16:1 | 1.82 ± 0.17 | 1.88 ± 0.10 | 0.773 | 1.85 ± 0.27 | 1.81 ± 0.17 | 0.899 |
C17:0 | 0.16 ± 0.03 | 0.14 ± 0.01 | 0.496 | 0.17 ± 0.01 | 0.17 ± 0.01 | 0.868 |
C18:0 | 17.80 ± 1.58 | 16.41 ± 0.51 | 0.422 | 24.93 ± 0.92 | 25.34 ± 0.44 | 0.689 |
C18:1n9t | — | — | 0.08 ± 0.01 | 0.07 ± 0.00 | 0.050 | |
C18:1n9c | 14.19 ± 1.95 | 11.59 ± 1.62 | 0.328 | 9.61 ± 0.42 | 8.76 ± 0.31 | 0.133 |
C18:2n6c | 18.37 ± 2.13 | 16.92 ± 0.44 | 0.520 | 16.53 ± 0.58 | 16.00 ± 0.35 | 0.455 |
C18:3n3 | 0.40 ± 0.03 | 0.41 ± 0.01 | 0.659 | 0.15 ± 0.01 | 0.15 ± 0.01 | 0.901 |
C18:3n6 | — | — | — | 0.28 ± 0.05 | 0.26 ± 0.03 | 0.676 |
C20:0 | — | — | — | 0.06 ± 0.01 | 0.05 ± 0.01 | 0.072 |
C20:1 | — | — | — | 0.12 ± 0.01 | 0.11 ± 0.01 | 0.135 |
C20:2 | 0.37 ± 0.04 | 0.37 ± 0.02 | 0.906 | 0.48 ± 0.03 | 0.43 ± 0.02 | 0.232 |
C20:3n6 | 1.00 ± 0.08 | 0.85 ± 0.03 | 0.113 | 0.97 ± 0.06 | 0.79 ± 0.01 | 0.026 |
C20:4n6 | 23.11 ± 1.68 | 24.98 ± 1.30 | 0.397 | 24.00 ± 0.95 | 25.26 ± 0.26 | 0.229 |
C24:0 | — | — | — | 0.38 ± 0.02 | 0.28 ± 0.02 | 0.007 |
C20:5n3 | — | — | — | 0.03 ± 0.01 | 0.02 ± 0.01 | 0.679 |
C22:6n3 | 4.63 ± 0.32 | 4.68 ± 0.42 | 0.923 | 4.04 ± 0.40 | 4.23 ± 0.34 | 0.726 |
ΣSFA | 40.75 ± 2.75 | 37.63 ± 0.39 | 0.288 | 41.72 ± 0.73 | 42.06 ± 0.41 | 0.688 |
ΣMUFA | 15.71 ± 1.86 | 13.46 ± 1.56 | 0.377 | 11.67 ± 0.62 | 10.75 ± 0.37 | 0.231 |
ΣPUFA | 42.84 ± 3.97 | 48.25 ± 1.69 | 0.238 | 46.47 ± 0.84 | 47.15 ± 0.31 | 0.467 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wang, H.; Xiong, J.; Xie, C.; Yang, H.; Li, L. Maternal Lecithin Supplementation in Sows Regulates the Hepatic Glycolipid Metabolism of Offspring. Animals 2025, 15, 2685. https://doi.org/10.3390/ani15182685
Yang X, Wang H, Xiong J, Xie C, Yang H, Li L. Maternal Lecithin Supplementation in Sows Regulates the Hepatic Glycolipid Metabolism of Offspring. Animals. 2025; 15(18):2685. https://doi.org/10.3390/ani15182685
Chicago/Turabian StyleYang, Xudong, Haoyang Wang, Juan Xiong, Chunyan Xie, Hongjun Yang, and Liuan Li. 2025. "Maternal Lecithin Supplementation in Sows Regulates the Hepatic Glycolipid Metabolism of Offspring" Animals 15, no. 18: 2685. https://doi.org/10.3390/ani15182685
APA StyleYang, X., Wang, H., Xiong, J., Xie, C., Yang, H., & Li, L. (2025). Maternal Lecithin Supplementation in Sows Regulates the Hepatic Glycolipid Metabolism of Offspring. Animals, 15(18), 2685. https://doi.org/10.3390/ani15182685