Differences in the Gut Microbiota in Long-Term Infertile Holstein Repeat Breeder Cows and Healthy Fertile Holstein Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design of Animal Experiments and Sampling
2.2. DNA Extraction and 16S rRNA Sequencing
2.3. Analysis of 16S rRNA Sequencing Data and Statistical Analysis
3. Results
3.1. Basic Information of Each Group Used in the Experiment
3.2. Gut Microbiota Differs Depending on Breeding Attempts and the Circumstances of Subsequent Conception
3.3. Diversity of the Gut Microbiota Varies Depending on the Breeding Attempts and Circumstances of Subsequent Conception
3.4. Relative Abundance of the Gut Microbiota Depends on Breeding Attempts and the Circumstances of Subsequent Conception
3.5. Differences in the Gut Microbiota Function Between Normal Pregnancy and Both Open Groups (Normal and RB)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
RB | Repeat breeder |
RBS | Repeat Breeding Syndrome |
ET | Embryo transfer |
AI | Artificial insemination |
DNB | DNA nanoball |
OTU | Operational taxonomic unit |
PCA | Principal component analysis |
PLS-DA | Partial least squares discrimination analysis |
PCoA | Principal coordinate analysis |
LEfSe | Linear discriminant analysis effect size |
SCFAs | Short-chain fatty acids |
LPS | Lipopolysaccharide |
References
- Dochi, O.; Takahashi, K.; Hirai, T.; Hayakawa, H.; Tanisawa, M.; Yamamoto, Y.; Koyama, H. The use of embryo transfer to produce pregnancies in repeat-breeding dairy cattle. Theriogenology 2008, 69, 124–128. [Google Scholar] [CrossRef]
- Perez-Marin, C.C.; Quintela, L.A. Current Insights in the Repeat Breeder Cow Syndrome. Animals 2023, 13, 2187. [Google Scholar] [CrossRef]
- Bage, R.; Gustafsson, H.; Larsson, B.; Forsberg, M.; Rodriguez-Martinez, H. Repeat breeding in dairy heifers: Follicular dynamics and estrous cycle characteristics in relation to sexual hormone patterns. Theriogenology 2002, 57, 2257–2269. [Google Scholar] [CrossRef]
- Canu, S.; Boland, M.; Lloyd, G.M.; Newman, M.; Christie, M.F.; May, P.J.; Christley, R.M.; Smith, R.F.; Dobson, H. Predisposition to repeat breeding in UK cattle and success of artificial insemination alone or in combination with embryo transfer. Vet. Rec. 2010, 167, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, S.; Moriyoshi, M. Alteration of the endometrial EGF profile as a potential mechanism connecting the alterations in the ovarian steroid hormone profile to embryonic loss in repeat breeders and high-producing cows. J. Reprod. Dev. 2013, 59, 415–420. [Google Scholar] [CrossRef]
- Kimura, K.; Matsuyama, S.; Kojima, T. Effect of transfer of cattle elongating embryo to a repeat breeder cow on pregnancy rate and incidence of a return to estrus. Reprod. Fertil. Dev. 2010, 23, P145. [Google Scholar] [CrossRef]
- Sasaki, K.; Tanaka, K.; Tanimura, H.; Asakura, R.; Fukui, Y. Relationship between the fecal property and pregnancy rate following embryo transfer in recipient cows. Fukui Prefect. Livest. Ind. Rep. 2008, 21, 1–5. [Google Scholar]
- Xiao, L.; Zhao, F. Microbial transmission, colonisation and succession: From pregnancy to infancy. Gut 2023, 72, 772–786. [Google Scholar] [CrossRef]
- Gupta, D.; Sarkar, A.; Pal, Y.; Suthar, V.; Chawade, A.; Kushwaha, S.K. Bovine reproductive tract and microbiome dynamics: Durrent knowledge, challenges, and its potential to enhance fertility in dairy cows. Front. Microbiomes 2024, 3, 1473076. [Google Scholar] [CrossRef]
- Ashonibare, V.J.; Akorede, B.A.; Ashonibare, P.J.; Akhigbe, T.M.; Akhigbe, R.E. Gut microbiota-gonadal axis: The impact of gut microbiota on reproductive functions. Front. Immunol. 2024, 15, 1346035. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; McClure, M.; Rorie, R.; Wang, X.; Chai, J.; Wei, X.; Lai, S.; Zhao, J. The vaginal and fecal microbiomes are related to pregnancy status in beef heifers. J. Anim. Sci. Biotechnol. 2019, 10, 92. [Google Scholar] [CrossRef]
- Taguchi, Y.; Yamano, H.; Inabu, Y.; Miyamoto, H.; Hayasaki, K.; Maeda, N.; Kanmera, Y.; Yamasaki, S.; Ota, N.; Mukawa, K.; et al. Causal estimation of the relationship between reproductive performance and the fecal bacteriome in cattle. Anim. Microbiome 2025, 7, 33. [Google Scholar] [CrossRef]
- Chadchan, S.B.; Singh, V.; Kommagani, R. Female reproductive dysfunctions and the gut microbiota. J. Mol. Endocrinol. 2022, 69, R81–R94. [Google Scholar] [CrossRef]
- Funeshima, N.; Noguchi, T.; Onizawa, Y.; Yaginuma, H.; Miyamura, M.; Tsuchiya, H.; Iwata, H.; Kuwayama, T.; Hamano, S.; Shirasuna, K. The transfer of parthenogenetic embryos following artificial insemination in cows can enhance pregnancy recognition via the secretion of interferon tau. J. Reprod. Dev. 2019, 65, 443–450. [Google Scholar] [CrossRef]
- Xirouchakis, E.; Pelekanos, A.; Xirouchakis, S.; Kranidioti, H.; Manolakopoulos, S. A Systematic Review of Microbiota in Cirrhosis: A Change Towards a More Pathogenic Predisposition. Int. J. Mol. Sci. 2025, 26, 527. [Google Scholar] [CrossRef] [PubMed]
- Tsiavos, A.; Antza, C.; Trakatelli, C.; Kotsis, V. The Microbial Perspective: A Systematic Literature Review on Hypertension and Gut Microbiota. Nutrients 2024, 16, 3698. [Google Scholar] [CrossRef] [PubMed]
- Thu, M.S.; Chotirosniramit, K.; Nopsopon, T.; Hirankarn, N.; Pongpirul, K. Human gut, breast, and oral microbiome in breast cancer: A systematic review and meta-analysis. Front. Oncol. 2023, 13, 1144021. [Google Scholar] [CrossRef]
- Komiya, S.; Naito, Y.; Okada, H.; Matsuo, Y.; Hirota, K.; Takagi, T.; Mizushima, K.; Inoue, R.; Abe, A.; Morimoto, Y. Characterizing the gut microbiota in females with infertility and preliminary results of a water-soluble dietary fiber intervention study. J. Clin. Biochem. Nutr. 2020, 67, 105–111. [Google Scholar] [CrossRef]
- Kong, F.; Wang, S.; Zhang, Y.; Li, C.; Dai, D.; Wang, Y.; Cao, Z.; Yang, H.; Shengli, L.; Wei, W. Alanine Derived from Ruminococcus_E bovis Alleviates Energy Metabolic Disorders during the Peripartum Period by Providing Glucogenic Precursors. Research 2025, 8, 0682. [Google Scholar] [CrossRef]
- Sapra, L.; Saini, C.; Mishra, P.K.; Garg, B.; Gupta, S.; Manhas, V.; Srivastava, R.K. Bacillus coagulans ameliorates inflammatory bone loss in post-menopausal osteoporosis via modulating the “Gut-Immune-Bone” axis. Gut Microbes 2025, 17, 2492378. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, P.; Cai, X.; He, M.; He, Y.; He, F. Vitamin C supplementation mitigates mild cognitive impairment in mice subjected to D-galactose: Insights into intestinal flora and derived SCFAs. Eur. J. Pharmacol. 2025, 1001, 177787. [Google Scholar] [CrossRef] [PubMed]
- Kimura, I.; Miyamoto, J.; Ohue-Kitano, R.; Watanabe, K.; Yamada, T.; Onuki, M.; Aoki, R.; Isobe, Y.; Kashihara, D.; Inoue, D.; et al. Maternal gut microbiota in pregnancy influences offspring metabolic phenotype in mice. Science 2020, 367, eaaw8429. [Google Scholar] [CrossRef]
- Shima, T.; Sasaki, Y.; Itoh, M.; Nakashima, A.; Ishii, N.; Sugamura, K.; Saito, S. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 2010, 85, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Pronovost, G.N.; Yu, K.B.; Coley-O’Rourke, E.J.L.; Telang, S.S.; Chen, A.S.; Vuong, H.E.; Williams, D.W.; Chandra, A.; Rendon, T.K.; Paramo, J.; et al. The maternal microbiome promotes placental development in mice. Sci. Adv. 2023, 9, eadk1887. [Google Scholar] [CrossRef] [PubMed]
- Arai, E.N.; Yoneda, S.; Yoneda, N.; Ito, M.; Tsuda, S.; Shiozaki, A.; Nohira, T.; Hyodo, H.; Kumazawa, K.; Suzuki, T.; et al. Probiotics including Clostridium butyricum, Enterococcus faecium, and Bacillus subtilis may prevent recurrent spontaneous preterm delivery. J. Obstet. Gynaecol. Res. 2022, 48, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Schwab, C.; Ramirez Garcia, A.; Li, Q.; Ferstl, R.; Bersuch, E.; Akdis, C.A.; Lauener, R.; CK‐CARE study group; Frei, R.; et al. The abundance of Ruminococcus bromii is associated with faecal butyrate levels and atopic dermatitis in infancy. Allergy 2022, 77, 3629–3640. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, X.; Liu, W.; Wei, H.; Liang, W.; Zhou, Y.; Ding, Y.; Ji, F.; Ho-Kwan Cheung, A.; Wong, N.; et al. Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma. J. Hepatol. 2023, 79, 1352–1365. [Google Scholar] [CrossRef]
- Fan, R.; Luo, X.; Hong, M.; Yang, R.; Dong, X.; Shi, H.; Li, M. Sphingobium nicotianae sp. nov., isolated from tobacco soil. Int. J. Syst. Evol. Microbiol. 2023, 73, 005529. [Google Scholar] [CrossRef]
- Matsumoto, M.; Kibe, R.; Ooga, T.; Aiba, Y.; Kurihara, S.; Sawaki, E.; Koga, Y.; Benno, Y. Impact of intestinal microbiota on intestinal luminal metabolome. Sci. Rep. 2012, 2, 233. [Google Scholar] [CrossRef]
- Halloran, K.M.; Stenhouse, C.; Wu, G.; Bazer, F.W. Arginine, Agmatine, and Polyamines: Key Regulators of Conceptus Development in Mammals. Adv. Exp. Med. Biol. 2021, 1332, 85–105. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, J.; Cui, Z.; Li, Y.; Gao, Q.; Miao, Y.; Xiong, B. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging. Nat. Aging 2023, 3, 1372–1386. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Li, N.; Cui, Z.; Zhang, H.; Liu, Y.; Miao, Y.; Sun, S.; Xiong, B. Supplementation of spermidine enhances the quality of postovulatory aged porcine oocytes. Cell Commun. Signal 2024, 22, 499. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Liu, Y.; Dilixiati, A.; Chang, Z.; Liang, Y.; Wang, Y.; Ma, X.; Tang, L.; He, Z.; et al. Spermidine Supplementation Effectively Improves the Quality of Mouse Oocytes After Vitrification Freezing. Antioxidants 2025, 14, 224. [Google Scholar] [CrossRef]
- Liu, J.; Ding, L.; Zhai, X.; Wang, D.; Xiao, C.; Hui, X.; Sun, T.; Yu, M.; Zhang, Q.; Li, M.; et al. Maternal Dietary Betaine Prevents High-Fat Diet-Induced Metabolic Disorders and Gut Microbiota Alterations in Mouse Dams and Offspring from Young to Adult. Front. Microbiol. 2022, 13, 809642. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Garg, D.N.; Kapoor, P.K.; Mahajan, S.K. Experimental pathogenicity of mollicutes from bovines with reproductive disorders in rabbit fallopian tube organ culture. Indian J. Exp. Biol. 1991, 29, 773–777. [Google Scholar]
- Ismail, H.M.; Liu, J.; Netherland, M., Jr.; Hasan, N.A.; Evans-Molina, C.; DiMeglio, L.A. Safety and effects of acetylated and butyrylated high-amylose maize starch on youths recently diagnosed with type 1 diabetes: A pilot study. Diabetes Obes. Metab. 2025, 27, 987–992. [Google Scholar] [CrossRef]
- Chen, H.; Wu, W.; Tang, S.; Fu, R.; Gong, X.; Hou, H.; Xu, J. Altered fecal microbial and metabolic profile reveals potential mechanisms underlying iron deficiency anemia in pregnant women in China. Bosn. J. Basic. Med. Sci. 2022, 22, 923–933. [Google Scholar] [CrossRef]
- d’Hennezel, E.; Abubucker, S.; Murphy, L.O.; Cullen, T.W. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling. mSystems 2017, 2, e00046-17. [Google Scholar] [CrossRef]
- Di Lorenzo, F.; Paparo, L.; Pisapia, L.; Oglio, F.; Pither, M.D.; Cirella, R.; Nocerino, R.; Carucci, L.; Silipo, A.; de Filippis, F.; et al. The chemistry of gut microbiome-derived lipopolysaccharides impacts on the occurrence of food allergy in the pediatric age. Front. Mol. Biosci. 2023, 10, 1266293. [Google Scholar] [CrossRef]
- Mohr, A.E.; Crawford, M.; Jasbi, P.; Fessler, S.; Sweazea, K.L. Lipopolysaccharide and the gut microbiota: Considering structural variation. FEBS Lett. 2022, 596, 849–875. [Google Scholar] [CrossRef] [PubMed]
- Salasel, B.; Mokhtari, A.; Taktaz, T. Prevalence, risk factors for and impact of subclinical endometritis in repeat breeder dairy cows. Theriogenology 2010, 74, 1271–1278. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Kafi, M.; Mirzaei, A.; Asaadi, A.; Mokhtari, A. Effects of follicular fluid of preovulatory follicles of repeat breeder dairy cows with subclinical endometritis on oocyte developmental competence. Anim. Reprod. Sci. 2019, 205, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Taru, M.; Katoh, T.; Koshimizu, K.; Kuribayashi, S.; Miura, R.; Hamano, S.; Shirasuna, K. Inflammatory uterine microenvironment in long-term infertility repeat breeder cows compared with normal fertile cows. Vet. Anim. Sci. 2024, 25, 100369. [Google Scholar] [CrossRef]
- Yagisawa, T.; Uchiyama, J.; Takemura-Uchiyama, I.; Ando, S.; Ichii, O.; Murakami, H.; Matsushita, O.; Katagiri, S. Metataxonomic Analysis of the Uterine Microbiota Associated with Low Fertility in Dairy Cows Using Endometrial Tissues Prior to First Artificial Insemination. Microbiol. Spectr. 2023, 11, e0476422. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Chou, C.H.; Hsiao, T.H.; Wu, T.Y.; Li, C.Y.; Chen, Y.L.; Chao, K.H.; Lee, T.H.; Gicana, R.G.; Shih, C.J.; et al. Clostridium innocuum, an opportunistic gut pathogen, inactivates host gut progesterone and arrests ovarian follicular development. Gut Microbes 2024, 16, 2424911. [Google Scholar] [CrossRef]
Species Top 10 | Normal Pregnancy | Normal Open | RB Open | Ratio (Normal Pregnancy/Normal Open) | p Value | Ratio (Normal Pregnancy/RB Open) | p Value |
---|---|---|---|---|---|---|---|
Romboutsia_timonensis | 3.670 | 2.979 | 3.721 | 1.23 | 0.183 | 0.99 | 0.366 |
Paeniclostridium_sordellii | 2.661 | 2.365 | 3.314 | 1.13 | 0.501 | 0.80 | 0.111 |
Monoglobus_pectinilyticus | 1.104 | 1.679 | 1.409 | 0.66 | 0.008 | 0.78 | 0.047 |
Bifidobacterium_pseudolongum | 0.867 | 0.108 | 0.104 | 8.06 | 0.079 | 8.33 | 0.033 |
Kineothrix_alysoides | 0.696 | 0.806 | 0.773 | 0.86 | 0.637 | 0.90 | 0.766 |
Ruminococcus_bovis | 0.556 | 0.325 | 0.397 | 1.71 | 0.001 | 1.40 | 0.015 |
Turicibacter_bilis | 0.535 | 0.364 | 0.587 | 1.47 | 0.353 | 0.91 | 0.165 |
Lentihominibacter_hominis | 0.490 | 0.494 | 0.568 | 0.99 | 0.513 | 0.86 | 0.554 |
Saccharofermentans_acetigenes | 0.385 | 0.240 | 0.300 | 1.60 | 0.082 | 1.28 | 0.167 |
Ihubacter_massiliensis | 0.381 | 0.551 | 0.496 | 0.69 | 0.082 | 0.77 | 0.005 |
Changing KEGG Pathways: Normal Pregnancy vs. Open (Normal and RB) | Ratio (Normal Pregnancy/Normal Open) | p Value | Ratio (Normal Pregnancy/RB Open) | p Value |
---|---|---|---|---|
Geraniol degradation | 0.49 | 0.0000 | 0.59 | 0.0020 |
Metabolism of xenobiotics by cytochrome P450 | 0.63 | 0.0000 | 0.72 | 0.0010 |
Flavonoid biosynthesis | 0.69 | 0.0001 | 0.89 | 0.1348 |
Biosynthesis of siderophore group nonribosomal peptides | 0.38 | 0.0002 | 0.47 | 0.0007 |
Apoptosis | 0.33 | 0.0004 | 0.51 | 0.0036 |
Glyoxylate and dicarboxylate metabolism | 0.97 | 0.0005 | 0.98 | 0.2206 |
Mismatch repair | 1.02 | 0.0005 | 1.01 | 0.0394 |
Retinol metabolism | 0.60 | 0.0006 | 0.57 | 0.0001 |
Lipopolysaccharide biosynthesis | 0.52 | 0.0007 | 0.64 | 0.0017 |
Peptidoglycan biosynthesis | 1.03 | 0.0008 | 1.03 | 0.0003 |
Commonly Changing MetaCyc Metabolic Pathways Top 5: Normal Pregnancy vs. Open (Normal and RB) | Ratio (Normal Pregnancy/Normal Open) | p Value | Ratio (Normal Pregnancy/RB Open) | p Value |
Electron Transfer | 0.57 | 0.000 | 0.68 | 0.002 |
Fatty Acid and Lipid Degradation | 0.43 | 0.000 | 0.50 | 0.003 |
Amino Acid Biosynthesis | 1.04 | 0.001 | 1.05 | 0.000 |
Secondary Metabolite Degradation | 0.70 | 0.001 | 0.71 | 0.001 |
Aromatic Compound Biosynthesis | 1.04 | 0.002 | 1.05 | 0.000 |
Differentially Changing MetaCyc Metabolic Pathways: Normal Pregnancy vs. Open (Normal and RB) | Ratio (Normal Pregnancy/Normal Open) | p Value | Ratio (Normal Pregnancy/RB Open) | p Value |
Nucleoside and Nucleotide Degradation | 0.99 | 0.243 | 0.91 | 0.000 |
Amine and Polyamine Degradation | 1.05 | 0.611 | 0.85 | 0.024 |
Amine and Polyamine Biosynthesis | 0.96 | 0.424 | 0.82 | 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitagawa, Y.; Oishi, S.; Koshimizu, K.; Miura, R.; Hamano, S.; Iwata, H.; Shirasuna, K. Differences in the Gut Microbiota in Long-Term Infertile Holstein Repeat Breeder Cows and Healthy Fertile Holstein Cows. Animals 2025, 15, 2637. https://doi.org/10.3390/ani15182637
Kitagawa Y, Oishi S, Koshimizu K, Miura R, Hamano S, Iwata H, Shirasuna K. Differences in the Gut Microbiota in Long-Term Infertile Holstein Repeat Breeder Cows and Healthy Fertile Holstein Cows. Animals. 2025; 15(18):2637. https://doi.org/10.3390/ani15182637
Chicago/Turabian StyleKitagawa, Yui, Sayoko Oishi, Karen Koshimizu, Ryotaro Miura, Seizo Hamano, Hisataka Iwata, and Koumei Shirasuna. 2025. "Differences in the Gut Microbiota in Long-Term Infertile Holstein Repeat Breeder Cows and Healthy Fertile Holstein Cows" Animals 15, no. 18: 2637. https://doi.org/10.3390/ani15182637
APA StyleKitagawa, Y., Oishi, S., Koshimizu, K., Miura, R., Hamano, S., Iwata, H., & Shirasuna, K. (2025). Differences in the Gut Microbiota in Long-Term Infertile Holstein Repeat Breeder Cows and Healthy Fertile Holstein Cows. Animals, 15(18), 2637. https://doi.org/10.3390/ani15182637