Variations in Diacron-Reactive Oxygen Metabolites and Biological Antioxidant Potential Across Reproductive Phases and Parities in Sows Reared Under Different Production Systems
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Blood Sampling
2.3. Measurement of Plasma d-ROMs and BAP
2.4. Collection of Reproduction Score
2.5. Statistical Analysis
3. Results
3.1. Sow Reproductive Outcomes
3.2. Relationship with Oxidative Stress
3.3. Oxidative Stress Marker Levels and Subsequent Reproductive Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
d-ROMs | Diacron-reactive oxygen metabolites |
BAP | Biological antioxidant potential |
OSI | Oxidative stress index |
ROS | Reactive oxygen species |
References
- Burton, G.J.; Jauniaux, E. Oxidative stress. Best Pract. Res. Clin. Obstet. Gynaecol. 2011, 25, 287–299. [Google Scholar] [CrossRef]
- Chang, P.L.; Boyd, R.D.; Zier-Rush, C.; Rosero, D.S.; van Heugten, E. Lipid peroxidation impairs growth and viability of nursery pigs reared under commercial conditions. J. Anim. Sci. 2019, 97, 3379–3389. [Google Scholar] [CrossRef]
- Zhao, Y.; Kim, S.W. Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Asian-Australas. J. Anim. Sci. 2020, 33, 722–731. [Google Scholar] [CrossRef]
- Yang, X.; Hu, R.; Shi, M.; Wang, L.; Yan, J.; Gong, J.; Zhang, Q.; He, J.; Wu, S. Placental malfunction, fetal survival and development caused by sow metabolic disorder: The impact of maternal oxidative stress. Antioxidants 2023, 12, 360. [Google Scholar] [CrossRef]
- Hu, C.; Yang, Y.; Deng, M.; Yang, L.; Shu, G.; Jiang, Q.; Zhang, S.; Li, X.; Yin, Y.; Tan, C.; et al. Placentae for low birth weight piglets are vulnerable to oxidative stress, mitochondrial dysfunction, and impaired angiogenesis. Oxid. Med. Cell Longev. 2020, 2020, 8715412. [Google Scholar] [CrossRef]
- Lee, J.; Shin, H.; Jo, J.; Lee, G.; Yun, J. Large litter size increases oxidative stress and adversely affects nest-building behavior and litter characteristics in primiparous sows. Front. Vet. Sci. 2023, 10, 1219572. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.; Jacobsen, S.; Andersen, P.H.; Bækbo, P.; Cerón, J.J.; Dahl, J.; Escribano, D.; Theil, P.K.; Jacobson, M. Hormonal and metabolic indicators before and after farrowing in sows affected with postpartum dysgalactia syndrome. BMC Vet. Res. 2018, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Mikulková, K.; Kadek, R.; Filípek, J.; Illek, J. Evaluation of oxidant/antioxidant status, metabolic profile and milk production in cows with metritis. Ir. Vet. J. 2020, 73, 8. [Google Scholar] [CrossRef]
- Boni, R.; Cecchini Gualandi, S. Relationship between oxidative stress and endometritis: Exploiting knowledge gained in mares and cows. Animals 2022, 12, 2403. [Google Scholar] [CrossRef]
- Waller, C.M.; Bilkei, G.; Cameron, R.D. Effect of periparturient diseases accompanied by excessive vulval discharge and weaning to mating interval on sow reproductive performance. Aust. Vet. J. 2002, 80, 545–549. [Google Scholar] [CrossRef] [PubMed]
- Montilla, S.I.; Johnson, T.P.; Pearce, S.C.; Gardan-Salmon, D.; Gabler, N.K.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Lonergan, S.M.; Selsby, J.T. Heat stress causes oxidative stress but not inflammatory signaling in porcine skeletal muscle. Temperature 2014, 1, 42–50. [Google Scholar] [CrossRef]
- Lessard, M.; Savard, C.; Deschene, K.; Lauzon, K.; Pinilla, V.A.; Gagnon, C.A.; Lapointe, J.; Guay, F.; Chorfi, Y. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food Chem. Toxicol. 2015, 80, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.B.; Weaver, A.C.; Kim, S.W. Physiological effects of deoxynivalenol from naturally contaminated corn on cerebral tryptophan metabolism, behavioral response, gastrointestinal immune status and health in pigs following a pair-feeding model. Toxins 2021, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Wei, H.K.; Xiang, Q.H.; Wang, J.; Zhou, Y.F.; Peng, J. Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation. J. Vet. Med. Sci. 2016, 78, 1487–1494. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, J.; Nie, X.; Wu, Q.; Wang, L.; Jiang, Z. Influences of dietary vitamin E, selenium-enriched yeast, and soy isoflavone supplementation on growth performance, antioxidant capacity, carcass traits, meat quality and gut microbiota in finishing pigs. Antioxidants 2022, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Katerji, M.; Filippova, M.; Duerksen-Hughes, P. Approaches and methods to measure oxidative stress in clinical samples: Research applications in the cancer field. Oxid. Med. Cell Longev. 2019, 2019, 1279250. [Google Scholar] [CrossRef]
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 2015, 30, 11–26. [Google Scholar] [CrossRef]
- Pigazzani, F.; Gorni, D.; Dyar, K.A.; Pedrelli, M.; Kennedy, G.; Costantino, G.; Bruno, A.; Mackenzie, I.; MacDonald, T.M.; Tietge, U.J.; et al. The prognostic value of derivatives-reactive oxygen metabolites (d-ROMs) for cardiovascular disease events and mortality: A review. Antioxidants 2022, 11, 1541. [Google Scholar] [CrossRef]
- Hawkins, C.L.; Davies, M.J. Detection, identification, and quantification of oxidative protein modifications. J. Biol. Chem. 2019, 294, 19683–19708. [Google Scholar] [CrossRef]
- Trotti, R.; Carratelli, M.; Barbieri, M. Performance and clinical application of a new, fast method for the detection of hydroperoxides in serum. Panminerva Med. 2002, 44, 37–40. [Google Scholar] [PubMed]
- Vassalle, C.; Boni, C.; Di Cecco, P.; Ndreu, R.; Zucchelli, G.C. Automation and validation of a fast method for the assessment of in vivo oxidative stress levels. Clin. Chem. Lab. Med. 2006, 44, 1372–1375. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 2013, 7, 1374–1378. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the freely available easy-to-use software “EZR” (Easy R) for medical statistics. Bone Marrow Transpl. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Terao, H.; Wada-Hiraike, O.; Nagumo, A.; Kunitomi, C.; Azhary, J.M.; Harada, M.; Hirata, T.; Hirota, Y.; Koga, K.; Fujii, T.; et al. Role of oxidative stress in follicular fluid on embryos of patients undergoing assisted reproductive technology treatment. J. Obs. Gynaecol. Res. 2019, 45, 1884–1891. [Google Scholar] [CrossRef]
- Sağsöz, N.; Kisa, U.; Apan, A. Ischaemia-reperfusion injury of rat ovary and the effects of vitamin C, mannitol and verapamil. Hum. Reprod. 2002, 17, 2972–2976. [Google Scholar] [CrossRef]
- Meng, Q.W.; Guo, T.; Li, G.Q.; Sun, S.S.; He, S.Q.; Cheng, B.J.; Shi, B.M.; Shan, A.S. Dietary resveratrol improves antioxidant status of sows and piglets and regulates antioxidant gene expression in placenta by Keap1-Nrf2 pathway and Sirt1. J. Anim. Sci. Biotechnol. 2018, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Song, P.; Yan, H.; Zhang, L.; Wang, L.; Zhao, F.; Gao, H.; Hou, X.; Shi, L.; Li, B.; et al. A comparison of the behavior, physiology, and offspring resilience of gestating sows when raised in a group housing system and individual stalls. Animals 2021, 11, 2076. [Google Scholar] [CrossRef] [PubMed]
- Farmer, C.; Sorensen, M.T.; Petitclerc, D. Inhibition of prolactin in the last trimester of gestation decreases mammary gland development in gilts. J. Anim. Sci. 2000, 78, 1303–1309. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.; Lavoie, M.; Richard, G.; Archambault, A.; Lapointe, J. Evidence that oxidative stress is higher in replacement gilts than in multiparous sows. J. Anim. Physiol. Anim. Nutr. 2016, 100, 911–919. [Google Scholar] [CrossRef] [PubMed]
- Warraich, U.E.; Hussain, F.; Kayani, H.U.R. Aging—Oxidative stress, antioxidants and computational modeling. Heliyon 2020, 6, e04107. [Google Scholar] [CrossRef]
Items | All Sows | Farm A | Farm B | Low-Parity | High-Parity | |||||
---|---|---|---|---|---|---|---|---|---|---|
Farrowing | First | Subsequent | First | Subsequent | First | Subsequent | First | Subsequent | First | Subsequent |
Number of sows | 28 | 28 | 14 | 14 | 14 | 14 | 18 | 10 | 18 | 10 |
Parity | 2.32 | 3.32 | 2.28 | 3.56 | 2.35 | 3.56 | 1.28 | 2.28 | 4.2 | 5.2 |
Total born | 15 (5–23) | 16 (11–20) † | 16.5 (8–23) a | 16.5 (14–20) | 14 (5–19) b | 15.5 (11–20) | 15 (5–21) | 15.5 (11–20) | 15 (7–23) | 17 (13–20) |
Born alive | 13.5 (3–19) | 14 (8–19) | 14 (8–19) | 14 (8–19) | 13 (3–16) | 14 (10–16) | 14 (3–19) | 14 (9–19) | 13 (7–18) | 14 (8–16) |
Stillborn (including mummy) | 1.5 (0–7) | 2.5 (0–7) | 1 (0–7) | 3 (0–7) | 2 (0–5) | 1.5 (0–6) | 1.5 (0–7) | 1.5 (0–6) | 1.5 (0–5) | 3 (0–7) |
First Farrowing Explanatory Variable | Subsequent Farrowing Total Born | Regression Coefficient | Subsequent Farrowing Live Born | Regression Coefficient |
---|---|---|---|---|
Parity | p = 0.735 | p = 0.518 | ||
Farm | p < 0.05 | −1.7774 ± 0.8393 | p = 0.262 | |
d-ROMs | p < 0.05 | −0.0058 ± 0.0021 | p < 0.05 | −0.0049 ± 0.0022 |
Parity | p = 0.311 | p = 0.655 | ||
Farm | p = 0.232 | p = 0.777 | ||
BAP | p = 0.888 | p = 0.594 | ||
Parity | p = 0.311 | p = 0.831 | ||
Farm | p < 0.05 | −1.8965 ± 0.8524 | p = 0.172 | |
OSI | p < 0.05 | −21.0738 ± 7.5574 | p < 0.05 | −20.6020 ± 7.8065 |
Category (Subgroup) | N | d-ROMs [U.CARR.] | BAP [μmol/L] | OSI |
---|---|---|---|---|
Farm | ||||
A | 42 | 1045.5 (690–1425) | 3616.6 (2812.8–4404.5) | 0.301 (0.192–0.445) |
B | 42 | 955.5 (627–1419) | 3551.75 (2666.1–4319.8) | 0.273 (0.193–0.421) |
Parity | ||||
Low | 54 | 1116 (750–1425) a | 3600.15 (2764–4319.8) | 0.302 (0.206–0.445) a |
High | 30 | 930 (627–1380) b | 3497.6 (2666.1–4404.5) | 0.249 (0.192–0.417) b |
Stage | ||||
Farrowing | 28 | 987 (627–1380) | 3775.4 (3102.2–4404.5) a | 0.253 (0.192–0.417) |
Weaning | 28 | 1024.5 (651–1425) | 3367.9 (2666.1–4120.1) b | 0.306 (0.193–0.445) |
Pregnant | 28 | 1015.5 (690–1419) | 3580.4 (3129.1–4057.8) a | 0.300 (0.206–0.425) |
Factor | d-ROMs [U.CARR.] | BAP [μmol/L] | OSI | |
Farm | p = 0.122 | p = 0.388 | p = 0.164 | |
Parity | p < 0.01 | p = 0.336 | p < 0.01 | |
Stage | p = 0.706 | p < 0.01 | p = 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okada, S.; Noguchi, M.; Sasaki, Y.; Sato, R. Variations in Diacron-Reactive Oxygen Metabolites and Biological Antioxidant Potential Across Reproductive Phases and Parities in Sows Reared Under Different Production Systems. Animals 2025, 15, 2638. https://doi.org/10.3390/ani15182638
Okada S, Noguchi M, Sasaki Y, Sato R. Variations in Diacron-Reactive Oxygen Metabolites and Biological Antioxidant Potential Across Reproductive Phases and Parities in Sows Reared Under Different Production Systems. Animals. 2025; 15(18):2638. https://doi.org/10.3390/ani15182638
Chicago/Turabian StyleOkada, Shoichi, Michiko Noguchi, Yosuke Sasaki, and Reiichiro Sato. 2025. "Variations in Diacron-Reactive Oxygen Metabolites and Biological Antioxidant Potential Across Reproductive Phases and Parities in Sows Reared Under Different Production Systems" Animals 15, no. 18: 2638. https://doi.org/10.3390/ani15182638
APA StyleOkada, S., Noguchi, M., Sasaki, Y., & Sato, R. (2025). Variations in Diacron-Reactive Oxygen Metabolites and Biological Antioxidant Potential Across Reproductive Phases and Parities in Sows Reared Under Different Production Systems. Animals, 15(18), 2638. https://doi.org/10.3390/ani15182638