CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Guide RNA (gRNA) Design and CRISPR/Cas9 Vector Construction
2.2. Cell Culture, Transfection and Screening for TARDBP KO Cells
2.3. Western Blot
2.4. cDNA Library Construction and Transcriptome Sequencing
2.5. Reads Mapping to the Reference Genome and Differential Expression Analysis
2.6. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis
2.7. Quantitative Real-Time PCR (qRT-PCR) Validation
2.8. Analyses of TARDBP Binding Motif of Bovine Genes
2.9. Detection of TAG Content
2.10. Statistical Analysis
3. Results
3.1. Generation and Verification of TARDBP KO Bovine Mammary Epithelial Cells
3.2. TARDBP KO Decreases the TAG Content in Both MAC-T Cells and the Supernatant
3.3. Overview of RNA Sequencing (RNA-Seq) Data
3.4. Depletion of TARDBP Gene in MAC-T Cells Decreased Expression of CD36, FABP4, DGAT1, PPARG, and PPARGC1A
3.5. Enrichment Analysis of the DEGs
3.6. The Expression Levels of DEGs Were Verified by qRT-PCR
3.7. TARDBP Binding Motif Is Found in DNA Sequences of Both PPARG and PPARGC1A
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MEC | Mammary Epithelial Cell |
TAG | Triacylglyceral |
KO | Knockout |
WT | Wild-type |
UTR | Untranslated Region |
RNA-seq | RNA Sequencing |
PCA | Principal Component Analysis |
PC | Principal Component |
DEGs | Differentially Expressed Genes |
GO | Gene Ontology |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
qRT-PCR | Quantitative Real-Time PCR |
FA | Fatty acid |
RIP | RNA immunoprecipitation |
CLIP | Crosslinking immunoprecipitation |
References
- Freitas, P.; Oliveira, H.; Silva, F.; Fleming, A.; Schenkel, F.; Miglior, F.; Brito, L. Short communication: Time-dependent genetic parameters and single-step genome-wide association analyses for predicted milk fatty acid composition in Ayrshire and Jersey dairy cattle. J. Dairy Sci. 2020, 103, 5263–5269. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, W.; Xu, H.; Tang, K.; Zan, L.; Yang, W. Melatonin suppresses milk fat synthesis by inhibiting the mTOR signaling pathway via the MT1 receptor in bovine mammary epithelial cells. J. Pineal Res. 2019, 67, e12593. [Google Scholar] [CrossRef]
- van den Berg, I.; Xiang, R.; Jenko, J.; Pausch, H.; Boussaha, M.; Schrooten, C.; Tribout, T.; Gjuvsland, A.B.; Boichard, D.; Nordbø, Ø.; et al. Meta-analysis for milk fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight cattle breeds. Genet. Sel. Evol. 2020, 52, 37. [Google Scholar] [CrossRef]
- Xia, L.; Zhao, Z.; Yu, X.; Lu, C.; Jiang, P.; Yu, H.; Li, X.; Yu, X.; Liu, J.; Fang, X.; et al. Integrative analysis of miRNAs and mRNAs revealed regulation of lipid metabolism in dairy cattle. Funct. Integr. Genom. 2021, 21, 393–404. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9, 366. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Malla, W.A.; Kumar, A.; Jain, A.; Thakur, M.S.; Khare, V.; Tiwari, S.P. Review: Genetic background of milk fatty acid synthesis in bovines. Trop. Anim. Health Prod. 2023, 55, 328. [Google Scholar] [CrossRef]
- Guo, Y.; Wei, Z.; Zhang, Y.; Cao, J. Research Progress on the Mechanism of Milk Fat Synthesis in Cows and the Effect of Conjugated Linoleic Acid on Milk Fat Metabolism and Its Underlying Mechanism: A Review. Animals 2024, 14, 204. [Google Scholar] [CrossRef]
- Hou, Y.; Xie, Y.; Yang, S.; Han, B.; Shi, L.; Bai, X.; Liang, R.; Dong, T.; Zhang, S.; Zhang, Q.; et al. EEF1D facilitates milk lipid synthesis by regulation of PI3K-Akt signaling in mammals. FASEB. J. 2021, 35, e21455. [Google Scholar] [CrossRef]
- Han, B.; Lin, S.; Ye, W.; Chen, A.; Liu, Y.; Sun, D. COL6A1 Promotes Milk Production and Fat Synthesis Through the PI3K-Akt/Insulin/AMPK/PPAR Signaling Pathways in Dairy Cattle. Int. J. Mol. Sci. 2025, 26, 2255. [Google Scholar] [CrossRef]
- Jia, H.; Wu, Z.; Tan, J.; Wu, S.; Yang, C.; Raza, S.H.A.; Wang, M.; Song, G.; Shi, Y.; Zan, L.; et al. Lnc-TRTMFS promotes milk fat synthesis via the miR-132x/RAI14/mTOR pathway in BMECs. J. Anim. Sci. 2023, 101, skad218. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Yang, B.; Qiu, L.; He, R.; Wu, Z.; Ye, M.; Zan, L.; Yang, W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. J. Agric. Food Chem. 2024, 72, 16449–16460. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, J.; Feng, X.; Zhao, W.; Ma, R.; Yu, B.; Xue, L.; Wang, H.; Chen, Y.; Zhang, J.; et al. bta-miR-224 regulates milk fat metabolism by targeting FABP4 in bovine mammary epithelial cells. Genomics 2024, 116, 110955. [Google Scholar] [CrossRef]
- Strong, M.J.; Volkening, K.; Hammond, R.; Yang, W.; Strong, W.; Leystra-Lantz, C.; Shoesmith, C. TDP43 is a human low molecular weight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci. 2007, 35, 320–327. [Google Scholar] [CrossRef]
- Tollervey, J.R.; Curk, T.; Rogelj, B.; Briese, M.; Cereda, M.; Kayikci, M.; König, J.; Hortobágyi, T.; Nishimura, A.L.; Zupunski, V.; et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat. Neurosci. 2011, 14, 452–458. [Google Scholar] [CrossRef]
- Polymenidou, M.; Lagier-Tourenne, C.; Hutt, K.R.; Huelga, S.C.; Moran, J.; Liang, T.Y.; Ling, S.C.; Sun, E.; Wancewicz, E.; Mazur, C.; et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat. Neurosci. 2011, 14, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Lukavsky, P.J.; Daujotyte, D.; Tollervey, J.R.; Ule, J.; Stuani, C.; Buratti, E.; Baralle, F.E.; Damberger, F.F.; Allain, F.H. Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nat. Struc. Mol. Biol. 2013, 20, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.H.; Chiang, C.H.; Wang, Y.T.; Doudeva, L.G.; Yuan, H.S. The crystal structure of TDP-43 RRM1-DNA complex reveals the specific recognition for UG- and TG-rich nucleic acids. Nucleic Acids Res. 2014, 42, 4712–4722. [Google Scholar] [CrossRef]
- Romano, M.; Feiguin, F.; Buratti, E. TBPH/TDP-43 modulates translation of Drosophila futsch mRNA through an UG-rich sequence within its 5′ UTR. Brain Res. 2016, 1647, 50–56. [Google Scholar] [CrossRef]
- Ke, H.; Liu, K.; Jiao, B.; Zhao, L. Implications of TDP-43 in non-neuronal systems. Cell Commun. Signal. 2023, 21, 338. [Google Scholar] [CrossRef]
- Wu, L.S.; Cheng, W.C.; Hou, S.C.; Yan, Y.T.; Jiang, S.T.; Shen, C.K. TDP-43, a neuro-pathosignature factor, is essential for early mouse embryogenesis. Genesis 2010, 48, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Li, L.; Xu, H.; Ke, H.; Zou, L.; Yang, Q.; Shen, C.J.; Nie, J.; Jiao, B. TDP-43 is Required for Mammary Gland Repopulation and Proliferation of Mammary Epithelial Cells. Stem Cells Dev. 2019, 28, 944–953. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.M.; Ling, J.; Jeong, Y.H.; Price, D.L.; Aja, S.M.; Wong, P.C. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism. Proc. Natl. Acad. Sci. USA 2010, 107, 16320–16324. [Google Scholar] [CrossRef] [PubMed]
- Stallings, N.R.; Puttaparthi, K.; Dowling, K.J.; Luther, C.M.; Burns, D.K.; Davis, K.; Elliott, J.L. TDP-43, an ALS linked protein, regulates fat deposition and glucose homeo-stasis. PLoS ONE 2013, 8, e71793. [Google Scholar] [CrossRef]
- Zhao, L.; Ke, H.; Xu, H.; Wang, G.D.; Zhang, H.; Zou, L.; Xiang, S.; Li, M.; Peng, L.; Zhou, M.; et al. TDP-43 facilitates milk lipid secretion by post-transcriptional regulation of Btn1a1 and Xdh. Nat. Commun. 2020, 11, 341. [Google Scholar] [CrossRef]
- Cabrera-Rodríguez, R.; Pérez-Yanes, S.; Lorenzo-Sánchez, I.; Estévez-Herrera, J.; García-Luis, J.; Trujillo-González, R.; Valenzuela-Fernández, A. TDP-43 Controls HIV-1 Viral Production and Virus Infectiveness. Int. J. Mol. Sci. 2023, 24, 7658. [Google Scholar] [CrossRef]
- Rahic, Z.; Buratti, E.; Cappelli, S. Reviewing the Potential Links between Viral Infections and TDP-43 Proteinopathies. Int. J. Mol. Sci. 2023, 24, 1581. [Google Scholar] [CrossRef]
- Zeballos, C.M.A.; Moore, H.J.; Smith, T.J.; Powell, J.E.; Ahsan, N.S.; Zhang, S.; Gaj, T. Mitigating a TDP-43 proteinopathy by targeting ataxin-2 using RNA-targeting CRISPR effector proteins. Nat. Commun. 2023, 14, 6492. [Google Scholar] [CrossRef]
- Zeng, J.; Luo, C.; Jiang, Y.; Hu, T.; Lin, B.; Xie, Y.; Lan, J.; Miao, J. Decoding TDP-43: The molecular chameleon of neurodegenerative diseases. Acta. Neuropathol. Commun. 2024, 12, 205. [Google Scholar] [CrossRef]
- Majumder, P.; Chatterjee, B.; Akter, K.; Ahsan, A.; Tan, S.J.; Huang, C.C.; Chu, J.F.; Shen, C.J. Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD. Cell. Mol. Biol. Lett. 2025, 30, 6. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, T.A.; Song, S.J.; Park, T.; Park, B. Hyperproduction of IL-6 caused by aberrant TDP-43 overexpression in high-fat diet-induced obese mice. FEBS Lett. 2015, 589, 1825–1831. [Google Scholar] [CrossRef]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 3, 290–295. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Sun, X.; Wang, Y.; Loor, J.J.; Bucktrout, R.; Shu, X.; Jia, H.; Dong, J.; Zuo, R.; Liu, G.; Li, X.; et al. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. J. Dairy Sci. 2019, 102, 1682–1692. [Google Scholar] [CrossRef]
- Mu, T.; Hu, H.; Feng, X.; Ma, Y.; Wang, Y.; Liu, J.; Yu, B.; Wen, W.; Zhang, J.; Gu, Y. Screening and Conjoint Analysis of Key lncRNAs for Milk Fat Metabolism in Dairy Cows. Front. Genet. 2022, 13, 772115. [Google Scholar] [CrossRef]
- Kadegowda, A.K.; Bionaz, M.; Piperova, L.S.; Erdman, R.A.; Loor, J.J. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J. Dairy Sci. 2009, 92, 4276–4289. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lu, X.; Wang, L.; Bai, L.; Yao, R.; Jia, Z.; Ma, Y.; Chen, Y.; Hao, H.; Wu, X.; et al. Stearic acid promotes lipid synthesis through CD36/Fyn/FAK/mTORC1 axis in bovine mammary epithelial cells. Int. J. Biol. Macromol. 2023, 253, 127324. [Google Scholar] [CrossRef] [PubMed]
- Winter, A.; Krämer, W.; Werner, F.A.; Kollers, S.; Kata, S.; Durstewitz, G.; Buitkamp, J.; Womack, J.E.; Thaller, G.; Fries, R. Association of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content. Proc. Natl. Acad. Sci. USA 2002, 99, 9300–9305. [Google Scholar] [CrossRef] [PubMed]
- Grisart, B.; Farnir, F.; Karim, L.; Cambisano, N.; Kim, J.J.; Kvasz, A.; Mni, M.; Simon, P.; Frère, J.M.; Coppieters, W.; et al. Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl. Acad. Sci. USA 2004, 101, 2398–2403. [Google Scholar] [CrossRef]
- Mahmoudi, P.; Rashidi, A. Strong evidence for association between K232A polymorphism of the DGAT1 gene and milk fat and protein contents: A meta-analysis. J. Dairy Sci. 2023, 106, 2573–2587. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Hengbo, S.; Jun, L.; Jun, L.; Wangsheng, Z.; Huibin, T.; Huaiping, S. PPARG modulated lipid accumulation in dairy GMEC via regulation of ADRP gene. J. Cell Biochem. 2015, 116, 192–201. [Google Scholar] [CrossRef]
- Dominy Jr, J.E.; Lee, Y.; Gerhart-Hines, Z.; Puigserver, P. Nutrient-dependent regulation of PGC-1alpha’s acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 2010, 1804, 1676–1683. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, Q.; Liang, Y.; Cui, X.; Wang, X.; Mao, Y.; Yang, Z. Circ11103 Interacts with miR-128/PPARGC1A to Regulate Milk Fat Metabolism in Dairy Cows. J. Agric. Food Chem. 2021, 69, 4490–4500. [Google Scholar] [CrossRef]
- Zhou, F.; Ouyang, Y.; Miao, Y. Peroxisome proliferator–activated receptor gamma regulates genes involved in milk fat synthesis in mammary epithelial cells of water buffalo. Anim. Sci. J. 2021, 92, e13537. [Google Scholar] [CrossRef]
- Tian, H.; Luo, J.; Guo, P.; Li, C.; Zhang, X. C/EBPα promotes triacylglycerol synthesis via regulating PPARG promoter activity in goat mammary epithelial cells. J. Anim. Sci. 2023, 101, skac412. [Google Scholar] [CrossRef]
- Shi, H.; Luo, J.; Zhu, J.; Li, J.; Sun, Y.; Lin, X.; Zhang, L.; Yao, D.; Shi, H. PPARγ Regulates Genes Involved in Triacylglycerol Synthesis and Secretion in Mammary Gland Epithelial Cells of Dairy Goats. PPAR Res. 2013, 2013, 310948. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Yao, W.; Luo, J.; Wu, J.; Zhang, F.; Li, C.; Gao, L.; Zhang, Y. Knockdown of PROX1 promotes milk fatty acid synthesis by targeting PPARGC1A in dairy goat mammary gland. Int. J. Biol. Macromol. 2024, 266, 131043. [Google Scholar] [CrossRef] [PubMed]
Primer Name | Primer Sequence (5′–3′) | Product Length/bp |
---|---|---|
FABP4 | F: TGAGATTTCCTTCAAATTGGG | 101 |
R: CTTGTACCAGAGCACCTTCATC | ||
DGAT1 | F: GCAACGCACGGTTATTTCT | 122 |
R: CACAATGACCAGGCACAGAG | ||
PPARG | F: GAGATCACAGAGTACGCCAAG | 216 |
R: GGGCTCCATAAAGTCACCAA | ||
MAP2 | F: AGTAGTCACGGCGGAAGC | 145 |
R: TTCTGAGGCTGGTGATGG | ||
FYN | F: GGACGGAAGATGACCTGA | 156 |
R: CTTCTGCCTGGATGGAGT | ||
WDHD1 | F: TGGCATCCTACTTGTGGTCA | 123 |
R: CTTTTCTACTCTGCTAGACACCTTA | ||
PCLAF | F: AGCTACAGAAAAGTGGTGGCT | 136 |
R: GGCGCACACAAACTGGATTC | ||
β-actin | F: CATCGGCAATGAGCGGTTCC | 147 |
R: ACCGTGTTGGCGTAGAGGTC |
Gene ID | Gene Name | Log2FoldChange | Adjusted p-Value |
---|---|---|---|
281052 | CD36 | −2.1097 | 4.13 × 10−5 |
281759 | FABP4 | −7.2700 | 1.81 × 10−12 |
282609 | DGAT1 | −1.3322 | 6.43 × 10−33 |
281993 | PPARG | −5.0435 | 1.18 × 10−13 |
338446 | PPARGC1A | −2.0187 | 1.24 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, Q.; Gao, Y.; Xiao, Y.; Wang, J.; Yang, C.; Ju, Z.; Wei, X.; Wang, X.; Jiang, Q.; et al. CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells. Animals 2025, 15, 2607. https://doi.org/10.3390/ani15172607
Zhang Y, Zhang Q, Gao Y, Xiao Y, Wang J, Yang C, Ju Z, Wei X, Wang X, Jiang Q, et al. CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells. Animals. 2025; 15(17):2607. https://doi.org/10.3390/ani15172607
Chicago/Turabian StyleZhang, Yaran, Qinglan Zhang, Yaping Gao, Yao Xiao, Jinpeng Wang, Chunhong Yang, Zhihua Ju, Xiaochao Wei, Xiuge Wang, Qiang Jiang, and et al. 2025. "CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells" Animals 15, no. 17: 2607. https://doi.org/10.3390/ani15172607
APA StyleZhang, Y., Zhang, Q., Gao, Y., Xiao, Y., Wang, J., Yang, C., Ju, Z., Wei, X., Wang, X., Jiang, Q., & Huang, J. (2025). CRISPR/Cas9-Mediated TARDBP Knockout Reduces Triacylglycerol Content and Key Milk Fat Metabolism Gene Expression in MAC-T Cells. Animals, 15(17), 2607. https://doi.org/10.3390/ani15172607