Estimation of Genetic Parameters and Stability for Milk Production Traits in Huaxi Cattle from the Xinjiang Region
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Data
2.2. Data Quality Control and Trait Definition
2.3. Statistical Analysis
3. Results
3.1. Descriptive Statistics
3.2. Impacts of Non-Genetic Effects
3.3. Genetic Parameters
3.4. Correlation Between Measurements, Weight and Mature Weight Prediction
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, J.; Gao, X.; Li, J.; Gao, H.; Wang, Z.; Zhang, L.; Xu, L.; Gao, H.; Li, H.; Wang, Y.; et al. Assessing the Genetic Background and Selection Signatures of Huaxi Cattle Using High-Density SNP Array. Animals 2021, 11, 3469. [Google Scholar] [CrossRef]
- Ablondi, M.; Summer, A.; Stocco, G.; Degano, L.; Vicario, D.; Stefanon, B.; Sabbioni, A.; Cipolat-Gotet, C. Heritability and genetic correlations of total and differential somatic cell count with milk yield and composition traits in Italian Simmental cows. J. Dairy Sci. 2023, 106, 9071–9077. [Google Scholar] [CrossRef]
- Atashi, H.; Salavati, M.; De Koster, J.; Ehrlich, J.; Crowe, M.; Opsomer, G.; Hostens, M. Genome-wide association for milk production and lactation curve parameters in Holstein dairy cows. J. Anim. Breed. Genet. 2020, 137, 292–304. [Google Scholar] [CrossRef]
- Berry, D.P.; McCarthy, J. Contribution of genetic variability to phenotypic differences in on-farm efficiency metrics of dairy cows based on body weight and milk solids yield. J. Dairy Sci. 2021, 104, 12693–12702. [Google Scholar] [CrossRef]
- Bobbo, T.; Penasa, M.; Cassandro, M. Genetic Parameters of Bovine Milk Fatty Acid Profile, Yield, Composition, Total and Differential Somatic Cell Count. Animals 2020, 10, 2406. [Google Scholar] [CrossRef] [PubMed]
- Boonkum, W.; Teawyoneyong, W.; Chankitisakul, V.; Duangjinda, M.; Buaban, S. Impact of Heat Stress on Milk Yield, Milk Fat-to-Protein Ratio, and Conception Rate in Thai-Holstein Dairy Cattle: A Phenotypic and Genetic Perspective. Animals 2024, 14, 3026. [Google Scholar] [CrossRef] [PubMed]
- Carrara, E.R.; Petrini, J.; Salvian, M.; de Oliveira, H.R.; Rovadoscki, G.A.; Iung, L.H.S.; Miquilini, M.; Machado, P.F.; Mourão, G.B. Genetic parameters for milk yield and quality traits of Brazilian Holstein cows as a function of temperature and humidity index. J. Anim. Breed. Genet. 2021, 138, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Cavani, L.; Parker Gaddis, K.L.; Baldwin, R.L.; Santos, J.E.P.; Koltes, J.E.; Tempelman, R.J.; VandeHaar, M.J.; White, H.M.; Peñagaricano, F.; Weigel, K.A. Consistency of dry matter intake in Holstein cows: Heritability estimates and associations with feed efficiency. J. Dairy Sci. 2024, 107, 1054–1067. [Google Scholar] [CrossRef]
- Chen, S.Y.; Boerman, J.P.; Gloria, L.S.; Pedrosa, V.B.; Doucette, J.; Brito, L.F. Genomic-based genetic parameters for resilience across lactations in North American Holstein cattle based on variability in daily milk yield records. J. Dairy Sci. 2023, 106, 4133–4146. [Google Scholar] [CrossRef]
- Fotso-Kenmogne, P.R.; Carneiro, P.L.S.; Silva, D.A.; Cobuci, J.A.; Aponte, P.F.C.; Oliveira, H.R.; Brito, L.F. Genomic-based genetic parameters for daily milk yield and various lactation persistency traits in American Holstein cattle. J. Dairy Sci. 2025, 108, 7329–7344. [Google Scholar] [CrossRef]
- Ghafouri-Kesbi, F.; Noorian, M.; Gholizadeh, S.; Mokhtari, M. Parent of origin genetic effects on milk production traits in a population of Iranian Holstein cows. J. Anim. Breed. Genet. 2025, 142, 118–128. [Google Scholar] [CrossRef]
- Ghavi Hossein-Zadeh, N. Evidence of additive genetic variation for major milk proteins in dairy cows: A meta-analysis. J. Anim. Breed. Genet. 2024, 141, 379–389. [Google Scholar] [CrossRef]
- Hortolani, B.; Bernardes, P.A.; Filho, A.E.V.; do Carmo Panetto, J.C.; El Faro, L. Genetic parameters for body weight and milk production of dairy Gyr herds. Trop. Anim. Health Prod. 2022, 54, 84. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.K.; Moumouni, I.; Mogueza, C. Genetic profile of milk production traits and analysis of correlations with reproductive performance in the Azawak Zebu in Niger. Vet. Anim. Sci. 2024, 25, 100365. [Google Scholar] [CrossRef] [PubMed]
- Boichard, D.; Brochard, M. New phenotypes for new breeding goals in dairy cattle. Animal 2012, 6, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Jahnel, R.E.; Blunk, I.; Wittenburg, D.; Reinsch, N. Relationship between milk urea content and important milk traits in Holstein cattle. Animal 2023, 17, 100767. [Google Scholar] [CrossRef]
- Jayawardana, J.; Lopez-Villalobos, N.; McNaughton, L.R.; Hickson, R.E. Heritabilities and genetic and phenotypic correlations for milk production and fertility traits of spring-calved once-daily or twice-daily milking cows in New Zealand. J. Dairy Sci. 2023, 106, 1910–1924. [Google Scholar] [CrossRef]
- Kumar, M.; Vohra, V.; Ratwan, P.; Lathwal, S.S. Genetic analysis of milk and milk composition traits in Murrah buffaloes using Bayesian inference. Anim. Biotechnol. 2023, 34, 3280–3286. [Google Scholar] [CrossRef]
- Landi, V.; Maggiolino, A.; Cecchinato, A.; Mota, L.F.M.; Bernabucci, U.; Rossoni, A.; De Palo, P. Genotype by environment interaction due to heat stress in Brown Swiss cattle. J. Dairy Sci. 2023, 106, 1889–1909. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Madsen, P.; Li, R.; Liu, W.; Bao, P.; Xue, G.; Gao, Y.; Di, X.; Su, G. Impact of the Order of Legendre Polynomials in Random Regression Model on Genetic Evaluation for Milk Yield in Dairy Cattle Population. Front. Genet. 2020, 11, 586155. [Google Scholar] [CrossRef]
- Liu, D.; Xu, Z.; Zhao, W.; Wang, S.; Li, T.; Zhu, K.; Liu, G.; Zhao, X.; Wang, Q.; Pan, Y.; et al. Genetic parameters and genome-wide association for milk production traits and somatic cell score in different lactation stages of Shanghai Holstein population. Front. Genet. 2022, 13, 940650. [Google Scholar] [CrossRef]
- Lopez-Villalobos, N.; Spelman, R.J.; Melis, J.; Davis, S.R.; Berry, S.D.; Lehnert, K.; Sneddon, N.W.; Holroyd, S.E.; MacGibbon, A.K.; Snell, R.G. Genetic correlations of milk fatty acid contents predicted from milk mid-infrared spectra in New Zealand dairy cattle. J. Dairy Sci. 2020, 103, 7238–7248. [Google Scholar] [CrossRef]
- Lu, X.; Arbab, A.A.I.; Abdalla, I.M.; Liu, D.; Zhang, Z.; Xu, T.; Su, G.; Yang, Z. Genetic Parameter Estimation and Genome-Wide Association Study-Based Loci Identification of Milk-Related Traits in Chinese Holstein. Front. Genet. 2021, 12, 799664. [Google Scholar] [CrossRef] [PubMed]
- Mancin, E.; Sartori, C.; Rulli, E.; Oian, A.; Gomez Proto, G.; Tiezzi, F.; Mantovani, R. Indicators of resilience in cattle based on test-day milk yield: Comparison of within- and between-lactation and their relationship with milk production. Animal 2025, 19, 101596. [Google Scholar] [CrossRef] [PubMed]
- Nazari, M.A.; Ghavi Hossein-Zadeh, N.; Shadparvar, A.A.; Kianzad, D. Genetic Analysis of Persistency for Milk Fat Yield in Iranian Buffaloes (Bubalus bubalis). Front. Genet. 2021, 12, 633017. [Google Scholar] [CrossRef] [PubMed]
- Oloo, R.D.; Mrode, R.; Bennewitz, J.; Ekine-Dzivenu, C.C.; Ojango, J.M.K.; Gebreyohanes, G.; Mwai, O.A.; Chagunda, M.G.G. Potential for quantifying general environmental resilience of dairy cattle in sub-Saharan Africa using deviations in milk yield. Front. Genet. 2023, 14, 1208158. [Google Scholar] [CrossRef]
- Önder, H.; Sitskowska, B.; Kurnaz, B.; Piwczyński, D.; Kolenda, M.; Şen, U.; Tırınk, C.; Çanga Boğa, D. Multi-Trait Single-Step Genomic Prediction for Milk Yield and Milk Components for Polish Holstein Population. Animals 2023, 13, 3070. [Google Scholar] [CrossRef]
- Otwinowska-Mindur, A.; Ptak, E.; Jagusiak, W.; Zarnecki, A. Genetic parameters for milk production traits of Simmental cows with random regression test-day model. Animal 2025, 19, 101395. [Google Scholar] [CrossRef]
- Öztürk, Y.; Sarı, M.; Genç, S. Genetic parameters and genetic trend of some yield traits of Holstein Friesian cattle population in Tropical Region (Teke). Trop. Anim. Health Prod. 2021, 53, 526. [Google Scholar] [CrossRef]
- Park, C.H.; Ranaraja, U.; Dang, C.G.; Kim, J.J.; Do, C.H. Genetic parameters for milk fatty acid composition of Holstein in Korea. Asian-Australas. J. Anim. Sci. 2020, 33, 1573–1578. [Google Scholar] [CrossRef]
- Pegolo, S.; Mota, L.F.M.; Bisutti, V.; Martinez-Castillero, M.; Giannuzzi, D.; Gallo, L.; Schiavon, S.; Tagliapietra, F.; Revello Chion, A.; Trevisi, E.; et al. Genetic parameters of differential somatic cell count, milk composition, and cheese-making traits measured and predicted using spectral data in Holstein cows. J. Dairy Sci. 2021, 104, 10934–10949. [Google Scholar] [CrossRef]
- Silva Neto, J.B.; Mota, L.F.M.; Londoño-Gil, M.; Schmidt, P.I.; Rodrigues, G.R.D.; Ligori, V.A.; Arikawa, L.M.; Magnabosco, C.U.; Brito, L.F.; Baldi, F. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim. Genet. 2024, 55, 871–892. [Google Scholar] [CrossRef]
- Poppe, M.; Bonekamp, G.; van Pelt, M.L.; Mulder, H.A. Genetic analysis of resilience indicators based on milk yield records in different lactations and at different lactation stages. J. Dairy Sci. 2021, 104, 1967–1981. [Google Scholar] [CrossRef]
- Rojas de Oliveira, H.; Campos, G.S.; Lazaro, S.F.; Jamrozik, J.; Schinckel, A.; Brito, L.F. Phenotypic and genomic modeling of lactation curves: A longitudinal perspective. JDS Commun. 2024, 5, 241–246. [Google Scholar] [CrossRef]
- Salvian, M.; Silveira, R.M.F.; Petrini, J.; Rovadoscki, G.A.; Iung, L.H.S.; Ramírez-Díaz, J.; Carrara, E.R.; Pertile, S.F.N.; Cassoli, L.D.; Machado, P.F.; et al. Heat stress on breeding value prediction for milk yield and composition of a Brazilian Holstein cattle population. Int. J. Biometeorol. 2023, 67, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Samaraweera, A.M.; Boerner, V.; Cyril, H.W.; van der Werf, J.; Hermesch, S. Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka. Asian-Australas. J. Anim. Sci. 2020, 33, 1741–1754. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Heise, J.; Tetens, J.; Thaller, G.; Wellmann, R.; Bennewitz, J. Genomic dominance variance analysis of health and milk production traits in German Holstein cattle. J. Anim. Breed. Genet. 2023, 140, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Sitkowska, B.; Yüksel, H.M.; Piwczyński, D.; Önder, H. Heritability and genetic correlations of rumination time with milk-yield and milking traits in Holstein-Friesian cows using an automated milking system. Animal 2024, 18, 101101. [Google Scholar] [CrossRef]
- Soumri, N.; Carabaño, M.J.; González-Recio, O.; Bedhiaf-Romdhani, S. Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins. J. Anim. Breed. Genet. 2023, 140, 440–461. [Google Scholar] [CrossRef]
- Taherkhani, L.; Banabazi, M.H.; EmamJomeh-Kashan, N.; Noshary, A.; Imumorin, I. The Candidate Chromosomal Regions Responsible for Milk Yield of Cow: A GWAS Meta-Analysis. Animals 2022, 12, 582. [Google Scholar] [CrossRef]
- Tamboli, P.; Bharadwaj, A.; Chaurasiya, A.; Bangar, Y.C.; Jerome, A. Association between age at first calving, first lactation traits and lifetime productivity in Murrah buffaloes. Anim. Biosci. 2022, 35, 1151–1161. [Google Scholar] [CrossRef]
- Tiezzi, F.; Maisano, A.M.; Chessa, S.; Luini, M.; Biffani, S. Heritability of Teat Condition in Italian Holstein Friesian and Its Relationship with Milk Production and Somatic Cell Score. Animals 2020, 10, 2271. [Google Scholar] [CrossRef]
- Tribout, T.; Minéry, S.; Vallée, R.; Saille, S.; Saunier, D.; Martin, P.; Ducrocq, V.; Faverdin, P.; Boichard, D. Genetic relationships between weight loss in early lactation and daily milk production throughout lactation in Holstein cows. J. Dairy Sci. 2023, 106, 4799–4812. [Google Scholar] [CrossRef]
- Brito, L.F.; Bedere, N.; Douhard, F.; Oliveira, H.R.; Arnal, M.; Peñagaricano, F.; Schinckel, A.P.; Baes, C.F.; Miglior, F. Review: Genetic selection of high-yielding dairy cattle toward sustainable farming systems in a rapidly changing world. Animal 2021, 15 (Suppl. S1), 100292. [Google Scholar] [CrossRef]
- Wahinya, P.K.; Jeyaruban, M.G.; Swan, A.A.; Gilmour, A.R.; Magothe, T.M. Genetic parameters for test-day milk yield, lactation persistency, and fertility in low-, medium-, and high-production systems in Kenya. J. Dairy Sci. 2020, 103, 10399–10413. [Google Scholar] [CrossRef]
- Wang, A.; Su, G.; Brito, L.F.; Zhang, H.; Shi, R.; Liu, D.; Guo, G.; Wang, Y. Investigating the relationship between fluctuations in daily milk yield as resilience indicators and health traits in Holstein cattle. J. Dairy Sci. 2024, 107, 1535–1548. [Google Scholar] [CrossRef]
- Williams, M.; Sleator, R.D.; Murphy, C.P.; McCarthy, J.; Berry, D.P. Exploiting genetic variability in the trajectory of lactation yield and somatic cell score with each progressing parity. J. Dairy Sci. 2022, 105, 3341–3354. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Hu, H.; Zhang, J.; Ma, Y.; Han, L.; Hao, F.; Jiang, Y.; Ma, Y. Estimation of Genetic Parameters for Conformation Traits and Milk Production Traits in Chinese Holsteins. Animals 2022, 13, 100. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gao, Q.; Wang, A.; Wang, Z.; Liang, Y.; Guo, M.; Mao, Y.; Wang, Y. Estimation of Genetic Parameters for Milk Production Rate and Its Stability in Holstein Population. Animals 2024, 14, 2761. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Han, L.; Zhang, H.; Hu, H.; Sheng, H.; Yang, T.; Zhang, Y.; Wen, W.; Ma, L.; Ma, Y.; et al. Genetic parameters for health traits and their association with fertility and milk production in Chinese Holsteins. J. Anim. Breed. Genet. 2024, 141, 52–64. [Google Scholar] [CrossRef]
- de Oliveira, E.B.; Ferreira, F.C.; Galvão, K.N.; Youn, J.; Tagkopoulos, I.; Silva-Del-Rio, N.; Pereira, R.V.V.; Machado, V.S.; Lima, F.S. Integration of statistical inferences and machine learning algorithms for prediction of metritis cure in dairy cows. J. Dairy Sci. 2021, 104, 12887–12899. [Google Scholar] [CrossRef]
Processing Stage | Pre-Processing Records | Removed Records | Reason for Removal/Imputation | Post-Processing Records | Cumulative Removal Rate (%) |
---|---|---|---|---|---|
Initial Raw Data | 3332 | - | - | 3332 | 0.00% |
Remove Missing Records: Key IDs | 3332 | 93 | Missing ear tags | 3236 | 2.80% |
Remove Missing Records: Core Vars | 3236 | 81 | Missing parity/birth year | 3155 | 5.20% |
Remove High-Missing Records (>30%) | 3155 | 39 | Excessive missing core fields | 3116 | 6.30% |
Remove Duplicate Records | 3116 | 52 | Full duplicates (ear tag-based) | 3064 | 8.00% |
Mean Imputation (Numerical Vars) | 3064 | 49 | Milk yield, milk fat percentage, and milk protein percentage were either removed or imputed | 3015 | 9.40% |
Identify and Remove Invalid Outliers | 3015 | 22 | Confirmed input/measurement errors | 2992 | 10.10% |
Final Cleaned Dataset | - | - | - | 2992 | 10.10% |
Item | Abbreviation | Definition |
---|---|---|
daily milk yield, kg | DMY | Sum of morning, noon, and night milking yields |
milk fat percentage, % | FP | Mass percentage of fat in milk |
milk protein percentage, % | PP | Mass percentage of protein in milk |
Trait * | No. Records | Mean | SD | CV | Min | Max | Sk | Ku |
---|---|---|---|---|---|---|---|---|
DMY (kg) | 2992 | 28.50 | 5.90 | 20.70% | 8.20 | 46.70 | −0.15 | 2.85 |
MY-Morn (kg) | 2992 | 9.40 | 2.03 | 21.28% | 2.50 | 15.80 | 0.32 | 3.12 |
MY-Noon (kg) | 2992 | 9.60 | 2.10 | 21.88% | 2.60 | 16.10 | 0.28 | 2.97 |
MY-Night (kg) | 2992 | 9.50 | 2.00 | 21.05% | 2.70 | 15.90 | 0.35 | 3.05 |
FP | 2992 | 3.94% | 0.32% | 8.12% | 2.81% | 5.12% | 0.18 | 2.78 |
PP | 2992 | 3.35% | 0.28% | 8.36% | 2.65% | 4.08% | −0.42 | 3.24 |
Effect * | Level | No. Records | DMY (kg) | FP | PP |
---|---|---|---|---|---|
Parity | 1 | 230 | 24.51 ± 0.01 A | 3.56% ± 0.01 C | 3.46% ± 0.01 E |
2 | 1188 | 30.32 ± 0.01 B | 3.69% ± 0.01 D | 3.44% ± 0.01 C | |
3 | 1256 | 36.78 ± 0.02 D | 3.36% ± 0.01 A | 3.41% ± 0.03 A | |
4 | 212 | 37.93 ± 0.03 E | 3.42% ± 0.03 B | 3.42% ± 0.05 B | |
5 and above | 106 | 35.50 ± 0.02 C | 3.71% ± 0.02 E | 3.45% ± 0.02 D | |
Test season | Spring | 212 | 34.82 ± 0.01 C | 3.48% ± 0.05 C | 3.40% ± 0.03 B |
Summer | 1132 | 29.63 ± 0.01 A | 3.38% ± 0.03 A | 3.33% ± 0.07 A | |
Fall | 1241 | 33.28 ± 0.05 B | 3.41% ± 0.02 B | 3.70% ± 0.02 C | |
Winter | 830 | 35.49 ± 0.03 D | 3.75% ± 0.03 D | 3.81% ± 0.05 D | |
Adult weight | ≤500 | 70 | 23.45 ± 0.03 A | 3.72% ± 0.03 F | 3.45% ± 0.05 F |
>500 ≤ 550 | 763 | 27.83 ± 0.02 B | 3.68% ± 0.02 E | 3.40% ± 0.02 E | |
>550 ≤ 600 | 892 | 31.32 ± 0.01 C | 3.64% ± 0.05 D | 3.38% ± 0.03 D | |
>600 ≤ 650 | 125 | 34.56 ± 0.01 E | 3.55% ± 0.03 C | 3.37% ± 0.07 C | |
>650 ≤ 700 | 89 | 35.31 ± 0.05 F | 3.45% ± 0.02 B | 3.35% ± 0.02 B | |
>700 | 55 | 33.86 ± 0.03 D | 3.33% ± 0.03 A | 3.33% ± 0.05 A |
Trait * | No. Records | h2 | h2_SE | VA | VM | VPE |
---|---|---|---|---|---|---|
DMY | 2992 | 0.382 | 0.07189 | 0.449 | 0.031 | 0.288 |
FP | 2992 | 0.292 | 0.04256 | 0.165 | 0.008 | 0.092 |
PP | 2992 | 0.360 | 0.04512 | 0.068 | 0.003 | 0.038 |
Trait * | DMY | FP | PP |
---|---|---|---|
DMY | 1 | −0.435 & | −0.809 && |
FP | −0.144 & | 1 | 0.551 & |
PP | −0.153 && | 0.352 & | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Han, M.; Lu, X.; Gao, X.; Zhao, W.; Zhang, Q.; Zhang, B.; Zhong, F.; Chen, Z. Estimation of Genetic Parameters and Stability for Milk Production Traits in Huaxi Cattle from the Xinjiang Region. Animals 2025, 15, 2945. https://doi.org/10.3390/ani15202945
Feng Y, Han M, Lu X, Gao X, Zhao W, Zhang Q, Zhang B, Zhong F, Chen Z. Estimation of Genetic Parameters and Stability for Milk Production Traits in Huaxi Cattle from the Xinjiang Region. Animals. 2025; 15(20):2945. https://doi.org/10.3390/ani15202945
Chicago/Turabian StyleFeng, Ye, Mengli Han, Xubin Lu, Xue Gao, Wenjuan Zhao, Qian Zhang, Bin Zhang, Fagang Zhong, and Zhi Chen. 2025. "Estimation of Genetic Parameters and Stability for Milk Production Traits in Huaxi Cattle from the Xinjiang Region" Animals 15, no. 20: 2945. https://doi.org/10.3390/ani15202945
APA StyleFeng, Y., Han, M., Lu, X., Gao, X., Zhao, W., Zhang, Q., Zhang, B., Zhong, F., & Chen, Z. (2025). Estimation of Genetic Parameters and Stability for Milk Production Traits in Huaxi Cattle from the Xinjiang Region. Animals, 15(20), 2945. https://doi.org/10.3390/ani15202945