Complex Sex Determination in the Grey Mullet Mugil cephalus Suggested by Individual Whole Genome Sequence Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Genome Assembly
2.1.1. DNA Extraction and Nanopore Sequencing
2.1.2. Genome Assembly
2.1.3. Genome Annotation
2.1.4. Alignment of M. cephalus Genome Assemblies
2.2. Whole Genome Sequencing (WGS) SNP Genotyping
2.2.1. Sample Collection and Genotyping
2.2.2. Sample Sequencing
2.2.3. Raw Reads Processing and SNP Calling
2.3. Sex Determination (SD) in M. cephalus
2.3.1. Genetic Differentiation
2.3.2. Identification of the SD Regions
3. Results
3.1. Genome Sequencing
3.2. Genome Assembly and Annotation
3.3. SNP Calling
3.4. Comparison CIBA_Mcephalus_1.1
3.5. Genetic Structure
3.6. Screening the Genome for Sex-Associated SNPs
3.7. SD Candidate Variants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fricke, R.; Eschmeyer, W.N.; Van der Laan, R. (2024) Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed on 7 November 2024).
- Crosetti, D.; Blaber, S.J.M. (Eds.) Biology, Ecology and Culture of Grey Mullets (Mugilidae); CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-0-429-17475-9. [Google Scholar]
- Aizen, J.; Meiri, I.; Tzchori, I.; Levavi-Sivan, B.; Rosenfeld, H. Enhancing Spawning in the Grey Mullet (Mugil cephalus) by Removal of Dopaminergic Inhibition. Gen. Comp. Endocrinol. 2005, 142, 212–221. [Google Scholar] [CrossRef]
- FAO. Mugil cephalus. In Cultured Aquatic Species Fact Sheets. Text by Saleh, M.A. Edited and Compiled by Valerio Crespi and Michael. New.CD-ROM (Multilingual). 2009. Available online: https://www.fao.org/fishery/docs/CDrom/aquaculture/I1129m/file/es/es_flatheadgreymullet.htm (accessed on 6 November 2024).
- Waltham, N.J.; Teasdale, P.R.; Connolly, R.M. Use of Flathead Mullet (Mugil cephalus) in Coastal Biomonitor Studies: Review and Recommendations for Future Studies. Mar. Pollut. Bull. 2013, 69, 195–205. [Google Scholar] [CrossRef]
- Jones, J.C.; Reynolds, J.D. Effects of Pollution on Reproductive Behaviour of Fishes. Rev. Fish Biol. Fish. 1997, 7, 463–491. [Google Scholar] [CrossRef]
- Kikuchi, K.; Hamaguchi, S. Novel Sex-Determining Genes in Fish and Sex Chromosome Evolution. Dev. Dyn. 2013, 242, 339–353. [Google Scholar] [CrossRef]
- Mank, J.E.; Avise, J.C. Evolutionary Diversity and Turn-Over of Sex Determination in Teleost Fishes. Sex. Dev. 2009, 3, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, D.; Charlesworth, B.; Marais, G. Steps in the Evolution of Heteromorphic Sex Chromosomes. Heredity 2005, 95, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.H.; Nagahama, Y. Sex Determination and Sex Differentiation in Fish: An Overview of Genetic, Physiological, and Environmental Influences. Aquaculture 2002, 208, 191–364. [Google Scholar] [CrossRef]
- Oliveira, C.; Foresti, F.; Hilsdorf, A.W.S. Genetics of Neotropical Fish: From Chromosomes to Populations. Fish Physiol. Biochem. 2009, 35, 81–100. [Google Scholar] [CrossRef]
- Martínez, P.; Viñas, A.M.; Sánchez, L.; Díaz, N.; Ribas, L.; Piferrer, F. Genetic Architecture of Sex Determination in Fish: Applications to Sex Ratio Control in Aquaculture. Front. Genet. 2014, 5, 340. [Google Scholar] [CrossRef]
- Penman, D.J.; Piferrer, F. Fish Gonadogenesis. Part I: Genetic and Environmental Mechanisms of Sex Determination. Rev. Fish. Sci. 2008, 16, 16–34. [Google Scholar] [CrossRef]
- Mank, J.E.; Promislow, D.E.L.; Avise, J.C. Evolution of Alternative Sex-Determining Mechanisms in Teleost Fishes. Biol. J. Linn. Soc. 2006, 87, 83–93. [Google Scholar] [CrossRef]
- Baroiller, J.F.; D’Cotta, H.; Saillant, E. Environmental Effects on Fish Sex Determination and Differentiation. Sex. Dev. 2009, 3, 118–135. [Google Scholar] [CrossRef] [PubMed]
- Moore, E.C.; Roberts, R.B. Polygenic Sex Determination. Curr. Biol. 2013, 23, R510–R512. [Google Scholar] [CrossRef] [PubMed]
- Kitano, J.; Ansai, S.; Takehana, Y.; Yamamoto, Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu. Rev. Anim. Biosci. 2024, 12, 233–259. [Google Scholar] [CrossRef]
- Ferraresso, S.; Bargelloni, L.; Babbucci, M.; Cannas, R.; Follesa, M.C.; Carugati, L.; Melis, R.; Cau, A.; Koutrakis, M.; Sapounidis, A.; et al. Fshr: A Fish Sex-Determining Locus Shows Variable Incomplete Penetrance across Flathead Grey Mullet Populations. iScience 2020, 24, 101886. [Google Scholar] [CrossRef]
- Curzon, A.Y.; Dor, L.; Shirak, A.; Meiri-Ashkenazi, I.; Rosenfeld, H.; Ron, M.; Seroussi, E. A Novel c.1759T>G Variant in Follicle-Stimulating Hormone-Receptor Gene Is Concordant with Male Determination in the Flathead Grey Mullet (Mugil cephalus). G3 Genes Genomes Genet. 2021, 11, jkaa044. [Google Scholar] [CrossRef]
- de la Herrán, R.; Hermida, M.; Rubiolo, J.A.; Gómez-Garrido, J.; Cruz, F.; Robles, F.; Navajas-Pérez, R.; Blanco, A.; Villamayor, P.R.; Torres, D.; et al. A Chromosome-Level Genome Assembly Enables the Identification of the Follicule Stimulating Hormone Receptor as the Master Sex-Determining Gene in the Flatfish Solea Senegalensis. Mol. Ecol. Resour. 2023, 23, 886–904. [Google Scholar] [CrossRef]
- Pan, Q.; Feron, R.; Jouanno, E.; Darras, H.; Herpin, A.; Koop, B.; Rondeau, E.; Goetz, F.W.; Larson, W.A.; Bernatchez, L.; et al. The Rise and Fall of the Ancient Northern Pike Master Sex-Determining Gene. eLife 2021, 10, e62858. [Google Scholar] [CrossRef]
- Miller, S.A.; Dykes, D.D.; Polesky, H.F. A Simple Salting out Procedure for Extracting DNA from Human Nucleated Cells. Nucleic Acids Res. 1988, 16, 1215. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing Bacterial Genome Assemblies with Multiplex MinION Sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 2 December 2024).
- De Coster, W.; Rademakers, R. NanoPack2: Population-Scale Evaluation of Long-Read Sequencing Data. Bioinformatics 2023, 39, btad311. [Google Scholar] [CrossRef]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Vaser, R.; Sović, I.; Nagarajan, N.; Šikić, M. Fast and Accurate de Novo Genome Assembly from Long Uncorrected Reads. Genome Res. 2017, 27, 737–746. [Google Scholar] [CrossRef]
- Available online: https://github.com/nanoporetech/medaka (accessed on 2 December 2024).
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Simão, F.A.; Zdobnov, E.M. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol. Biol. Evol. 2021, 38, 4647–4654. [Google Scholar] [CrossRef]
- Jin, J.-J.; Yu, W.-B.; Yang, J.-B.; Song, Y.; de Pamphilis, C.W.; Yi, T.-S.; Li, D.-Z. GetOrganelle: A Fast and Versatile Toolkit for Accurate de Novo Assembly of Organelle Genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Jühling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Pütz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved De Novo Metazoan Mitochondrial Genome Annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef]
- Bell, E.A.; Butler, C.L.; Oliveira, C.; Marburger, S.; Yant, L.; Taylor, M.I. Transposable Element Annotation in Non-Model Species: The Benefits of Species-Specific Repeat Libraries Using Semi-Automated EDTA and DeepTE De Novo Pipelines. Mol. Ecol. Resour. 2022, 22, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.; Su, W.; Liao, Y.; Chougule, K.; Agda, J.R.A.; Hellinga, A.J.; Lugo, C.S.B.; Elliott, T.A.; Ware, D.; Peterson, T.; et al. Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline. Genome Biol. 2019, 20, 275. [Google Scholar] [CrossRef]
- Flynn, J.M.; Hubley, R.; Goubert, C.; Rosen, J.; Clark, A.G.; Feschotte, C.; Smit, A.F. RepeatModeler2: Automated Genomic Discovery of Transposable Element Families. Proc. Natl. Acad. Sci. USA 2019, 117, 9451–9457. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Bombarely, A.; Li, S. DeepTE: A Computational Method for de Novo Classification of Transposons with Convolutional Neural Network. Bioinformatics 2020, 36, 4269–4275. [Google Scholar] [CrossRef] [PubMed]
- Shao, F.; Wang, J.; Xu, H.; Peng, Z. FishTEDB: A Collective Database of Transposable Elements Identified in the Complete Genomes of Fish. Database 2018, 2018, bax106. [Google Scholar] [CrossRef]
- Holt, C.; Yandell, M. MAKER2: An Annotation Pipeline and Genome-Database Management Tool for Second-Generation Genome Projects. BMC Bioinform. 2011, 12, 491. [Google Scholar] [CrossRef] [PubMed]
- Korf, I. Gene Finding in Novel Genomes. BMC Bioinform. 2004, 5, 59. [Google Scholar] [CrossRef]
- Lomsadze, A.; Ter-Hovhannisyan, V.; Chernoff, Y.O.; Borodovsky, M. Gene Identification in Novel Eukaryotic Genomes by Self-Training Algorithm. Nucleic Acids Res. 2005, 33, 6494–6506. [Google Scholar] [CrossRef]
- Stanke, M.; Waack, S. Gene Prediction with a Hidden Markov Model and a New Intron Submodel. Bioinformatics 2003, 19, ii215–ii225. [Google Scholar] [CrossRef]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and Applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Blum, M.; Chang, H.-Y.; Chuguransky, S.; Grego, T.; Kandasaamy, S.; Mitchell, A.; Nuka, G.; Paysan-Lafosse, T.; Qureshi, M.; Raj, S.; et al. The InterPro Protein Families and Domains Database: 20 Years On. Nucleic Acids Res. 2021, 49, D344–D354. [Google Scholar] [CrossRef]
- Dainat, J.; Hereñú, D.; Davis, E.; Crouch, K.; LucileSol; Agostinho, N.; pascal-git; tayyrov. NBISweden/AGAT: AGAT-v0.9.2. 2022. Available online: https://zenodo.org/records/6621429 (accessed on 2 December 2024).
- Shekhar, M.S.; Katneni, V.K.; Jangam, A.K.; Krishnan, K.; Prabhudas, S.K.; Jani Angel, J.R.; Sukumaran, K.; Kailasam, M.; Jena, J. First Report of Chromosome-Level Genome Assembly for Flathead Grey Mullet, Mugil Cephalus (Linnaeus, 1758). Front. Genet. 2022, 13, 911446. [Google Scholar] [CrossRef]
- Li, H. Minimap2: Pairwise Alignment for Nucleotide Sequences. Bioinformatics 2018, 34, 3094–3100. [Google Scholar] [CrossRef]
- Thieme, P.; Reisser, C.; Bouvier, C.; Rieuvilleneuve, F.; Béarez, P.; Coleman, R.R.; Anissa Volanandiana, J.J.; Pereira, E.; Nirchio–Tursellino, M.; Roldán, M.I.; et al. Historical Biogeography of the Mugil cephalus Species Complex and Its Rapid Global Colonization. Mol. Phylogenet. Evol. 2025, 205, 108296. [Google Scholar] [CrossRef] [PubMed]
- Krueger, F.; James, F.; Ewels, P.; Afyounian, E.; Weinstein, M.; Schuster-Boeckler, B.; Hulselmans, G. sclamons. FelixKrueger/TrimGalore: V0.6.10—Add Default Decompression Path. 2023. Available online: https://zenodo.org/records/7598955 (accessed on 2 December 2024).
- Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM 2013. arXiv 2013, arXiv:1303.3997. [Google Scholar]
- Picard Tools—Broad Institute. Available online: https://broadinstitute.github.io/picard/ (accessed on 14 March 2024).
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. GigaScience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The Variant Call Format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population Genetics Software for Exact Tests and Ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Balloux, F. Discriminant Analysis of Principal Components: A New Method for the Analysis of Genetically Structured Populations. BMC Genet. 2010, 11, 94. [Google Scholar] [CrossRef]
- Wright, S. The Genetical Structure of Populations. Ann. Eugen. 1949, 15, 323–354. [Google Scholar] [CrossRef]
- Jombart, T.; Ahmed, I. Adegenet 1.3-1: New Tools for the Analysis of Genome-Wide SNP Data. Bioinformatics 2011, 27, 3070–3071. [Google Scholar] [CrossRef]
- Reinar, W.B.; Tørresen, O.K.; Nederbragt, A.J.; Matschiner, M.; Jentoft, S.; Jakobsen, K.S. Teleost Genomic Repeat Landscapes in Light of Diversification Rates and Ecology. Mob. DNA 2023, 14, 14. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, X.; Zou, Y.; Yan, Z.; Huang, Y.; Zhu, Y.; Gao, J. De Novo Gonad Transcriptome Analysis of Elongate Loach (Leptobotia Elongata) Provides Novel Insights into Sex-Related Genes. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 42, 100962. [Google Scholar] [CrossRef]
- Meng, F.; Sun, S.; Xu, X.; Yu, W.; Gan, R.; Zhang, L.; Zhang, W. Transcriptomic Analysis Provides Insights into the Growth and Maturation of Ovarian Follicles in the Ricefield Eel (Monopterus albus). Aquaculture 2022, 555, 738251. [Google Scholar] [CrossRef]
- Li, J.; Bai, L.; Liu, Z.; Wang, W. Dual Roles of PDE9a in Meiotic Maturation of Zebrafish Oocytes. Biochem. Biophys. Res. Commun. 2020, 532, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Evsiukova, V.S.; Kulikova, E.A.; Kulikov, A.V. Age-Related Alterations in the Behavior and Serotonin-Related Gene mRNA Levels in the Brain of Males and Females of Short-Lived Turquoise Killifish (Nothobranchius furzeri). Biomolecules 2021, 11, 1421. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Li, R.; Xie, Y.; Liu, Y.; Liu, J.; Zhang, Q. Differential Transcriptomic Profiling Provides New Insights into Oocyte Development and Lipid Droplet Formation in Japanese Flounder (Paralichthys olivaceus). Aquaculture 2022, 550, 737843. [Google Scholar] [CrossRef]
- He, Z.; Deng, F.; Yang, D.; He, Z.; Hu, J.; Ma, Z.; Zhang, Q.; He, J.; Ye, L.; Chen, H.; et al. Crosstalk between Sex-Related Genes and Apoptosis Signaling Reveals Molecular Insights into Sex Change in a Protogynous Hermaphroditic Teleost Fish, Ricefield Eel Monopterus albus. Aquaculture 2022, 552, 737918. [Google Scholar] [CrossRef]
- He, L.; Wang, Q.; Jin, X.; Wang, Y.; Chen, L.; Liu, L.; Wang, Y. Transcriptome Profiling of Testis during Sexual Maturation Stages in Eriocheir Sinensis Using Illumina Sequencing. PLoS ONE 2012, 7, e33735. [Google Scholar] [CrossRef]
- Pauletto, M.; Milan, M.; Huvet, A.; Corporeau, C.; Suquet, M.; Planas, J.V.; Moreira, R.; Figueras, A.; Novoa, B.; Patarnello, T.; et al. Transcriptomic Features of Pecten Maximus Oocyte Quality and Maturation. PLoS ONE 2017, 12, e0172805. [Google Scholar] [CrossRef]
- Sreenivasan, R.; Jiang, J.; Wang, X.; Bártfai, R.; Kwan, H.Y.; Christoffels, A.; Orbán, L. Gonad Differentiation in Zebrafish Is Regulated by the Canonical Wnt Signaling Pathway1. Biol. Reprod. 2014, 90, 45. [Google Scholar] [CrossRef]
- Wang, C.; Yang, L.; Xiao, T.; Li, J.; Liu, Q.; Xiong, S. Identification and Expression Analysis of Zebrafish Gnaq in the Hypothalamic–Pituitary–Gonadal Axis. Front. Genet. 2022, 13, 1015796. [Google Scholar] [CrossRef]
- Kubo, S.; Black, C.S.; Joachimiak, E.; Yang, S.K.; Legal, T.; Peri, K.; Khalifa, A.A.Z.; Ghanaeian, A.; McCafferty, C.L.; Valente-Paterno, M.; et al. Native Doublet Microtubules from Tetrahymena Thermophila Reveal the Importance of Outer Junction Proteins. Nat. Commun. 2023, 14, 2168. [Google Scholar] [CrossRef]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.-P. Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef]
- Kratzer, M.-C.; England, L.; Apel, D.; Hassel, M.; Borchers, A. Evolution of the Rho Guanine Nucleotide Exchange Factors Kalirin and Trio and Their Gene Expression in Xenopus Development. Gene Expr. Patterns 2019, 32, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Beal, A.P.; Martin, F.D.; Hale, M.C. Using RNA-Seq to Determine Patterns of Sex-Bias in Gene Expression in the Brain of the Sex-Role Reversed Gulf Pipefish (Syngnathus scovelli). Mar. Genom. 2018, 37, 120–127. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Zhou, Z.; Xiao, J.; Chen, B.; Huang, P.; Li, C.; Xue, Y.; Liu, R.; Bai, Y.; et al. Comparative Transcriptome Analysis of Early Sexual Differentiation in the Male and Female Gonads of Common Carp (Cyprinus carpio). Aquaculture 2023, 563, 738984. [Google Scholar] [CrossRef]
- Zhang, Y.; Hattori, R.S.; Sarida, M.; García, E.L.; Strüssmann, C.A.; Yamamoto, Y. Expression Profiles of Amhy and Major Sex-Related Genes during Gonadal Sex Differentiation and Their Relation with Genotypic and Temperature-Dependent Sex Determination in Pejerrey Odontesthes bonariensis. Gen. Comp. Endocrinol. 2018, 265, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Ito, L.S.; Yamashita, M.; Takashima, F.; Strüssmann, C.A. Dynamics and Histological Characteristics of Gonadal Sex Differentiation in Pejerrey (Odontesthes bonariensis) at Feminizing and Masculinizing Temperatures. J. Exp. Zoolog. A Comp. Exp. Biol. 2005, 303A, 504–514. [Google Scholar] [CrossRef]
- Vandeputte, M.; Piferrer, F. Genetic and Environmental Components of Sex Determination in the European Sea Bass. In Sex Control in Aquaculture; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 305–325. ISBN 978-1-119-12729-1. [Google Scholar]
- Vandeputte, M.; Clota, F.; Sadoul, B.; Blanc, M.-O.; Blondeau-Bidet, E.; Bégout, M.-L.; Cousin, X.; Geffroy, B. Low Temperature Has Opposite Effects on Sex Determination in a Marine Fish at the Larval/Postlarval and Juvenile Stages. Ecol. Evol. 2020, 10, 13825–13835. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.C.; Morgan, J.A.T.; Goulden, E.F. A New Sex-Specific Genetic Marker (Fshr 1834G>T) for Flathead Grey Mullet, Mugil cephalus, in Queensland, Australia. Aquac. Rep. 2023, 33, 101858. [Google Scholar] [CrossRef]
- Yang, X.; Fisher, D.A.; Cheyette, B.N. SEC14 and Spectrin Domains 1 (Sestd1), Dishevelled 2 (Dvl2) and Dapper Antagonist of Catenin-1 (Dact1) Co-Regulate the Wnt/Planar Cell Polarity (PCP) Pathway during Mammalian Development. Commun. Integr. Biol. 2013, 6, e26834. [Google Scholar] [CrossRef]
- Yang, X.; Cheyette, B.N.R. SEC14 and Spectrin Domains 1 (Sestd1) and Dapper Antagonist of Catenin 1 (Dact1) Scaffold Proteins Cooperatively Regulate the Van Gogh-like 2 (Vangl2) Four-Pass Transmembrane Protein and Planar Cell Polarity (PCP) Pathway during Embryonic Development in Mice. J. Biol. Chem. 2013, 288, 20111–20120. [Google Scholar] [CrossRef] [PubMed]
- Pagani, F.; Baralle, F.E. Genomic Variants in Exons and Introns: Identifying the Splicing Spoilers. Nat. Rev. Genet. 2004, 5, 389–396. [Google Scholar] [CrossRef]
- Law, A.J.; Kleinman, J.E.; Weinberger, D.R.; Weickert, C.S. Disease-Associated Intronic Variants in the ErbB4 Gene Are Related to Altered ErbB4 Splice-Variant Expression in the Brain in Schizophrenia. Hum. Mol. Genet. 2007, 16, 129–141. [Google Scholar] [CrossRef]
- Scotti, M.M.; Swanson, M.S. RNA Mis-Splicing in Disease. Nat. Rev. Genet. 2016, 17, 19–32. [Google Scholar] [CrossRef]
- Douglas, A.G.L.; Wood, M.J.A. RNA Splicing: Disease and Therapy. Brief. Funct. Genom. 2011, 10, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Kwan, T.; Benovoy, D.; Dias, C.; Gurd, S.; Provencher, C.; Beaulieu, P.; Hudson, T.J.; Sladek, R.; Majewski, J. Genome-Wide Analysis of Transcript Isoform Variation in Humans. Nat. Genet. 2008, 40, 225–231. [Google Scholar] [CrossRef]
- Paul, D.S.; Soranzo, N.; Beck, S. Functional Interpretation of Non-Coding Sequence Variation: Concepts and Challenges. BioEssays 2014, 36, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lieberman-Aiden, E.; van Berkum, N.L.; Williams, L.; Imakaev, M.; Ragoczy, T.; Telling, A.; Amit, I.; Lajoie, B.R.; Sabo, P.J.; Dorschner, M.O.; et al. Comprehensive Mapping of Long-Range Interactions Reveals Folding Principles of the Human Genome. Science 2009, 326, 289–293. [Google Scholar] [CrossRef]
- Coulombe-Huntington, J.; Lam, K.C.L.; Dias, C.; Majewski, J. Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals. PLoS Genet. 2009, 5, e1000766. [Google Scholar] [CrossRef]
- Mattick, J.S.; Amaral, P.P.; Carninci, P.; Carpenter, S.; Chang, H.Y.; Chen, L.-L.; Chen, R.; Dean, C.; Dinger, M.E.; Fitzgerald, K.A.; et al. Long Non-Coding RNAs: Definitions, Functions, Challenges and Recommendations. Nat. Rev. Mol. Cell Biol. 2023, 24, 430–447. [Google Scholar] [CrossRef]
- Vandeputte, M.; Dupont-Nivet, M.; Chavanne, H.; Chatain, B. A Polygenic Hypothesis for Sex Determination in the European Sea Bass Dicentrarchus labrax. Genetics 2007, 176, 1049–1057. [Google Scholar] [CrossRef]
- Faggion, S.; Vandeputte, M.; Chatain, B.; Gagnaire, P.-A.; Allal, F. Population-Specific Variations of the Genetic Architecture of Sex Determination in Wild European Sea Bass Dicentrarchus labrax L. Heredity 2019, 122, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Geffroy, B.; Besson, M.; Sánchez-Baizán, N.; Clota, F.; Goikoetxea, A.; Sadoul, B.; Ruelle, F.; Blanc, M.-O.; Parrinello, H.; Hermet, S.; et al. Unraveling the Genotype by Environment Interaction in a Thermosensitive Fish with a Polygenic Sex Determination System. Proc. Natl. Acad. Sci. USA 2021, 118, e2112660118. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, G.; Shao, C.; Huang, Q.; Liu, G.; Zhang, P.; Song, W.; An, N.; Chalopin, D.; Volff, J.-N.; et al. Whole-Genome Sequence of a Flatfish Provides Insights into ZW Sex Chromosome Evolution and Adaptation to a Benthic Lifestyle. Nat. Genet. 2014, 46, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Martín, L.; Viñas, J.; Ribas, L.; Díaz, N.; Gutiérrez, A.; Croce, L.D.; Piferrer, F. DNA Methylation of the Gonadal Aromatase (Cyp19a) Promoter Is Involved in Temperature-Dependent Sex Ratio Shifts in the European Sea Bass. PLoS Genet. 2011, 7, e1002447. [Google Scholar] [CrossRef]
- Martínez, J.; Leonelli, F.E.; García-Ladona, E.; Garrabou, J.; Kersting, D.K.; Bensoussan, N.; Pisano, A. Evolution of Marine Heatwaves in Warming Seas: The Mediterranean Sea Case Study. Front. Mar. Sci. 2023, 10, 1193164. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Khodayar, S. A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature. Remote Sens. 2020, 12, 2687. [Google Scholar] [CrossRef]
- Pisano, A.; Marullo, S.; Artale, V.; Falcini, F.; Yang, C.; Leonelli, F.E.; Santoleri, R.; Buongiorno Nardelli, B. New Evidence of Mediterranean Climate Change and Variability from Sea Surface Temperature Observations. Remote Sens. 2020, 12, 132. [Google Scholar] [CrossRef]
Aegean Population | Female | Male | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CIBA_Chr. | Contig | Pos. in bp | AN | AC | AF | AN | AC | AF | System | Location | Gene | MDP | p-Value |
18 | contig_3267 | 427998 | 32 | 0 | 0 | 40 | 16 | 0.4 | XY | Intergenic | NA | 26.78 | 3.2 × 10−5 |
16 | contig_761 | 3728 | 32 | 14 | 0.4375 | 40 | 2 | 0.05 | ZW | Intergenic | NA | 187.92 | 6.2 × 10−5 |
19 | contig_948 | 1665937 | 32 | 0 | 0 | 40 | 15 | 0.375 | XY | Intergenic | NA | 24.75 | 3 × 10−5 |
12 | scaffold_2829 | 4121770 | 32 | 11 | 0.34375 | 40 | 0 | 0 | ZW | Intronic | sestd1 | 21.14 | 4.6 × 10−5 |
9 | scaffold_520 | 15101365 | 32 | 12 | 0.375 | 40 | 1 | 0.025 | ZW | Intergenic | NA | 25.69 | 0.000342 |
Tyrrhenian Population | Female | Male | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CIBA_Chr. | Contig | Pos. in bp | AN | AC | AF | AN | AC | AF | System | Location | Gene | MDP | p-Value |
12 | contig_1367 | 584196 | 32 | 0 | 0 | 40 | 15 | 0.375 | XY | Intronic | kalrn_2 | 14.39 | 5.2 × 10−5 |
11 | contig_2266 | 559 | 32 | 0 | 0 | 40 | 15 | 0.375 | XY | Intergenic | NA | 182.31 | 2 × 10−5 |
21 | contig_2858 | 378720 | 32 | 12 | 0.375 | 40 | 1 | 0.025 | ZW | Intergenic | NA | 6.28 | 0.000288 |
3 | contig_434 | 4708990 | 32 | 11 | 0.344 | 40 | 0 | 0 | ZW | Intergenic | NA | 19 | 4 × 10−6 |
16 | contig_572 | 473849 | 32 | 13 | 0.406 | 40 | 2 | 0.05 | ZW | Intronic | mpp3 | 24.61 | 0.000268 |
8 | contig_892 | 4477096 | 32 | 14 | 0.438 | 40 | 0 | 0 | ZW | Intronic | gnaq_2 | 20.61 | 0 |
19 | contig_948 | 5446550 | 32 | 0 | 0 | 40 | 15 | 0.375 | XY | Intergenic | NA | 11.58 | 1.4 × 10−5 |
5 | scaffold_2265 | 10476908 | 32 | 12 | 0.375 | 40 | 1 | 0.25 | ZW | Intronic | limch1_2 | 16.69 | 0.000304 |
12 | scaffold_2829 | 4121770 | 32 | 11 | 0.344 | 40 | 0 | 0 | ZW | Intronic | sestd1 | 20.08 | 2.4 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Racaku, M.; Ferraresso, S.; Babbucci, M.; Blanco, A.; Tsigenopoulos, C.S.; Manousaki, T.; Radojicic, J.; Papadogiannis, V.; Martínez, P.; Bargelloni, L.; et al. Complex Sex Determination in the Grey Mullet Mugil cephalus Suggested by Individual Whole Genome Sequence Data. Animals 2025, 15, 2445. https://doi.org/10.3390/ani15162445
Racaku M, Ferraresso S, Babbucci M, Blanco A, Tsigenopoulos CS, Manousaki T, Radojicic J, Papadogiannis V, Martínez P, Bargelloni L, et al. Complex Sex Determination in the Grey Mullet Mugil cephalus Suggested by Individual Whole Genome Sequence Data. Animals. 2025; 15(16):2445. https://doi.org/10.3390/ani15162445
Chicago/Turabian StyleRacaku, Mbarsid, Serena Ferraresso, Massimiliano Babbucci, Andres Blanco, Costas S. Tsigenopoulos, Tereza Manousaki, Jelena Radojicic, Vasileios Papadogiannis, Paulino Martínez, Luca Bargelloni, and et al. 2025. "Complex Sex Determination in the Grey Mullet Mugil cephalus Suggested by Individual Whole Genome Sequence Data" Animals 15, no. 16: 2445. https://doi.org/10.3390/ani15162445
APA StyleRacaku, M., Ferraresso, S., Babbucci, M., Blanco, A., Tsigenopoulos, C. S., Manousaki, T., Radojicic, J., Papadogiannis, V., Martínez, P., Bargelloni, L., & Patarnello, T. (2025). Complex Sex Determination in the Grey Mullet Mugil cephalus Suggested by Individual Whole Genome Sequence Data. Animals, 15(16), 2445. https://doi.org/10.3390/ani15162445