Genomic Investigation of Bacterial Co-Infection in Southern Pudu (Pudu puda) with Fatal Outcome: Application of Forensic Microbiology in Wildlife Impacted by Anthropogenic Disasters
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Background and Sample Collection
2.2. Isolation and Bacterial Identification
2.3. WGS and Genomic Characterization
2.4. Phylogenetic and Clonality Analysis
3. Results
3.1. Bacterial Isolation and Antimicrobial Susceptibility
3.2. Genomic Characterization of Infection-Causing Bacteria in Southern Pudu
3.3. Phylogenetic and Clonality Analysis of E. coli ST224
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
WGS | Whole-genome sequencing |
MLST | Multilocus sequence type |
ST | Sequence type |
ESBL | Extended-spectrum beta-lactamase |
References
- Cunningham, A.A.; Daszak, P.; Wood, J.L.N. One health, emerging infectious diseases and wildlife: Two decades of progress? Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160167. [Google Scholar] [CrossRef]
- SIMBIO Pudu puda Molina. 1782. Available online: https://simbio.mma.gob.cl/Especies/Details/4604#estadoconservacion (accessed on 23 June 2025).
- Hidalgo-Hermoso, E.; Celis, S.; Cabello, J.; Kemec, I.; Ortiz, C.; Lagos, R.; Verasay, J.; Moreira-Arce, D.; Vergara, P.M.; Vera, F.; et al. Molecular survey of selected viruses in pudus (Pudu puda) in Chile revealing first identification of Caprine Herpesvirus—2 (CpHV-2) in South American ungulates. Vet. Q. 2023, 43, 1–7. [Google Scholar] [CrossRef]
- Mengual-Chuliá, B.; Wittstatt, U.; Olias, P.; Bravo, I.G. Genome sequences of two novel Papillomaviruses isolated from healthy skin of Pudu puda and Cervus elaphus deer. Genome Announc. 2018, 6, e00298-18. [Google Scholar] [CrossRef]
- Verdugo, C.; Jiménez, O.; Hernández, C.; Álvarez, P.; Espinoza, A.; González-Acuña, D. Infection with Borrelia chilensis in Ixodes stilesi ticks collected from Pudu puda deer. Ticks Tick Borne Dis. 2017, 8, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Hermoso, E.; Verasay Caviedes, S.; Pizarro-Lucero, J.; Cabello, J.; Vicencio, R.; Celis, S.; Ortiz, C.; Kemec, I.; Abuhadba-Mediano, N.; Asencio, R.; et al. High exposure to livestock pathogens in southern pudu (Pudu puda) from Chile. Animals 2024, 14, 526. [Google Scholar] [CrossRef] [PubMed]
- McCann, R.S.; Cole, G.A.; LaDouceur, E.E.B.; McAloose, D.; Sykes, J.M.; Dennison-Gibby, S.; D’Agostino, J. Mycotic pneumonia and encephalitis in southern pudu (Pudu puda). J. Zoo Wildl. Med. 2021, 52, 379–388. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.; Lennard, C.; Roux, C. Forensic science: Where to from here? Forensic Sci. Int. 2025, 366, 112285. [Google Scholar] [CrossRef]
- Oliveira, M.; Amorim, A. Microbial forensics: New breakthroughs and future prospects. Appl. Microbiol. Biotechnol. 2018, 102, 10377–10391. [Google Scholar] [CrossRef]
- Foster, G.; Whatmore, A.M.; Dagleish, M.P.; Malnick, H.; Gilbert, M.J.; Begeman, L.; Macgregor, S.K.; Davison, N.J.; Roest, H.J.; Jepson, P.; et al. Forensic microbiology reveals that Neisseria animaloris infections in harbour porpoises follow traumatic injuries by grey seals. Sci. Rep. 2019, 9, 14338. [Google Scholar] [CrossRef]
- Smart, U.; Cihlar, J.C.; Budowle, B. International Wildlife Trafficking: A perspective on the challenges and potential forensic genetics solutions. Forensic Sci. Int. Genet. 2021, 54, 102551. [Google Scholar] [CrossRef]
- Schwabenlander, M.D.; Bartz, J.C.; Carstensen, M.; Fameli, A.; Glaser, L.; Larsen, R.J.; Li, M.; Shoemaker, R.L.; Rowden, G.; Stone, S.; et al. Prion forensics: A multidisciplinary approach to investigate CWD at an illegal deer carcass disposal site. Prion 2024, 18, 72–86. [Google Scholar] [CrossRef]
- American Society for Microbiology. Microbial Forensics: A Scientific Assessment: This report is based on a colloquium sponsored by the American Academy of Microbiology held June 7–9, 2002, in Burlington, Vermont. In American Academy of Microbiology Colloquia Reports; American Society for Microbiology: Washington, DC, USA, 2003. [Google Scholar]
- Brlek, P.; Bulić, L.; Bračić, M.; Projić, P.; Škaro, V.; Shah, N.; Shah, P.; Primorac, D. Implementing whole genome sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells 2024, 13, 504. [Google Scholar] [CrossRef] [PubMed]
- Massey, S.E. Comparative microbial genomics and forensics. Microbiol. Spectr. 2016, 4, 1–22. [Google Scholar] [CrossRef] [PubMed]
- United Nations in Chile. Chile: Incendios Forestales, 2023-Sistema de Naciones Unidas, Reporte de Situación No. 5 (Al 30 de Marzo de 2023)—Chile | ReliefWeb. 2023. Available online: https://reliefweb.int/report/chile/chile-incendios-forestales-2023-sistema-de-naciones-unidas-reporte-de-situacion-no-5-al-30-de-marzo-de-2023 (accessed on 2 August 2025).
- Gobierno de Chile. Balance Temporada de Incendios 2022–2023: 431 Mil Hectáreas Afectadas y 2.369 Brigadistas Movilizados—Gob.cl. 2023. Available online: https://www.gob.cl/noticias/balance-temporada-de-incendios-2022-2023-431-mil-hectareas-afectadas-y-2369-brigadistas-movilizados/ (accessed on 2 August 2024).
- CLSI. CLSI M100 Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025; ISBN 9781684402625. [Google Scholar]
- CLSI. CLSI VET01STM Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; A CLSI Supplement for Global Application; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024; ISBN 9781684402113. [Google Scholar]
- Schürch, A.C.; Arredondo-Alonso, S.; Willems, R.J.L.; Goering, R.V. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene–based approaches. Clin. Microbiol. Infect. 2018, 24, 350–354. [Google Scholar] [CrossRef] [PubMed]
- Mani, Z.A.; Khorram-Manesh, A.; Goniewicz, K. Global Health Impacts of Wildfire Disasters from 2000 to 2023: A comprehensive analysis of mortality and injuries. Disaster Med. Public Health Prep. 2024, 18, e230. [Google Scholar] [CrossRef]
- Brown, S.M.; Harrisson, K.A.; Clarke, R.H.; Bennett, A.F.; Sunnucks, P. Limited population structure, genetic drift and bottlenecks characterise an endangered bird species in a dynamic, fire-prone ecosystem. PLoS ONE 2013, 8, e59732. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and Biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Ballarin, C.S.; Mores, G.J.; Alcarás de Goés, G.; Fidelis, A.; Cornelissen, T. Trends and gaps in the study of fire effects on plant–animal interactions in Brazilian ecosystems. Austral Ecol. 2024, 49, e13420. [Google Scholar] [CrossRef]
- Hairston, N.G.; Ellner, S.P.; Geber, M.A.; Yoshida, T.; Fox, J.A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 2005, 8, 1114–1127. [Google Scholar] [CrossRef]
- Bonnet, T.; Morrissey, M.B.; de Villemereuil, P.; Alberts, S.C.; Arcese, P.; Bailey, L.D.; Boutin, S.; Brekke, P.; Brent, L.J.N.; Camenisch, G.; et al. Genetic variance in fitness indicates rapid contemporary adaptive evolution in wild animals. Science 2022, 376, 1012–1016. [Google Scholar] [CrossRef]
- Geary, W.L.; Doherty, T.S.; Nimmo, D.G.; Tulloch, A.I.T.; Ritchie, E.G. Predator responses to fire: A global systematic review and meta-analysis. J. Anim. Ecol. 2020, 89, 955–971. [Google Scholar] [CrossRef]
- Albery, G.F.; Turilli, I.; Joseph, M.B.; Foley, J.; Frere, C.H.; Bansal, S. From flames to inflammation: How wildfires affect patterns of wildlife disease. Fire Ecol. 2021, 17, 23. [Google Scholar] [CrossRef]
- Desvaux, M.; Dalmasso, G.; Beyrouthy, R.; Barnich, N.; Delmas, J.; Bonnet, R. Pathogenicity factors of genomic islands in intestinal and extraintestinal Escherichia coli. Front. Microbiol. 2020, 11, 2065. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.M.; Zidko, A.C.M.; Pignatari, A.C.; Silva, R.M. Assessing the diversity of the virulence potential of Escherichia coli isolated from bacteremia in São Paulo, Brazil. Braz. J. Med. Biol. Res. 2013, 46, 968–973. [Google Scholar] [CrossRef]
- Frankel, G.; Eliora, Z.R. Escherichia coli, a Versatile Pathogen; Springer Nature: Cham, Switzerland, 2018; p. 242. [Google Scholar]
- De Maio, N.; Shaw, L.P.; Hubbard, A.; George, S.; Sanderson, N.D.; Swann, J.; Wick, R.; AbuOun, M.; Stubberfield, E.; Hoosdally, S.J.; et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb. Genom. 2019, 5, e000294. [Google Scholar] [CrossRef] [PubMed]
- Pajand, O.; Rahimi, H.; Darabi, N.; Roudi, S.; Ghassemi, K.; Aarestrup, F.M.; Leekitcharoenphon, P. Arrangements of Mobile Genetic Elements among Virotype E Subpopulation of Escherichia coli Sequence Type 131 Strains with High Antimicrobial Resistance and Virulence Gene Content. mSphere 2021, 6, e0055021. [Google Scholar] [CrossRef]
- Sati, H.; Carrara, E.; Savoldi, A.; Hansen, P.; Garlasco, J.; Campagnaro, E.; Boccia, S.; Castillo-Polo, J.A.; Magrini, E.; Garcia-Vello, P.; et al. The WHO bacterial priority pathogens list 2024: A prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect. Dis. 2025, in press. [Google Scholar] [CrossRef]
- da Silva, M.M.; Sellera, F.P.; Furlan, J.P.R.; Aravena-Ramírez, V.; Fuentes-Castillo, D.; Fuga, B.; dos Santos Fróes, A.J.; de Sousa, A.L.; Garino Junior, F.; Lincopan, N. Gut colonization of semi-aquatic turtles inhabiting the Brazilian Amazon by international clones of CTX-M-8-producing Escherichia coli. Vet. Microbiol. 2025, 301, 110344. [Google Scholar] [CrossRef]
- Izdebski, R.; Baraniak, A.; Żabicka, D.; Sękowska, A.; Gospodarek-Komkowska, E.; Hryniewicz, W.; Gniadkowski, M. VIM/IMP carbapenemase-producing Enterobacteriaceae in Poland: Epidemic Enterobacter hormaechei and Klebsiella oxytoca lineages. J. Antimicrob. Chemother. 2018, 73, 2675–2681. [Google Scholar] [CrossRef]
- Cabello, M.; Hernández-García, M.; Maruri-Aransolo, A.; Michelena, M.; Pérez-Viso, B.; Ponce-Alonso, M.; Cantón, R.; Ruiz-Garbajosa, P. Occurrence of multi-carbapenemase-producing Enterobacterales in a tertiary hospital in Madrid (Spain): A new epidemiologic scenario. J. Glob. Antimicrob. Resist. 2024, 38, 281–291. [Google Scholar] [CrossRef]
- Wan, W.; Yang, X.; Yu, H.; Wang, M.; Jia, W.; Huang, B.; Qu, F.; Shan, B.; Tang, Y.-W.; Chen, L.; et al. Genomic characterization of carbapenem-resistant Klebsiella oxytoca complex in China: A multi-center study. Front. Microbiol. 2023, 14, 1153781. [Google Scholar] [CrossRef]
- Biedrzycka, M.; Urbanowicz, P.; Żabicka, D.; Hryniewicz, W.; Gniadkowski, M.; Izdebski, R. Country-wide expansion of a VIM-1 carbapenemase-producing Klebsiella oxytoca ST145 lineage in Poland, 2009–2019. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1449–1457. [Google Scholar] [CrossRef] [PubMed]
- Breslow, J.M.; Meissler, J.; Hartzell, R.R.; Spence, P.B.; Truant, A.; Gaughan, J.; Eisenstein, T.K. Innate immune responses to systemic Acinetobacter baumannii infection in mice: Neutrophils, but not interleukin-17, mediate host resistance. Infect. Immun. 2011, 79, 3317–3327. [Google Scholar] [CrossRef] [PubMed]
- Dexter, C.; Murray, G.L.; Paulsen, I.T.; Peleg, A.Y. Community-acquired Acinetobacter baumannii: Clinical characteristics, epidemiology and pathogenesis. Expert Rev. Anti Infect. Ther. 2015, 13, 567–573. [Google Scholar] [CrossRef] [PubMed]
- van der Kolk, J.H.; Endimiani, A.; Graubner, C.; Gerber, V.; Perreten, V. Acinetobacter in veterinary medicine, with an emphasis on Acinetobacter baumannii. J. Glob. Antimicrob. Resist. 2019, 16, 59–71. [Google Scholar] [CrossRef]
- van der Kolk, J.H. Acinetobacter baumannii as an underestimated pathogen in veterinary medicine. Vet. Q. 2015, 35, 123–124. [Google Scholar] [CrossRef]
Strain | Bacterial Identification | Source | Antibiotic Resistance Profile c | ||
---|---|---|---|---|---|
R | I | S | |||
MVL-012-23 | Klebsiella oxytoca a | Wounds in the lumbosacral area | KZ, TE, CN, AK, C, SXT, ENR | - | CRO, CFP, CAZ, FOX, AMC, IMP, MEM, AK |
MVL-011-23 | Escherichia coli a | Infected burn wounds | CRO, CVN, KZ, CN, SXT, ENR | CFP, AMC, AK | CAZ, FOX, IMP, MEM, C |
MVL-123-23 | Escherichia coli a | Intracardiac blood | CRO, CVN, KZ, CN, SXT, ENR | CFP, AMC, AK | CAZ, FOX, IMP, MEM, C |
MVL-013-23 | Acinetobacter baumannii/calcoaceticus b | Internal abdominal nodule | - | CTX | CAZ, FEP, PTZ, IMP, MEM, TE, CN, AK, SXT, LEV |
Bacterial Strain | MLST | Resistome a | Serotype Prediction | Plasmid Replicons |
---|---|---|---|---|
K. oxytoca MVL-12-23 | ST145 | blaOXY-2-10 1, aadA1 2, aadA5 2, aac(3)-IIa 2, mph(A) 3, tet(B) 4, sul1 5, dfrA17 6, catA1 7, gyrA (S83I) 8, gyrB (S463A) 8 | ND | IncFIB(K), IncM1 |
E. coli MVL-11-23 | ST224 | blaCTX-M-1 1, aac(3)-IId 2, aph(3′)-Ia 2, aph(3″)-Ib 2, aph(6)-Id 2, mph(A) 3, sul2 5, dfrA17 6, gyrA (D87N and S83L), parC (S80I) | O126:H23 | IncM1, IncQ1, p0111 |
E. coli MVL-123-23 | ST224 | blaCTX-M-1 1, aac(3)-IId 2, aph(3′)-Ia 2, aph(3″)-Ib 2, aph(6)-Id 2, mph(A) 3, sul2 5, dfrA17 6, gyrA (D87N and S83L) 8, parC (S80I) 8 | O126:H23 | IncQ1, p0111 |
A. baumannii MVL-13-23 | ST1365 | blaOXA-413 1, parC (V104I, and D105E) 8 | KL138, OCL1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravena-Ramírez, V.; Inostroza-Muñoz, E.; Riquelme, F.; Mellado, C.; Lincopan, N.; Aravena, P.; Fuentes-Castillo, D. Genomic Investigation of Bacterial Co-Infection in Southern Pudu (Pudu puda) with Fatal Outcome: Application of Forensic Microbiology in Wildlife Impacted by Anthropogenic Disasters. Animals 2025, 15, 2435. https://doi.org/10.3390/ani15162435
Aravena-Ramírez V, Inostroza-Muñoz E, Riquelme F, Mellado C, Lincopan N, Aravena P, Fuentes-Castillo D. Genomic Investigation of Bacterial Co-Infection in Southern Pudu (Pudu puda) with Fatal Outcome: Application of Forensic Microbiology in Wildlife Impacted by Anthropogenic Disasters. Animals. 2025; 15(16):2435. https://doi.org/10.3390/ani15162435
Chicago/Turabian StyleAravena-Ramírez, Valentina, Edhnita Inostroza-Muñoz, Fredy Riquelme, César Mellado, Nilton Lincopan, Paula Aravena, and Danny Fuentes-Castillo. 2025. "Genomic Investigation of Bacterial Co-Infection in Southern Pudu (Pudu puda) with Fatal Outcome: Application of Forensic Microbiology in Wildlife Impacted by Anthropogenic Disasters" Animals 15, no. 16: 2435. https://doi.org/10.3390/ani15162435
APA StyleAravena-Ramírez, V., Inostroza-Muñoz, E., Riquelme, F., Mellado, C., Lincopan, N., Aravena, P., & Fuentes-Castillo, D. (2025). Genomic Investigation of Bacterial Co-Infection in Southern Pudu (Pudu puda) with Fatal Outcome: Application of Forensic Microbiology in Wildlife Impacted by Anthropogenic Disasters. Animals, 15(16), 2435. https://doi.org/10.3390/ani15162435