Grape Pomace and Ferulic Acid Improve Antioxidant Enzyme Activity and Gut Histomorphometry in Heat-Stressed Finishing Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Grape Pomace and Extracts and Identification of Phenolic Compounds
2.2. Feeding Trial in Finishing Pigs and Characterization of Experimental Diets
2.3. Muscle Sample Collection
2.4. Measurement of Antioxidant Enzyme Activity in Longissimus thoracis Muscle
2.5. Histomorphometric Analysis of Intestinal Epithelium
2.6. Statistical Analysis
3. Results
3.1. Identification of Phenolic Compounds in Supplemented Grape Pomace
3.2. Measurement of Antioxidant Enzyme Activity in Muscles
3.3. Qualitative Visual Evaluation of Intestinal Morphology
3.4. Histomorphometric Parameters in Duodenum and Jejunum of Pigs Supplemented with FA and GP
4. Discussion
4.1. Identification of Phenolic Compounds in Grape Pomace Tempranillo Variety
4.2. Antioxidant Enzyme Activity in Longissimus thoracis Muscle of Pigs Supplemented with FA and GP
4.3. Visual and Histomorphometric Evaluation of Intestinal Epithelium in Duodenum and Jejunum of Finishing Pigs Supplemented with FA and GP
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- da Fonseca de Oliveira, A.C.; Vanelli, K.; Sotomaior, C.S.; Weber, S.H.; Costa, L.B. Impacts on performance of growing-finishing pigs under heat stress conditions: A meta-analysis. Vet. Res. Commun. 2019, 43, 37–43. [Google Scholar] [CrossRef]
- Waltz, X.; Baillot, M.; Connes, P.; Gourdine, J.L.; Philibert, L.; Beltan, E.; Chalabi, T.; Renaudeau, D. Effect of Heat Stress on Blood Rheology in Different Pigs Breeds. Clin. Hemorheol. Microcirc. 2014, 58, 395–402. [Google Scholar] [CrossRef]
- Xing, T.; Gao, F.; Tume, R.K.; Zhou, G.; Xu, X. Stress Effects on Meat Quality: A Mechanistic Perspective. Compr. Rev. Food Sci. Food Saf. 2019, 18, 380–401. [Google Scholar] [CrossRef]
- Romo-Valdez, J.; Silva-Hidalgo, G.; Güémez-Gaxiola, H.; Romo-Valdez, A.; Romo-Rubio, J. Heat stress: Influence on the physiology, productive and reproductive performance of the pig. Abanico Vet. 2022, 12, 1–19. [Google Scholar] [CrossRef]
- Liu, f.; Zhao, W.; Le, H.H.; Cottrell, J.J.; Green, M.P.; Leury, B.J.; Dunshea, F.R.; Bell, A.W. Review: What have we learned about the effects of heat stress on the pig industry? Animal 2022, 16, 100349. [Google Scholar] [CrossRef]
- Ortega, A.D.S.V.; Szabó, C. Adverse Effects of Heat Stress on the Intestinal Integrity and Function of Pigs and the Mitigation Capacity of Dietary Antioxidants: A Review. Animals 2021, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, T.E.; Roach, C.M.; Baumgard, L.H.; Ross, J.W.; Keating, A.F.; Selsby, J.T. The Impact of Zearalenone on Heat-Stressed Skeletal Muscle in Pigs. J. Anim. Sci. 2022, 100, skac215. [Google Scholar] [CrossRef] [PubMed]
- Volodina, O.; Ganesan, S.; Pearce, S.C.; Gabler, N.K.; Baumgard, L.H.; Rhoads, R.P.; Selsby, J.T. Short-Term Heat Stress Alters Redox Balance in Porcine Skeletal Muscle. Physiol. Rep. 2017, 5, e13267. [Google Scholar] [CrossRef]
- Ortega, A.D.S.V.; Babinszky, L.; Oriedo, O.H.; Csernus, B.; Ozsváth, X.E.; Czeglédi, L.; Oláh, J.; Szabó, C. Impact of Heat Stress Length and Dietary Antioxidant Supplementation on the Nutrient Digestibility, Metabolism and Immune Response of Fattening Pigs. Ann. Agric. Sci. 2023, 68, 87–96. [Google Scholar] [CrossRef]
- Bogolyubov, N.V.; Chabaev, M.G.; Fomichev, Y.P.; Tsis, E.Y.; Semenova, A.A.; Nekrasov, R.V. Ways to Reduce Adverse Effects of Stress in Pigs Using Nutritional Factors. Ukr. J. Ecol. 2019, 9, 239–245. [Google Scholar] [CrossRef]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Pedret, A.; Valls, R.M.; Motilva, M.J.; Rubió, L.; Solà, R. Exploring the Effects of Phenolic Compounds to Reduce Intestinal Damage and Improve the Intestinal Barrier Integrity: A Systematic Review of in Vivo Animal Studies. Clin. Nutr. 2021, 40, 1719–1732. [Google Scholar] [CrossRef]
- Lopes, J.d.C.; Madureira, J.; Margaça, F.M.A.; Cabo Verde, S. Grape Pomace: A Review of Its Bioactive Phenolic Compounds, Health Benefits, and Applications. Molecules 2025, 30, 362. [Google Scholar] [CrossRef]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Valenzuela-Grijalva, N.; Jiménez-Estrada, I.; Mariscal-Tovar, S.; López-García, K.; Pinelli-Saavedra, A.; Peña-Ramos, E.A.; Muhlia-Almazán, A.; Zamorano-García, L.; Valenzuela-Melendres, M.; González-Ríos, H. Effects of Ferulic Acid Supplementation on Growth Performance, Carcass Traits and Histochemical Characteristics. Animals 2021, 11, 2455. [Google Scholar] [CrossRef]
- Sinrod, A.J.G.; Shah, I.M.; Surek, E.; Barile, D. Uncovering the Promising Role of Grape Pomace as a Modulator of the Gut Microbiome: An in-Depth Review. Heliyon 2023, 9, e20499. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Romero, M.A.; Medrano-Vázquez, L.S.; Pinelli-Saavedra, A.; Sánchez-Villalba, E.; Valenzuela-Melendres, M.; Martínez-Téllez, M.Á.; Barrera-Silva, M.Á.; González-Ríos, H. Productive Performance, Physiological Variables, and Carcass Quality of Finishing Pigs Supplemented with Ferulic Acid and Grape Pomace under Heat Stress Conditions. Animals 2023, 13, 2396. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, C.S.; Martínez-Téllez, M.Á.; de la Rocha, R.V.; Sañudo-Barajas, A.J.A.; Quintana-Obregón, E.A. Characterization of Cabernet, Grenache, and Syrah Grape Marc Powders Produced in Northwestern Mexico. Emir. J. Food Agric. 2021, 33, 846–851. [Google Scholar]
- Chen, H.; Zuo, Y.; Deng, Y. Separation and Determination of Flavonoids and Other Phenolic Compounds in Cranberry Juice by High-Performance Liquid Chromatography. J. Chromatogr. A 2001, 913, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Goufo, P.; Singh, R.K.; Cortez, I. A Reference List of Phenolic Compounds (Including Stilbenes) in Grapevine (Vitis vinifera L.). Antioxidants 2020, 9, 398. [Google Scholar] [CrossRef]
- Mahfuz, S.; Shang, Q.; Piao, X. Phenolic Compounds as Natural Feed Additives in Poultry and Swine Diets: A Review. J. Anim. Sci. Biotechnol. 2021, 12, 48. [Google Scholar] [CrossRef]
- Menci, R.; Luciano, G.; Natalello, A.; Priolo, A.; Mangano, F.; Biondi, L.; Bella, M.; Scerra, M.; Lanza, M. Performance and Meat Quality in Pigs Fed Hydrolysable Tannins from Tara spinosa. Meat Sci. 2024, 207, 109364. [Google Scholar] [CrossRef]
- Natalello, A.; Luciano, G.; Morbidini, L.; Valenti, B.; Pauselli, M.; Frutos, P.; Biondi, L.; Rufino-Moya, P.J.; Lanza, M.; Priolo, A. Effect of Feeding Pomegranate Byproduct on Fatty Acid Composition of Ruminal Digesta, Liver, and Muscle in Lambs. J. Agric. Food Chem. 2019, 67, 4472–4482. [Google Scholar] [CrossRef]
- Kielkopf, C.; Bauer, W.; Urbatsch, I. Bradford Assay for Determining Protein Concentration. Cold Spring Harb Protoc. 2020, 4, 102269. [Google Scholar] [CrossRef] [PubMed]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Jin, G.; He, L.; Yu, X.; Zhang, J.; Ma, M. Antioxidant Enzyme Activities Are Affected by Salt Content and Temperature and Influence Muscle Lipid Oxidation during Dry-Salted Bacon Processing. Food Chem. 2013, 141, 2751–2756. [Google Scholar] [CrossRef]
- Marklund, S.; Marklund, G. Involvement of the Superoxide Anion Radical in the Autoxidation of Pyrogallol and a Convenient Assay for Superoxide Dismutase. Eur. J. Biochem. 1974, 47, 469–474. [Google Scholar] [CrossRef]
- Gatellier, P.; Mercier, Y.; Renerre, M. Effect of Diet Finishing Mode (Pasture or Mixed Diet) on Antioxidant Status of Charolais Bovine Meat. Meat Sci. 2004, 67, 385–394. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of Gluthathione Peroxidase. Methods Enzymol. 1984, 105, 114–120. [Google Scholar] [CrossRef]
- Medrano Vázquez, L.S. Desempeño Productivo, Histomorfometría Del Epitelio Intestinal y Calidad de La Carne de Cerdos Finalizadores Suplementados Con Ácido Ferúlico y Orujo de Uva; Centro de Investigación en Alimentación y Desarrollo: Hermosillo, Mexico, 2023. [Google Scholar]
- Rodríguez, B.; Aranzazu, D.; Giraldo, G.; Alvarez, L.; Cano, E.; Isaza, B. Prevalencia de Enteropatía Proliferativa Porcina y Caracterización Histopatológica de Las Lesiones Asociadas En Cerdos Sacrificados En El Matadero Municipal de Medellín, Colombia. Rev. Colomb. Ciencias Pecu. 2004, 17, 11–19. [Google Scholar] [CrossRef]
- Karastergiou, A.; Gancel, A.-L.; Jourdes, M.; Teissedre, P.-L. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants 2024, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; He, Z.; Liu, M.; Tan, J.; Zhang, H.; Hou, D.X.; He, J.; Wu, S. Dietary Protocatechuic Acid Ameliorates Inflammation and Up-Regulates Intestinal Tight Junction Proteins by Modulating Gut Microbiota in LPS-Challenged Piglets. J. Anim. Sci. Biotechnol. 2020, 11, 92. [Google Scholar] [CrossRef]
- Iacopini, P.; Baldi, M.; Storchi, P.; Sebastiani, L. Catechin, Epicatechin, Quercetin, Rutin and Resveratrol in Red Grape: Content, in Vitro Antioxidant Activity and Interactions. J. Food Compos. Anal. 2008, 21, 589–598. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Generalić Mekinić, I. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef]
- Cai, L.; Li, Y.P.; Wei, Z.X.; Li, X.L.; Jiang, X.R. Effects of Dietary Gallic Acid on Growth Performance, Diarrhea Incidence, Intestinal Morphology, Plasma Antioxidant Indices, and Immune Response in Weaned Piglets. Anim. Feed Sci. Technol. 2020, 261, 114391. [Google Scholar] [CrossRef]
- Kozakowska, M.; Pietraszek-Gremplewicz, K.; Jozkowicz, A.; Dulak, J. The Role of Oxidative Stress in Skeletal Muscle Injury and Regeneration: Focus on Antioxidant Enzymes. J. Muscle Res. Cell Motil. 2015, 36, 377–393. [Google Scholar] [CrossRef]
- Pardo, Z.; Fernández-Fígares, I.; Lachica, M.; Lara, L.; Nieto, R.; Seiquer, I. Impact of Heat Stress on Meat Quality and Antioxidant Markers in Iberian Pigs. Antioxidants 2021, 10, 1911. [Google Scholar] [CrossRef]
- Pardo, Z.; Seiquer, I.; Lachica, M.; Nieto, R.; Lara, L.; Fernández-Fígares, I. Exposure of Growing Iberian Pigs to Heat Stress and Effects of Dietary Betaine and Zinc on Heat Tolerance. J. Therm. Biol. 2022, 106, 103230. [Google Scholar] [CrossRef]
- Chen, X.; Jia, G.; Liu, G.; Zhao, H.; Huang, Z. Effects of Apple Polyphenols on Myofiber-Type Transformation in Longissimus Dorsi Muscle of Finishing Pigs. Anim. Biotechnol. 2021, 32, 246–253. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xiao, Y.; Peng, Y.; He, J.; Chen, C.; Xiao, D.; Yin, Y.; Li, F. Mulberry Leaf Powder Regulates Antioxidative Capacity and Lipid Metabolism in Finishing Pigs. Anim. Nutr. 2021, 7, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Jiang, J.J.; Yu, J.; Mao, X.B.; Yu, B.; Chen, D.W. Effect of Dietary Supplementation with Mulberry (Morus alba L.) Leaves on the Growth Performance, Meat Quality, and Antioxidative Capacity of Finishing Pigs. J. Integr. Agric. 2019, 18, 143–151. [Google Scholar] [CrossRef]
- Powers, S.K.; Ji, L.L.; Kavazis, A.N.; Jackson, M.J. Reactive Oxygen Species: Impact on Skeletal Muscle. Compr. Physiol. 2011, 1, 941–969. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Tang, C.; Li, J.; Wang, Z.; Meng, F.; Luo, G.; Xin, H.; Zhong, J.; Wang, Y.; Li, B.; et al. The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits, and Meat Quality of Tibetan Pigs. Animals 2022, 12, 2743. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, Y.; Chen, X.; He, J.; Luo, Y.; Yu, B.; Chen, D.; Huang, Z. Dietary Short-Term Supplementation of Grape Seed Proanthocyanidin Extract Improves Pork Quality and Promotes Skeletal Muscle Fiber Type Conversion in Finishing Pigs. Meat Sci. 2024, 210, 109436. [Google Scholar] [CrossRef]
- Wang, W.; Wen, C.; Guo, Q.; Li, J.; He, S.; Yin, Y. Dietary Supplementation With Chlorogenic Acid Derived From Lonicera Macranthoides Hand-Mazz Improves Meat Quality and Muscle Fiber Characteristics of Finishing Pigs via Enhancement of Antioxidant Capacity. Front. Physiol. 2021, 12, 650084. [Google Scholar] [CrossRef] [PubMed]
- Renerre, M.; Dumont, F.; Gatellier, P. Antioxidant Enzyme Activities in Beef in Relation to Oxidation of Lipid and Myoglobin. Meat Sci. 1996, 43, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Simonetti, A.; Perna, A.; Gambacorta, E. Comparison of Antioxidant Compounds in Pig Meat from Italian Autochthonous Pig Suino Nero Lucano and a Modern Crossbred Pig before and after Cooking. Food Chem. 2019, 292, 108–112. [Google Scholar] [CrossRef]
- Han, X.Y.; Ma, Y.F.; Lv, M.Y.; Wu, Z.P.; Qian, L.C. Chitosan-Zinc Chelate Improves Intestinal Structure and Mucosal Function and Decreases Apoptosis in Ileal Mucosal Epithelial Cells in Weaned Pigs. Br. J. Nutr. 2014, 111, 1405–1411. [Google Scholar] [CrossRef]
- Maurer, L.H.; Betim-Cazarin, B.B.; Andreia Quatrin, A.; Machado-Minuzzi, N.; Costa, E.L.; Morarie, J.; Vellose, L.A.; Leal, R.F.; Rodrigues, E.; Bochi, V.C.; et al. Grape peel powder promotes intestinal barrier homeostasis in acute TNBS-colitis: A major role for dietary fiber and fiber-bound polyphenols. Food Res. Int. 2019, 123, 425–439. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Wu, S.; Li, B.; Tan, J.; Yan, J.; Wang, Y.; Tang, Z.; Liu, M.; Fu, C.; Zhang, H.; et al. Dietary Ferulic Acid and Vanillic Acid on Inflammation, Gut Barrier Function, and Growth Performance in Lipopolysaccharide-Challenged Piglets. Anim. Nutr. 2022, 8, 144–152. [Google Scholar] [CrossRef]
- Xu, M.; Chen, X.; Huang, Z.; Chen, D.; Li, M.; He, J.; Chen, H.; Zheng, P.; Yu, J.; Luo, Y.; et al. Effects of Dietary Grape Seed Proanthocyanidin Extract Supplementation on Meat Quality, Muscle Fiber Characteristics and Antioxidant Capacity of Finishing Pigs. Food Chem. 2022, 367, 130781. [Google Scholar] [CrossRef]
- Tian, X.; Li, D.; Zhao, X.; Xiao, Z.; Sun, J.; Yuan, T.; Wang, Y.; Zuo, X.; Yang, G.; Yu, T. Dietary Grape Pomace Extract Supplementation Improved Meat Quality, Antioxidant Capacity, and Immune Performance in Finishing Pigs. Front. Microbiol. 2023, 14, 1116022. [Google Scholar] [CrossRef]
- Bilić-Šobot, D.; Kubale, V.; Škrlep, M.; Čandek-Potokar, M.; Prevolnik Povše, M.; Fazarinc, G.; Škorjanc, D. Effect of Hydrolysable Tannins on Intestinal Morphology, Proliferation and Apoptosis in Entire Male Pigs. Arch. Anim. Nutr. 2016, 70, 378–388. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Li, C.; Horn, N.; Ajuwon, K.M. Quercetin Attenuates Deoxynivalenol-Induced Intestinal Barrier Dysfunction by Activation of Nrf2 Signaling Pathway in IPEC-J2 Cells and Weaned Piglets. Curr. Res. Toxicol. 2023, 5, 100122. [Google Scholar] [CrossRef]
- Liu, H.; Hu, J.; Mahfuz, S.; Piao, X. Effects of Hydrolysable Tannins as Zinc Oxide Substitutes on Antioxidant Status, Immune Function, Intestinal Morphology, and Digestive Enzyme Activities in Weaned Piglets. Animals 2020, 10, 757. [Google Scholar] [CrossRef] [PubMed]
- Biggs, M.E.; Kroscher, K.A.; Zhao, L.D.; Zhang, Z.; Wall, E.H.; Bravo, D.M.; Rhoads, R.P. Dietary Supplementation of Artificial Sweetener and Capsicum Oleoresin as a Strategy to Mitigate the Negative Consequences of Heat Stress on Pig Performance. J. Anim. Sci. 2020, 98, skaa131. [Google Scholar] [CrossRef] [PubMed]
Retention Time (min) | Area (%) | Absorbance Maximum (nm) | Identification |
---|---|---|---|
7.13 | 10.66 | 230, 270 | Gallic acid |
10.04 | 1.29 | 254, 298 | Protocatechuic acid |
12.50 | 1.96 | 282, 230, 326 s, 214 ps | NI |
12.53 | 2.03 | 230, 286, 330 | NI |
13.97 | 5.01 | 230, 278 | Catechin |
15.05 | 3.80 | 230, 282 | Catechin |
15.80 | 1.23 | 234, 254 | NI |
16.8 | 1.16 | 234, 282, 310 s | NI |
17.52 | 5.31 | 234, 282, 318 | NI |
18.44 | 6.32 | 234, 274, 354 s | Glycosidic flavonoid |
18.86 | 3.23 | 234, 278 | Epicatechin |
19.17 | 1.64 | 234, 278, 370 | Glycosidic flavonoid |
20.37 | 1.06 | 234, 278, 362 | Rutin derivative |
20.92 | 1.51 | 238, 274, 358 | Epicatechin |
21.05 | 1.02 | 238, 274, 358 | Rutin glycosidic derivative |
21.19 | - | 238, 278, 518 | Anthocyanin |
21.38 | 1.33 | 238, 278 | Epicatechin |
21.86 | 0.63 | 238, 278 | Epicatechin |
22.11 | 0.74 | 238, 278, 518 | Anthocyanin |
22.83 | 2.491 | 254, 302 s, 358 | Rutin |
23.03 | 4.311 | 234 s, 262, 390 s, 358 | Quercetin derivative |
23.61 | 0.09 | 220, 254, 298, 334 s, 414 s, 530 | Anthocyanin |
24.11 | 5.55 | 222, 214 h, 258, 530 | Anthocyanin |
25.34 | 0.76 | 222, 250, 322, 370 h, 574 | Anthocyanin |
34.47 | --- | 226, 258, 278 | NI |
Retention Time (min) | Absorbance Maximum (nm) | Identification |
---|---|---|
Phenolic Acid Fraction | ||
7.41 | 230, 270 | Gallic acid |
10.21 | 228, 258, 294 | Protocatechuic acid |
12.38 | 270, 338 s | NI |
13.98 | 238, 278 | NI |
14.27 | 266 | NI |
15.97 | 262, 290, 358, 370 | NI |
16.99 | 242, 338 | NI |
17.64 | 238, 274 | Catechin |
19.57 | 234, 242, 254, 298 s, 366 | NI |
21.11 | 238, 278 | Epicatechin |
22.02 | 222, 266, 350, 538 | Anthocyanin |
22.39 | 222 s, 254,298 s, 366 | NI |
28.34 | 242, 248 | NI |
Flavonoid Fraction | ||
23.8 | 238, 254, 266 s, 298 s, 358, 530 | Anthocyanin |
24.79 | 234, 242, 258, 278, 298 s, 350, 430 s, 530 | Anthocyanin |
24.91 | 222, 266, 298 s, 346, 530 | Anthocyanin |
25.19 | 238, 258, 310 s, 358 | |
26.53 | 246, 278 | Catechin |
26.60 | 250, 278 | Epicatechin |
26.96 | 242, 262, 370 | Quercetin derivative |
27.72 | 242, 278, 370 | Quercetin derivative |
30.21 | 298, 340 s, 534 | Anthocyanin |
Standard | Concentration (µg/g) | |
---|---|---|
1 | Gallic acid | 87.68 |
2 | Protocatechuic acid | 0.36 |
3 | Catechin | 79.58 |
4 | Epicatechin | 103.25 |
5 | Quercetin | 1.76 |
Treatment | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
FA, mg | 0 | 25 | SEM | FA | GP | FA × GP | |||
GP, % | 0 | 2.5 | 0 | 2.5 | |||||
CAT, U/mg | 0.043 | 0.088 | 0.037 | 0.077 | 0.012 | 0.506 | 0.009 | 0.860 | |
SOD, U/mg | 0.065 | 0.220 | 0.064 | 0.231 | 0.049 | 0.925 | 0.011 | 0.896 | |
GPx, U/mg | 0.006 | 0.023 | 0.008 | 0.023 | 0.005 | 0.800 | 0.010 | 0.830 |
Variable | Treatment | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
FA, mg | 0 | 25 | SEM | FA | GP | FA × GP | |||
GP, % | 0 | 2.5 | 0 | 2.5 | |||||
Duodenum | |||||||||
Villus height (µm) | 1705.8 a | 1988 ab | 2302.8 b | 1740.2 a | 68.46 | 0.090 | 0.160 | 0.001 | |
Base width (µm) | 386.4 a | 491.5 b | 451.1 ab | 410.5 a | 23.47 | 0.730 | 0.190 | 0.001 | |
Medium width (µm) | 448.04 | 551.7 | 479.1 | 494.9 | 23.65 | 0.767 | 0.112 | 0.326 | |
Tip width (µm) | 392.6 | 459.2 | 382.4 | 408.9 | 19.55 | 0.140 | 0.030 | 0.320 | |
Crypt depth (µm) | 1379.0 | 1284.6 | 1303.6 | 1366.9 | 0.05 | 0.940 | 0.739 | 0.110 | |
V–C ratio | 1.25 a | 1.54 ab | 1.77 b | 1.27 a | 0.00 | 0.130 | 0.229 | 0.001 | |
Jejunum | |||||||||
Villus height (µm) | 1534.7 a | 1818.7 b | 1878.4 b | 1528.9 a | 134 | 0.840 | 0.810 | 0.030 | |
Base width (µm) | 359.4 a | 483.2 b | 336.4 a | 375.0 a | 19.6 | 0.001 | 0.001 | 0.046 | |
Medium width (µm) | 439.7 | 457.25 | 384.9 | 496.7 | 37.2 | 0.830 | 0.101 | 0.223 | |
Tip width (µm) | 334.1 | 398.9 | 282.4 | 358.0 | 24.2 | 0.069 | 0.010 | 0.825 | |
Crypt depth (µm) | 1133.5 | 1361.6 | 1322.7 | 1250.3 | 76.4 | 0.610 | 0.323 | 0.069 | |
V–C ratio | 1.39 | 1.37 | 1.438 | 1.23 | 0.12 | 0.836 | 0.316 | 0.547 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ospina-Romero, M.A.; Medrano-Vázquez, L.S.; Pinelli-Saavedra, A.; Barrera-Silva, M.Á.; Valenzuela-Melendres, M.; Martínez-Téllez, M.Á.; Osuna-Chávez, R.F.; Robles-Burgueño, M.d.R.; González-Rios, H. Grape Pomace and Ferulic Acid Improve Antioxidant Enzyme Activity and Gut Histomorphometry in Heat-Stressed Finishing Pigs. Animals 2025, 15, 2382. https://doi.org/10.3390/ani15162382
Ospina-Romero MA, Medrano-Vázquez LS, Pinelli-Saavedra A, Barrera-Silva MÁ, Valenzuela-Melendres M, Martínez-Téllez MÁ, Osuna-Chávez RF, Robles-Burgueño MdR, González-Rios H. Grape Pomace and Ferulic Acid Improve Antioxidant Enzyme Activity and Gut Histomorphometry in Heat-Stressed Finishing Pigs. Animals. 2025; 15(16):2382. https://doi.org/10.3390/ani15162382
Chicago/Turabian StyleOspina-Romero, María A., Leslie S. Medrano-Vázquez, Araceli Pinelli-Saavedra, Miguel Ángel Barrera-Silva, Martín Valenzuela-Melendres, Miguel Ángel Martínez-Téllez, Reyna Fabiola Osuna-Chávez, María del Refugio Robles-Burgueño, and Humberto González-Rios. 2025. "Grape Pomace and Ferulic Acid Improve Antioxidant Enzyme Activity and Gut Histomorphometry in Heat-Stressed Finishing Pigs" Animals 15, no. 16: 2382. https://doi.org/10.3390/ani15162382
APA StyleOspina-Romero, M. A., Medrano-Vázquez, L. S., Pinelli-Saavedra, A., Barrera-Silva, M. Á., Valenzuela-Melendres, M., Martínez-Téllez, M. Á., Osuna-Chávez, R. F., Robles-Burgueño, M. d. R., & González-Rios, H. (2025). Grape Pomace and Ferulic Acid Improve Antioxidant Enzyme Activity and Gut Histomorphometry in Heat-Stressed Finishing Pigs. Animals, 15(16), 2382. https://doi.org/10.3390/ani15162382