Effects of Replacing Soybean Meal with Enzymatically Fermented Citric Waste Pellets on In Vitro Rumen Fermentation, Degradability, and Gas Production Kinetics
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Dietary Preparation
2.2. Experimental Design and Feed Composition
2.3. Ruminal Fluid Donors and Substrates of Inoculum
2.4. Sample Collection and Analysis
2.4.1. Gas Production Kinetics
2.4.2. In Vitro Degradability (IVDMD and IVOMD)
2.4.3. Fermentation Characteristics
2.4.4. Microbial Enumeration
2.5. Statistical Analysis
3. Results
3.1. Nutritional Composition of Diet
3.2. Gas Production Kinetics and Cumulative Gas Output
3.3. In Vitro Degradability
3.4. Ruminal pH, Ammonia Nitrogen (NH3–N), and Protozoan Population
3.5. Ruminal Volatile Fatty Acid (VFA) Profile
4. Discussions
4.1. Nutritional Composition of Diet
4.2. Gas Production Kinetics and Cumulative Gas Output
4.3. In Vitro Degradability
4.4. Ruminal pH, NH3-N, and Protozoal Population
4.5. Ruminal Volatile Fatty Acid (VFA) Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casasús, I.; Villalba, D.; Joy, M.; Costa-Roura, S.; Blanco, M. Replacement of soya bean meal and corn by field peas in young bulls fattening diets: Performance, rumen fermentation, nitrogen use and metabolism. Anim. Feed. Sci. Technol. 2025, 322, 116273. [Google Scholar] [CrossRef]
- Jalal, H.; Sucu, E.; Cavallini, D.; Giammarco, M.; Akram, M.Z.; Karkar, B.; Gao, M.; Pompei, L.; Eduardo, J.; Prasinou, P.; et al. Rumen fermentation profile and methane mitigation potential of mango and avocado byproducts as feed ingredients and supplements. Sci. Rep. 2025, 15, 16164. [Google Scholar] [CrossRef]
- Gasparini, M.; Brambilla, G.; Menotta, S.; Albrici, G.; Avezzù, V.; Vitali, R.; Buonaiuto, G.; Lamanna, M.; Cavallini, D. Sustainable dairy farming and fipronil risk in circular feeds: Insights from an Italian case study. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2024, 41, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Kanakai, N.; Wongtangtintharn, S.; Suriyapha, C.; Prachumchai, R.; Suntara, C.; Lunpha, A.; Pilajun, R.; Chanjula, P.; Cherdthong, A. Effect of citric waste fermented with yeast waste pellet and roughage-to-concentrate ratio on gas production, digestibility, and fermentation characteristics using an in vitro gas production technique. BMC Vet. Res. 2025, 21, 386. [Google Scholar] [CrossRef]
- Maqbool, Z.; Khalid, W.; Atiq, H.T.; Koraqi, H.; Javaid, Z.; Alhag, S.K.; Al-Farga, A. Citrus waste as source of bioactive compounds: Extraction and utilization in health and food industry. Molecules 2023, 28, 1636. [Google Scholar] [CrossRef]
- Suriyapha, C.; Cherdthong, A.; Suntara, C.; Polyorach, S. Utilization of yeast waste fermented citric waste as a protein source to replace soybean meal and various roughage to concentrate ratios on in vitro rumen fermentation, gas kinetics, and feed digestion. Fermentation 2021, 7, 120. [Google Scholar] [CrossRef]
- Gholami Banadkoki, O.; Sokhansanj, S.; Lau, A. Analysis of the pelletability of vegetable crop foliage using a commercial flat die pellet mill. Energies 2025, 18, 2284. [Google Scholar] [CrossRef]
- Carrillo-Díaz, M.I.; Miranda-Romero, L.A.; Chávez-Aguilar, G.; Zepeda-Batista, J.L.; González-Reyes, M.; García-Casillas, A.C.; Tirado-González, D.N.; Tirado-Estrada, G. Improvement of ruminal neutral detergent fiber degradability by obtaining and using exogenous fibrolytic enzymes from white-rot fungi. Animals 2022, 12, 843. [Google Scholar] [CrossRef] [PubMed]
- Beigh, Y.A.; Ganai, A.M.; Ahmad, H.A.; Farooq, J.; Sheikh, G.G.; Reshi, P.A.; Haq, Z. Effect of exogenous fibrolytic enzymes cocktail incorporation on in vitro degradation and fermentation characteristics of oats straw-based total mixed ration. Indian J. Anim. Sci. 2023, 93, 10. [Google Scholar] [CrossRef]
- Kanakai, N.; Wongtangtintharn, S.; Suntara, C.; Cherdthong, A. Feeding pellets containing agro-industrial waste enhances feed utilization and rumen functions in Thai beef cattle. Animals 2023, 13, 3861. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Schofield, P. Gas production methods. In Farm Animal Metabolism and Nutrition; D’Mello, J.P.F., Ed.; CABI Publishing: Ithaca, NY, USA, 2000; pp. 209–232. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/STAT User’s Guide, 4th ed.; Version 6; SAS Institute Inc.: Cary, NC, USA, 1990; Volume 2. [Google Scholar]
- Meale, S.J.; Beauchemin, K.A.; Hristov, A.N.; Chaves, A.V.; McAllister, T.A. Opportunities and challenges in using exogenous enzymes to improve ruminant production. J. Anim. Sci. 2014, 92, 427–442. [Google Scholar] [CrossRef]
- Acharya, P.; Fasim, A.; More, V.S.; Shivaram, A.K.; More, S.S. Enzyme technology in value addition of dairy and milk production. In Value-Addition in Beverages through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 77–96. [Google Scholar]
- Firkins, J.L.; Henderson, E.L.; Duan, H.; Pope, P.B. International Symposium on Ruminant Physiology: Current perspective on rumen microbial ecology to improve fiber digestibility. J. Dairy Sci. 2025, 108, 7511–7529. [Google Scholar] [CrossRef] [PubMed]
- Song, S.D.; Chen, G.J.; Guo, C.H.; Rao, K.Q.; Gao, Y.H.; Peng, Z.L.; Chen, Z.H. Effects of exogenous fibrolytic enzyme supplementation to diets with different NFC/NDF ratios on the growth performance, nutrient digestibility, and ruminal fermentation in Chinese domesticated black goats. Anim. Feed. Sci. Technol. 2018, 236, 170–177. [Google Scholar] [CrossRef]
- Martins, L.F.; Oh, J.; Harper, M.; Melgar, A.; Räisänen, S.E.; Chen, X.; Nedelkov, K.; Karnezos, T.P.; Hristov, A.N. Effects of an exogenous enzyme preparation extracted from a mixed culture of Aspergillus spp. on lactational performance, metabolism, and digestibility in primiparous and multiparous cows. J. Dairy Sci. 2022, 105, 7344–7353. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.M.; Mantovani, H.C.; Vedovatto, M.; Cardoso, A.S.; Rodrigues, A.A.; Homem, B.G.C.; de Abreu, M.J.I.; Rodrigues, A.N.; Cursino Batista, L.H.; de Oliveira, J.S.; et al. Impact of dietary exogenous feed enzymes on performance, nutrient digestibility, and ruminal fermentation parameters in beef cattle: A meta-analysis. Animal 2025, 19, 101481. [Google Scholar] [CrossRef]
- Fathy, E.-H.; Hanafy, M.; Abdul-Aziz, G.; Ahmed, E.; Hassan, A. Effect of using yeast, fibrolytic enzymes and their mixture on in vitro ruminal fermentation characteristics. Egypt. J. Vet. Sci. 2024, 56, 483–491. [Google Scholar] [CrossRef]
- Chaucheyras-Durand, F.; Chevaux, E.; Martin, C.; Forano, E. Rumen pH, fibre degradation, and microbiota according to the diet. In Probiotics in Animals; Springer: Dordrecht, The Netherlands, 2012; p. 119. [Google Scholar]
- Cherdthong, A.; Sumadong, P.; Foiklang, S.; Milintawisamai, N.; Wanapat, M.; Chanjula, P.; Gunun, N.; Gunun, P. Effect of post-fermentative yeast biomass as a substitute for soybean meal on feed utilization and rumen ecology in Thai native beef cattle. Animals 2019, 9, 660. [Google Scholar] [CrossRef]
- Amin, A.B.; Mao, S. Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Anim. Nutr. 2021, 7, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, W.; Xing, X.; Li, X.; Zheng, D.; Bao, H.; Xing, L. Effects of ferroferric oxide on propionate methanogenesis in sequencing batch reactors: Microbial community structure and metagenomic analysis. Bioresour. Technol. 2022, 363, 127909. [Google Scholar] [CrossRef]
- Jeong, J.; Yu, C.; Kang, R.; Kim, M.; Park, T. Application of propionate-producing bacterial consortium in ruminal methanogenesis inhibited environment with bromoethanesulfonate as a methanogen direct inhibitor. Front. Vet. Sci. 2024, 11, 1422474. [Google Scholar] [CrossRef]
- Hodge, I.; Quille, P.; Ayyachamy, M.; O’Connell, S. In vitro comparison of naturally bioactive plant extracts, essential oils, and marine algae targeting different modes of action for mitigation of enteric methane emissions in ruminants. Front. Anim. Sci. 2025, 6, 1546486. [Google Scholar] [CrossRef]
- Zhao, S.; Li, P.; Fang, H.; Song, L.; Li, D.; Liu, R.; Niu, Q. Enhancement methane fermentation of Enteromorpha prolifera waste by Saccharomyces cerevisiae: Batch kinetic investigation, dissolved organic matter characterization, and synergistic mechanism. Environ. Sci. Pollut. Res. 2020, 27, 16254–16267. [Google Scholar] [CrossRef]
- Cuervo, W.; Gomez-Lopez, C.; DiLorenzo, N. Methane synthesis as a source of energy loss impacting microbial protein synthesis in beef cattle—A review. Methane 2025, 4, 10. [Google Scholar] [CrossRef]
- Fernandez-Marenchino, I.; Garcia, L.; Maderal, A.; Tarnonsky, F.; Podversich, F.; Vargas, J.D.J.; Cuervo, W.; Gomez-Lopez, C.; Schulmeister, T.M.; Yoon, I.; et al. Assessing the effects of supplementation with a Saccharomyces cerevisiae fermentation-derived postbiotic on methane production, ruminal fermentation, and nutrient utilization in beef cattle. J. Anim. Sci. 2025, 103, skaf223. [Google Scholar] [CrossRef]
- Ferreira, I.M.; Mantovani, H.C.; Viquez-Umana, F.; Granja-Salcedo, Y.T.; E Silva, L.F.C.; Koontz, A.; Holder, V.; Pettigrew, J.E.; Rodrigues, A.A.; Rodrigues, A.N.; et al. Feeding amylolytic and fibrolytic exogenous enzymes in feedlot diets: Effects on ruminal parameters, nitrogen balance and microbial diversity of Nellore cattle. J. Anim. Sci. Biotechnol. 2025, 16, 96. [Google Scholar] [CrossRef] [PubMed]
Item | Control | Replacement of SBM (%) | Rice Straw | CWYWP | CWYWEP | |||||
---|---|---|---|---|---|---|---|---|---|---|
SBM, 100% | SBM/CWYWP | SBM/CSYWEP | ||||||||
66:33 | 33:66 | 0:100 | 66:33 | 33:66 | 0:100 | |||||
Ingredients (% DM) | ||||||||||
Cassava chips | 50 | 50 | 50 | 50 | 50 | 50 | 50 | |||
Rice bran | 10 | 10 | 10 | 10 | 10 | 10 | 10 | |||
Soybean meal | 15 | 10 | 5 | 0 | 10 | 5 | 0 | |||
CWYWP | 0 | 5 | 10 | 15 | 0 | 0 | 0 | |||
CWYWEP | 0 | 0 | 0 | 0 | 5 | 10 | 15 | |||
Palm kernel meal | 11 | 11 | 11 | 11 | 11 | 11 | 11 | |||
Corn | 7.7 | 7.8 | 7.9 | 8 | 8 | 8.1 | 8.2 | |||
Urea | 1.3 | 1.2 | 1.1 | 1 | 1 | 0.9 | 0.8 | |||
Mineral premix | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
Molasses, liquid | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | |||
Salt | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |||
Pure sulfur | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | |||
Chemical composition | ||||||||||
Dry matter (%) | 93.30 | 93.40 | 93.70 | 93.60 | 93.70 | 94.60 | 93.30 | 94.10 | 93.10 | 93.40 |
----------------% Dry matter--------------- | ||||||||||
Organic matter | 96.50 | 96.30 | 95.80 | 95.40 | 96.10 | 94.40 | 95.10 | 99.30 | 90.10 | 89.30 |
Ash | 3.50 | 3.70 | 4.20 | 4.60 | 3.90 | 5.60 | 4.90 | 0.70 | 9.90 | 10.70 |
Crude protein | 14.30 | 14.40 | 14.30 | 14.30 | 14.30 | 14.40 | 14.40 | 2.80 | 49.00 | 50.40 |
Ether extract | 3.90 | 3.80 | 3.60 | 3.60 | 3.30 | 3.60 | 3.40 | 0.60 | 1.80 | 1.90 |
Neutral detergent fiber | 19.30 | 21.60 | 22.40 | 22.20 | 17.80 | 17.80 | 21.90 | 71.20 | 37.70 | 33.00 |
Acid detergent fiber | 10.30 | 13.20 | 14.60 | 17.20 | 13.00 | 14.20 | 14.70 | 45.30 | 26.90 | 25.50 |
Protein Source | SBM Replacement Ratio | Gas Kinetics | Cumulative Gas (96 h) mL/0.5 g DM Substrate | ||
---|---|---|---|---|---|
b | c | L | |||
Control | 100:0 | 77.53 a | 0.055 | 0.28 c | 82.60 a |
CWYWP | 66:33 | 60.98 bc | 0.052 | 0.27 c | 67.80 bc |
33:66 | 41.99 c | 0.049 | 0.30 bc | 52.80 b | |
0:100 | 67.03 a | 0.049 | 0.33 b | 70.20 ab | |
CWYWEP | 66:33 | 62.98 ab | 0.046 | 0.17 d | 76.60 ab |
33:66 | 67.49 a | 0.044 | 0.65 ab | 85.40 a | |
0:100 | 71.43 a | 0.049 | 1.00 a | 93.70 a | |
SEM | 6.28 | 0.010 | 0.14 | 7.79 | |
Orthogonal polynomials | |||||
Linear | <0.05 | 0.29 | <0.05 | 0.06 | |
Quadratic | 0.11 | 0.70 | 0.46 | <0.05 | |
Cubic | 0.53 | 0.51 | 0.43 | 0.17 | |
Orthogonal contrast | |||||
Control vs. CWYWP | 0.74 | 0.96 | 0.52 | 0.73 | |
Control vs. CWYWEP | 0.37 | 0.80 | 0.91 | 0.61 | |
CWYWP vs. CWYWEP | 0.53 | 0.29 | <0.05 | <0.05 |
Protein Source | SBM Replacement Ratio | IVDMD (% DM) | IVOMD (% DM) | ||
---|---|---|---|---|---|
24 h | 48 h | 24 h | 48 h | ||
Control | 100:0 | 40.99 | 56.11 a | 78.48 | 86.78 |
CWYWP | 66:33 | 39.52 | 53.97 b | 79.17 | 84.93 |
33:66 | 40.37 | 54.21 b | 79.48 | 86.52 | |
0:100 | 39.64 | 56.21 ab | 78.96 | 86.85 | |
CWYWEP | 66:33 | 41.64 | 59.11 a | 78.83 | 87.11 |
33:66 | 42.85 | 59.02 a | 79.54 | 87.10 | |
0:100 | 41.19 | 61.32 a | 79.83 | 88.12 | |
SEM | 1.35 | 1.53 | 0.51 | 1.11 | |
Orthogonal polynomials | |||||
Linear | 0.58 | 0.07 | 0.12 | 0.96 | |
Quadratic | 0.78 | <0.05 | 0.99 | 0.34 | |
Cubic | 0.50 | 0.19 | 0.47 | 0.17 | |
Orthogonal contrast | |||||
Control vs. CWYWP | 0.46 | <0.01 | 0.72 | 0.34 | |
Control vs. CWYWEP | 0.86 | 0.50 | 0.31 | 0.29 | |
CWYWP vs. CWYWEP | 0.07 | <0.01 | 0.61 | 0.90 |
Protein Source | SBM Replacement Ratio | pH | Ammonia Nitrogen Concentration (mg/dL) | Protozoal Count (×105 cell/mL) | |||
---|---|---|---|---|---|---|---|
2 h | 4 h | 2 h | 4 h | 2 h | 4 h | ||
Control | 100:0 | 7.05 | 7.02 | 17.13 | 18.99 | 2.33 | 2.33 |
CWYWP | 66:33 | 7.05 | 7.07 | 16.13 | 17.27 | 2.67 | 2.80 |
33:66 | 7.12 | 7.03 | 16.63 | 17.18 | 2.67 | 2.43 | |
0:100 | 7.14 | 7.03 | 17.03 | 17.34 | 2.33 | 2.80 | |
CWYWEP | 66:33 | 7.07 | 7.02 | 16.49 | 18.64 | 2.33 | 2.93 |
33:66 | 7.05 | 7.04 | 16.58 | 18.58 | 2.00 | 2.83 | |
0:100 | 7.06 | 7.03 | 17.09 | 19.06 | 1.83 | 2.60 | |
SEM | 0.02 | 0.02 | 0.49 | 0.98 | 0.37 | 0.28 | |
Orthogonal polynomials | |||||||
Linear | 0.74 | 0.83 | 0.79 | 0.43 | 0.25 | 0.37 | |
Quadratic | 0.10 | 0.65 | 0.24 | 0.15 | 0.91 | 0.24 | |
Cubic | 0.41 | 0.23 | 0.14 | 0.37 | 0.58 | 0.68 | |
Orthogonal contrasts | |||||||
Control vs. CWYWP | 0.16 | 0.81 | 0.71 | 0.27 | 0.36 | 0.18 | |
Control vs. CWYWEP | 0.68 | 0.65 | 0.90 | 0.96 | 0.24 | 0.43 | |
CWYWP vs. CWYWEP | 0.06 | 0.57 | 0.74 | 0.08 | 0.09 | 0.64 |
Protein Source | SBM Replacement Ratio | Total VFA (mM/L) | Acetic Acid (C2% of TVFA) | Propionic Acid (C3% of TVFA) | Butyric Acid (C4% of TVFA) | C2/C3 Ratio | Methane (mmol/g DM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 h | 4 h | 2 h | 4 h | 2 h | 4 h | 2 h | 4 h | 2 h | 4 h | 2 h | 4 h | ||
Control | 100:0 | 76.98 | 81.55 ab | 64.67 | 65.73 cd | 22.34 a | 21.93 | 12.99 | 12.34 | 2.90 | 2.99 | 27.7 ab | 28.03 |
CWYWP | 66:33 | 76.48 | 79.17 b | 65.69 | 64.94 d | 21.85 b | 22.56 | 12.46 | 12.50 | 3.01 | 3.00 | 28.0 b | 27.58 |
33:66 | 75.79 | 79.11 b | 66.06 | 66.05 cd | 21.58 b | 21.82 | 12.36 | 12.13 | 3.06 | 3.03 | 28.2 b | 28.01 | |
0:100 | 78.65 | 86.42 ab | 64.98 | 67.11 ab | 21.92 ab | 21.42 | 13.10 | 11.47 | 2.99 | 3.13 | 28.0 b | 28.41 | |
CWYWEP | 66:33 | 84.44 | 98.57 a | 65.44 | 67.62 a | 22.27 a | 21.16 | 12.29 | 11.22 | 2.92 | 3.19 | 27.7 ab | 28.61 |
33:66 | 81.35 | 98.13 a | 65.10 | 66.72 abc | 22.39 a | 21.80 | 12.51 | 11.48 | 2.81 | 3.06 | 27.7 ab | 28.15 | |
0:100 | 80.71 | 99.63 a | 64.57 | 65.57 cd | 23.03 a | 22.45 | 12.40 | 11.98 | 2.90 | 2.92 | 27.4 a | 27.69 | |
SEM | 2.61 | 5.96 | 0.49 | 0.36 | 0.30 | 0.22 | 0.56 | 1.00 | 0.06 | 0.05 | 1.30 | 0.03 | |
Orthogonal polynomials | |||||||||||||
Linear | 0.78 | 0.06 | 0.40 | <0.05 | 0.07 | 0.59 | 0.72 | 0.07 | 0.11 | 0.23 | 0.15 | 0.35 | |
Quadratic | 0.13 | 0.14 | 0.17 | <0.05 | 0.26 | 0.05 | 0.20 | 0.31 | 0.20 | 0.05 | 0.21 | 0.09 | |
Cubic | 0.14 | 0.32 | 0.57 | 0.07 | 0.84 | 0.09 | 0.73 | 0.20 | 0.88 | 0.07 | 0.73 | 0.05 | |
Orthogonal contrasts | |||||||||||||
Control vs. CWYWP | 0.31 | <0.05 | 0.46 | 0.17 | 0.47 | 0.70 | 0.21 | 0.10 | 0.48 | 0.44 | 0.58 | 0.49 | |
Control vs. CWYWEP | 0.89 | 0.22 | 0.81 | 0.61 | 0.87 | 0.51 | 0.81 | 0.13 | 0.66 | 0.80 | 0.52 | 0.98 | |
CWYWP vs. CWYWEP | 0.13 | <0.05 | 0.06 | 0.06 | <0.05 | 0.48 | 0.19 | 0.06 | 0.05 | 0.23 | <0.05 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagaew, G.; Cheas, S.; Suntara, C.; Supapong, C.; Cherdthong, A. Effects of Replacing Soybean Meal with Enzymatically Fermented Citric Waste Pellets on In Vitro Rumen Fermentation, Degradability, and Gas Production Kinetics. Animals 2025, 15, 2351. https://doi.org/10.3390/ani15162351
Dagaew G, Cheas S, Suntara C, Supapong C, Cherdthong A. Effects of Replacing Soybean Meal with Enzymatically Fermented Citric Waste Pellets on In Vitro Rumen Fermentation, Degradability, and Gas Production Kinetics. Animals. 2025; 15(16):2351. https://doi.org/10.3390/ani15162351
Chicago/Turabian StyleDagaew, Gamonmas, Seangla Cheas, Chanon Suntara, Chanadol Supapong, and Anusorn Cherdthong. 2025. "Effects of Replacing Soybean Meal with Enzymatically Fermented Citric Waste Pellets on In Vitro Rumen Fermentation, Degradability, and Gas Production Kinetics" Animals 15, no. 16: 2351. https://doi.org/10.3390/ani15162351
APA StyleDagaew, G., Cheas, S., Suntara, C., Supapong, C., & Cherdthong, A. (2025). Effects of Replacing Soybean Meal with Enzymatically Fermented Citric Waste Pellets on In Vitro Rumen Fermentation, Degradability, and Gas Production Kinetics. Animals, 15(16), 2351. https://doi.org/10.3390/ani15162351