Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection and Processing
2.2. Data Statistics and Analysis Methods
2.2.1. Body Length–Body Weight Relationship
2.2.2. Growth Equation, Growth Rate Equation, and Growth Acceleration Equation
Body weight growth equation: Wt = W∞ (1 − e−k(t−t0))b;
Body length growth rate equation: dL/dt = L∞ k e−k(t−t0);
Body weight growth rate equation: dW/dt = b W∞ k e−k(t−t0) (1 − e−k(t−t0))b−1;
Body length growth acceleration equation: d2L/dt2 = −L∞k2e−k(t−t0);
Body weight Growth Acceleration Equation: d2W/dt2 = bW∞k2e − k (t − t0) (1 − e−k(t−t0))b−2 (be−k(t−t0) − 1);
Inflection point age: ti = ln b/k + t0;
Critical age: tc = [Kt0 − lnM + ln (bK + M)]/K;
Growth performance index: φ = lgk + 2 lgL∞;
2.2.3. Mortality Characteristics and Exploitation Rate
2.2.4. Relative Yield per Recruit and Biomass per Recruit
3. Results
3.1. Group Structure
3.2. Body Length–Body Weight Relationship
3.3. Growth Equation, Growth Velocity Equation, and Growth Acceleration Equation
3.4. Mortality Characteristics and Exploitation Rate
3.5. Relative Yield per Recruit and Biomass per Recruit
4. Discussion
4.1. Population Structure and Growth Characteristics
4.2. Resource Dynamics and Exploration Rate
4.3. Conservation Measures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, F.P.; Zhang, Y.Q.; Xu, Z.X.; Teng, J.; Liu, C.M.; Liu, W.F.; Mpelasoka, F. The impact of climate change on runoff in the southeastern Tibetan Plateau. J. Hydrol. 2013, 505, 188–201. [Google Scholar] [CrossRef]
- Zhang, J.W.; Yan, Y.N.; Zhao, Z.Q.; Liu, X.M.; Li, X.D.; Zhang, D.; Ding, H.; Meng, J.L.; Liu, C.Q. Spatiotemporal variation of Li isotopes in the Yarlung Tsangpo River basin (upper reaches of the Brahmaputra River): Source and process. Earth. Planet. Sci. Lett. 2022, 600, 117875. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, P.; Li, X.D.; Yang, S.X.; Chao, X.; Liu, H.Q.; Ba, S. Distribution patterns and community assembly processes of eukaryotic microorganisms along an altitudinal gradient in the middle reaches of the Yarlung Zangbo River. Water Res. 2023, 239, 120047. [Google Scholar] [CrossRef] [PubMed]
- Li, C.Y.; Hao, J.S.; Zhang, G.T.; Fang, H.Y.; Wang, Y.; Lu, H.J. Runoff variations affected by climate change and human activities in Yarlung Zangbo River, southeastern Tibetan Plateau. Catena 2023, 230, 107184. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, G.; Ye, C.; Liu, W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan Plateau. J. Hazard. Mater. 2019, 361, 283–293. [Google Scholar] [CrossRef]
- Tian, P.P.; Lu, H.W.; Feng, W.; Guan, Y.L.; Xue, Y.X. Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. Catena 2020, 187, 104340. [Google Scholar] [CrossRef]
- Yao, Z.J.; Liu, J.; Huang, H.Q.; Song, X.F.; Dong, X.H.; Liu, X. Characteristics of isotope in precipitation, river water and lake water in the Manasarovar basin of Qinghai-Tibet Plateau. Environ. Geol. 2009, 57, 551–556. [Google Scholar] [CrossRef]
- Wang, X.D.; Zhong, X.H.; Liu, S.Z.; Liu, J.G.; Wang, Z.Y.; Li, M.H. Regional assessment of environmental vulnerability in the Tibetan Plateau. Development and application of a new method. J. Arid Environ. 2008, 72, 1929–1939. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Wu, Y.H.; Yan, Y.P. Climate change over the Yarlung Zangbo River Basin during 1961–2005. J. Geosci. 2007, 17, 409–420. [Google Scholar] [CrossRef]
- Chien, H.; Yeh, P.J.F.; Knouft, J.H. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. J. Hydrol. 2013, 491, 73–88. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Hao, F.; Wu, Y.; Li, C.; Xu, Y. Evaluating the contributions of climate change and human activities to runoff in typical semi-arid area, China. J. Hydrol. 2020, 590, 125555. [Google Scholar] [CrossRef]
- Feng, X.; Cheng, W.; Fu, B.; Lü, Y. The role of climatic and anthropogenic stresses on long-term runoff reduction from the Loess Plateau, China. Sci. Total Environ. 2016, 571, 688–698. [Google Scholar] [CrossRef]
- Bao, Z.; Zhang, J.; Wang, G.; Fu, G.; He, R.; Yan, X.; Jin, J.; Liu, Y.; Zhang, A. Attribution for decreasing streamflow of the Haihe River basin, northern China: Climate variability or human activities. J. Hydrol. 2012, 460–461, 117–129. [Google Scholar] [CrossRef]
- Cui, L.; Kou, X.; Sun, J.; Liu, R.; Gao, F.; Tan, J.; Soomro, S.; Wang, Y.; Kattle, G.R.; Shi, X. Fishway assessment and monitoring for endemic migratory fish using multiple techniques in high-altitude river systems: A case study from the Yarlung Zangbo River, Southeastern Tibetan Plateau. Glob. Ecol. Conserv. 2024, 56, e03325. [Google Scholar] [CrossRef]
- Li, F.P.; Xu, Z.X.; Feng, Y.C.; Liu, M.; Liu, W.F. Changes of land cover in the Yarlung Zangbo River basin from 1985 to 2005. Environ. Earth Sci. 2013, 68, 181–188. [Google Scholar] [CrossRef]
- Sun, W.C.; Wang, Y.Y.; Fu, Y.S.H.; Xue, B.L.; Wang, G.Q.; Yu, J.S.; Zuo, D.P.; Xu, Z.X. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. J. Hydrol. 2019, 574, 324–332. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.H.; Zhao, L.; Liu, Y.; Gao, F.Y.; Tang, J.M.; Wang, H.Y.; Chen, Z.X.; Wang, S.Y.; Li, G.H.; et al. Aeolian activity in the Yarlung Zangbo River Basin, southern Tibetan Plateau, began at 584 ka: Implications for the glaciation of the Tibetan Plateau. Quat. Sci. Rev. 2024, 337, 108799. [Google Scholar] [CrossRef]
- Liu, C.C.; Witonsky, D.; Gosling, A.; Hyeon, L.J.; Ringbauer, H.; Hagan, R.; Patel, N.; Stahl, R.; Novembre, J.; Aldenderfer, M.; et al. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat. Commun. 2022, 13, 1203. [Google Scholar] [CrossRef]
- Duan, Y.J.; Xie, C.X.; Zhou, X.; Ma, B.S.; Huo, B. Age and growth characteristics of Schizopygopsis younghusbandi Regan, 1905 in the Yarlung Tsangpo River in Tibet, China. J. Appl. Ichthyol. 2014, 30, 948–954. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, X.J.; Zhang, D.F.; Giorgi, F. Climate change over the Yarlung Zangbo-Brahmaputra River Basin in the 21st century as simulated by a high-resolution regional climate model. Quat. Int. 2011, 244, 159–168. [Google Scholar] [CrossRef]
- Ji, F.; Ma, B.; Wang, B. The Fisheries Resources and Environment Research Report of the Middle Reaches of the Yarlung Zangbo River; China Agriculture Press: Beijing, China, 2019. [Google Scholar]
- Jiang, X.; Xie, Z.; Chen, Y. Longitudinal patterns of macroinvertebrate communities in relation to environmental factors in a Tibetan-Plateau River system. Quat. Int. 2013, 304, 107–114. [Google Scholar] [CrossRef]
- Yi, X.; Lai, Q.; Shi, J.; Gao, P.; Zhou, K.; Qi, H.; Wang, H.; Me, Z. Nitrogenous waste excretion and gene expression of nitrogen transporter in Gymnocypris przewalskii in high alkaline environment. J. Fish. Sci. China 2017, 24, 681–689. [Google Scholar]
- Huo, B.; Xie, C.X.; Ma, B.S.; Yang, X.F.; Huang, H.P. Age and growth of Oxygymnocypris stewartii in the Yarlung Tsangpo River, Tibet, China. Zool. Stud. 2012, 51, 185–194. [Google Scholar]
- Zhou, X.; Xie, C.; Huo, B.; Duan, Y.; Yang, X.; Ma, B. Age and growth of Schizothorax waltoni (Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, China. J. Appl. Anim. Res. 2017, 45, 346–354. [Google Scholar] [CrossRef]
- Ma, B.S.; Xie, C.X.; Huo, B.; Yang, X.F.; Chen, S.S. Reproductive biology of Schizothorax o’connori (Cyprinidae: Schizothoracinae) in the Yarlung Zangbo River, Tibet. Zool. Stud. 2012, 51, 1066–1076. [Google Scholar]
- Zhou, X.J.; Xie, C.X.; Huo, B.; Duan, Y.J.; Yang, X.; Ma, B.S. Reproductive biology of Schizothorax waltoni (Cyprinidae: Schizothoracinae) in the Yarlung Zangbo River in Tibet, China. Environ. Biol. Fish. 2015, 98, 597–609. [Google Scholar] [CrossRef]
- Feng, X.; Jia, Y.T.; Zhu, R.; Chen, K.; Chen, Y.F. Characterization and analysis of the transcriptome in Gymnocypris selincuoensis on the Qinghai-Tibetan Plateau using single-molecule long-read sequencing and RNA-seq. DNA Res. 2019, 26, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, M.Z.; Wang, J.; Gong, Z.; Liu, M.; Liu, H.Z.; Lin, P.C. Species composition and longitudinal patterns of fish assemblages in the middle and lower Yarlung Zangbo River, Tibetan Plateau, China. Ecol. Indic. 2021, 125, 107542. [Google Scholar] [CrossRef]
- Li, L.; Ma, B.; Jin, X.; Wang, P.; Chen, Z.; Wang, N.; Wu, S.; Zhang, C.; Gong, J. Quantitative assessment of the priority conservation of Schizothoracinae fishes in the middle Yarlung Zangbo River. J. Fish. Sci. China 2019, 26, 914–924. [Google Scholar]
- He, D.K.; Sui, X.Y.; Sun, H.Y.; Tao, J.; Ding, C.Z.; Chen, Y.F.; Chen, Y.Y. Diversity, pattern and ecological drivers of freshwater fish in China and adjacent areas. Rev. Fish Biol. Fish. 2020, 30, 387–404. [Google Scholar] [CrossRef]
- Chen, Y.F.; He, D.K.; Cao, W.X.; Duan, Z.H. Growth of Selincuo schizothoracini (Gymnocypris selincuoensis) in Selincuo Lake. Tibet Platean. Acta Zool. Sin. 2002, 48, 667–676. [Google Scholar]
- Shen, W.S.; Li, H.D.; Sun, M.; Jiang, J. Dynamics of aeolian sandy land in the Yarlung Zangbo River basin of Tibet, China from 1975 to 2008. Global. Planet. Change 2012, 86, 37–44. [Google Scholar] [CrossRef]
- Zhang, P.; Xiong, J.; Qiao, N.Q.; An, R.Z.; Da, Z.; Miao, W.; Ba, S. Spatiotemporal distribution of protists in the Yarlung Zangbo River, Tibetan Plateau. Water Biol. Secur. 2022, 1, 100064. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land use and climate changes and their impacts on runoff in the Yarlung Zangbo River basin, China. Land Degrad. Dev. 2012, 25, 203–215. [Google Scholar] [CrossRef]
- Yu, Z.L.; Yan, N.; Wu, G.J.; Xu, T.L.; Li, F. Chemical weathering in the upstream and midstream reaches of the Yarlung Tsangpo basin, southern Tibetan Plateau. Chem. Geol. 2021, 559, 119906. [Google Scholar] [CrossRef]
- Bai, Q.Q.; Wang, L.; Cidang, Y.Z. Spatial and Temporal Variability of Rainfall Erosivity in the Niyang River Basin. Atmosphere 2024, 15, 1032. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Liu, K.F.; Dan, Z.; Gao, Q.Z.; Mima, C.; Lu, C.H. Runoff spatiotemporal variability driven by climate change and human activity for the Nianchu River Basin in Southwestern Tibet. J. Hydrol. Reg. Stud. 2025, 58, 102301. [Google Scholar] [CrossRef]
- Han, H.H.; Wang, L.; Zhang, C.; Li, H.C.; Ma, B. Population Structure, Growth Characteristics, Resource Dynamics, and Management Strategies of Schizopygopsis younghusbandi in Four Tributaries of the Yarlung Zangbo River, Tibet. Biology 2025, 14, 707. [Google Scholar] [CrossRef]
- Shao, J.; Ma, B.S.; Duan, Y.J.; Xie, C.X.; Lin, S.Q.; Zhou, X.J.; Huo, B. Population resources and fishery management policies of Schizopygopsis younghusbandi in the Yarlung Zangbo River, China. J. Appl. Ecol. 2019, 30, 2437–2446. [Google Scholar]
- Zheng, G.; Zhai, D.D.; Chen, J.; Liu, B.; Zhu, T.S. Landscape determinants of genetic structure for Schizopygopsis younghusbandi in the Yarlung Tsangpo River drainage, Tibetan Plateau. Ecol. Indic. 2023, 151, 110309. [Google Scholar] [CrossRef]
- Guo, C.; Wang, R.; Qu, X.; Xin, W.; Chen, Y.; Li, Z. Assessing fish assemblages in a shallow Yangtze River Lake using mulei-mesh gillnets and dense-mesh weirs. Acta Hydrobiol. Sin. 2018, 42, 1116–1123. [Google Scholar]
- Liu, Y.; Tang, S.; Li, D.; Gu, X.; Zhu, B.; Mao, G.; Zhang, T. Characteristics of the fish community structure in Jiangsu reach of the Huaihe River. J. Fish. Sci. China 2020, 27, 224–235. [Google Scholar]
- Lynch, A.J.; Myers, B.J.E.; Chu, C.; Eby, L.A.; Falke, J.A.; Kovach, R.P.; Krabbenhoft, T.J.; Kwak, T.J.; Lyons, J.; Paukert, C.P.; et al. Climate Change Effects on North American Inland Fish Populations and Assemblages. Fisheries 2016, 41, 346–361. [Google Scholar] [CrossRef]
- Nyboer, E.A.; Liang, C.; Chapman, L.J. Assessing the vulnerability of Africa’s freshwater fishes to climate change: A continent-wide trait-based analysis. Biol. Conserv. 2019, 236, 505–520. [Google Scholar] [CrossRef]
- Jaeger, K.L.; Olden, J.D.; Pelland, N.A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci. USA 2014, 111, 13894–13899. [Google Scholar] [CrossRef]
- Isaak, D.J.; Wollrab, S.; Horan, D.; Chandler, G. Climate change effects on stream and river temperatures across the northwest U.S. from 1980–2009 and implications for salmonid fishes. Clim. Change 2011, 113, 499–524. [Google Scholar] [CrossRef]
- Domisch, S.; Araújo, M.B.; Bonada, N.; Pauls, S.U.; Jähnig, S.C.; Affiliation, P.H. Modelling distribution in European stream macroinvertebrates under future climates. Glob. Change Biol. 2013, 19, 752–762. [Google Scholar] [CrossRef]
- Murua, H.; Rodriguez-Marin, E.; Neilson, J.D.; Farley, J.H.; Juan-Jordá, M.J. Fast versus slow growing tuna species: Age, growth, and implications for population dynamics and fisheries management. Rev. Fish Biol. Fish. 2017, 27, 733–773. [Google Scholar] [CrossRef]
- Denechaud, C.; Smoliński, S.; Geffen, A.J.; Godiksen, J.A.; Campana, S.E. A century of fish growth in relation to climate change, population dynamics and exploitation. Glob. Change Biol. 2020, 26, 5661–5678. [Google Scholar] [CrossRef] [PubMed]
- Foubert, A.; Lecomte, F.; Legendre, P.; Cusson, M. Spatial organization of fish communities in the St. Lawrence River: A test for longitudinal gradients and spatial heterogeneities in a large river system. Hydrobiologia 2018, 809, 155–173. [Google Scholar] [CrossRef]
- Zhou, C.W.; Zhou, Y.; Xu, L.H.; Liu, F.; Lei, L.; Gao, H.; Li, J.T.; Fu, S.X.; Duan, Y.T.; Tan, Y.G.; et al. Chromosome-level genome assembly and population genomic analysis provide insights into the genetic diversity and adaption of Schizopygopsis younghusbandi on the Tibetan Plateau. Integr. Zool. 2024, 0, 1–19. [Google Scholar] [CrossRef]
- Ricker, W.E. Linear regressions in fishery research. J. Fish. Res. Board Can. 1973, 30, 409–434. [Google Scholar] [CrossRef]
- Von Bertalanffy, L. A quantitative theory of organicgrowth (inquiries on growth laws. II). Hum. Biology 1973, 10, 181–213. [Google Scholar]
- Pauly, D. On the interrelationships between natural mortality growth parameters and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 1980, 39, 175–192. [Google Scholar] [CrossRef]
- Pauly, D. Fish population dynamics in tropical waters: A manual for use with programmable calculators. RICLARM Stud. Rev. 1984, 8, 1–325. [Google Scholar]
- Pauly, D. Length converted catch curves and the sea-sonal growth of fishes. ICLARM Fish. 1990, 8, 33. [Google Scholar]
- Buj, I.; Marčić, Z.; Flauder, E.; Šanda, R.; Vukić, J. Population Genetic Structure of Endemic Fish Species Facilitating Their Survival in Changing Environments—A Case Study on the Genus Telestes in Croatia. Diversity 2022, 14, 529. [Google Scholar] [CrossRef]
- Add: Andreychev, A.V.; Zhalilov, A.B.; Kuznetsov, V.A. The state of local steepe woodchuck (Marmota bobak) populations in the Republic of Mordovia. Zool. Zhurnal. 2015, 94, 723–730. [Google Scholar]
- Pecuchet, L.; Lindegren, M.; Hidalgo, M.; Delgado, M.; Esteban, A.; Fock, H.O.; Salo, L.G.D.; Punzón, A.; Sólmundsson, J.; Payne, M.R. From traits to life-history strategies: Deconstructing fish community composition across European seas. Glob. Ecol. Biogeogr. 2017, 26, 812–822. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.S.; Wang, X.A.; Wang, M.J.; He, R.H.; Wang, M. Distribution Pattern of Fish Richness in the Yarlung Zangbo River Basin. Diversity 2022, 14, 1142. [Google Scholar] [CrossRef]
- Rochet, M.J. A comparative approach to life-history strategies and tactics among four orders of teleost fish. ICES J. Mar. Sci. 2000, 27, 228–239. [Google Scholar] [CrossRef]
- Rochet, M.; Trenkel, V. Which community indicators can measure the impact of fishing? A review and proposals. Can. J. Fish. Aquat. Sci. 2003, 60, 86–99. [Google Scholar] [CrossRef]
- Mercier, L.; Panfili, J.; Paillin, C.; Ndiaye, A.; Mouillot, D.; Darnaude, A. Otolith reading and multi-model inference for improved estimation of age and growth in the gilthead seabream Sparus aurata (L.). Estuar. Coast. Shelf. Sci. 2011, 92, 534–545. [Google Scholar] [CrossRef]
- Rountrey, A.N.; Coulsin, P.G.; Meeuwig, J.J.; Meekan, M. Water temperature and fish growth: Otoliths predict growth patterns of a marine fish in a changing climate. Glob. Change Biol. 2014, 20, 2450–2458. [Google Scholar] [CrossRef]
- Musick, J.A. Ecology and conservation of long-lived marine animals. Am. Fish. Soc. Symp. 1999, 23, 1–10. [Google Scholar]
- Branstetter, S. Age and growth estimates for blacktip, Carcharhinus limbatus and spinner C. brevipinna, sharks from the northwestern Gulf of Mexico. Copeia 1987, 4, 964–974. [Google Scholar] [CrossRef]
- Ma, B.S.; Xie, C.X.; Huo, B. Life History Pattern and Exploitation Status of Apoulation of Schizothorax O’connori in the Yarlung Zangbo River. Resour. Environ. Yangtze Basin 2014, 23, 1558–1565. [Google Scholar]
- He, W.J.; Gao, H.; Zhou, C.W. A Review of the Age, Growth Characteristics, and Population Resources of Ptychobarbus dipogon in the Middle and Upper Reaches of the Yarlung Zangbo River. Water 2023, 15, 1713. [Google Scholar] [CrossRef]
- Brown, C.J.; Broadley, A.; Adame, M.F.; Branch, T.A.; Turschwell, M.P.; Connolly, M.R. The assessment of fishery status depends on fish habitats. Fish Fish. 2018, 20, 1–14. [Google Scholar] [CrossRef]
- Pérez-Ruzafa, A.; Mercedes González-Wangüemert, M.; Lenfant, P.; Marcos, C.; García-Charton, J.A. Effects of fishing protection on the genetic structure of fish populations. Biol. Conserv. 2006, 129, 244–255. [Google Scholar] [CrossRef]
- Margarida, C.M.; Lawing, W. A study of sampling strategies for estimating growth parameters in fish populations. Fish. Res. 1995, 22, 59–75. [Google Scholar] [CrossRef]
- Ali, M.; Nicieza, A.; Wootton, R.J. Compensatory growth in fishes: A response to growth depression. Fish Fish. 2003, 4, 147–190. [Google Scholar] [CrossRef]
- Li, X.Q.; Chen, Y.F. Age structure, growth and mortality estimates of an endemic Ptychobarbus dipogon (Regan, 1905) (Cyprinidae: Schizothoracinae) in the Lhasa River, Tibet. Chin. Fish. 2008, 28, 97–105. [Google Scholar]
- Schindler, D.E.; Geib, S.I.; Willians, M.R. Patterns of Fish Growth along a Residential Development Gradient in North Temperate Lakes. Ecosystems 2000, 3, 229–237. [Google Scholar] [CrossRef]
- Ama-Abasi, D.; Holzloehner, S.; Enin, U. The dynamics of the exploited population of Ethmalosa fimbriata (Bowdich, 1825, Clupeidae) in the Cross River Estuary and adjacent Gulf of Guinea. Fish. Res. 2004, 68, 225–235. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Zhu, F.Y.; Liu, M.D.; Duan, X.B.; Liu, S.P.; Chen, D.Q.; Wang, D.Q. AgeStructure and Growth Characteristics of Schizopygopsis thermalis in the Upper Nujiang River. J. Hydrobiol. 2022, 43, 111–118. [Google Scholar]
- Yang, X.; Huo, B.; Duan, Y.J.; Ma, B.S.; Xie, C.X. Age structure and growth characteristics of Ptychobarbus dipogon in the Yarlung Tsangpo River, Tibet. J. Fish. Sci. China 2015, 22, 1085–1094. [Google Scholar]
- Yao, J.L.; Chen, Y.F.; Chen, F.; He, D.K. Age and growth of an endemic Tibetan fish, Schizothorax o’connori, in the Yarlung Tsangpo River. J. Freshw. Ecol. 2009, 24, 343–345. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.B.; Hu, H.M.; Gong, Z.; Cao, W.X.; Lin, P.C. Characteristics of age and growth of Schizothorax curcilabiatus in the lower reaches of the Yarlung Zangbo River. Acta Hydrobiol. Sin. 2022, 46, 1770–1779. [Google Scholar]
- Jia, Y.T.; Chen, Y.F. Age Structure and Growth Characteristics of the Endemic Fish Oxygymnocypris stewartii (Cypriniformes: Cyprinidae: Schizothoracinae) in the Yarlung Tsangpo River, Tibet. Zool. Stud. 2011, 50, 69–75. [Google Scholar]
- Tan, B.Z.; Yang, X.F.; Yang, R.B. Age structure and growth characteristics of Gymnocypris waddelli in the Zhegu Lake, Tibet. J. Fish. Sci. China 2020, 27, 879–885. [Google Scholar]
- Zhu, Q.G.; Tang, H.Y.; Lin, H.; Gong, Y.; Li, X.N.; Yang, Z. Age Structure, Growth Characteristics and Population Dynamic of Schizothorax chongi in Middle and Lower Jinsha River. J. Hydrobiol. 2021, 42, 56–63. [Google Scholar]
- Li, X.F.; Jiang, R.J.; Bing, Y.; Wang, Y.L.; Sun, H.Q.; Yin, R.; Li, K.; Hu, Z.J. Growth, Mortaily and optimum catahable size of Coilia mystus in Oujiang river estuary. Acta Hydrobiol. Sin. 2022, 46, 1393–1401. [Google Scholar]
- Gulland, J.A. Fish stock assessment: A manual of basic methods. J. Mar. Biol. Assoc. United Kingd. 1984, 64, 249. [Google Scholar] [CrossRef]
- Mehanna, S.F. Stock assessment and management of the Egyptian sole Solea aegyptiaca Chabanaud, 1927(Osteichthyes:Soleidae), in the Southeastern Mediterranean, Egypt. Turk. J. Zool. 2007, 31, 379–388. [Google Scholar]
- Halliday, R.G.; Pinhorn, A.T. A review of the scientific and technical bases for policies on the capture of small fish in North Atlantic groundfish fisheries. Fish. Res. 2002, 57, 211–222. [Google Scholar] [CrossRef]
- Zhang, H.; Kang, M.; Shen, L.; Wu, J.M.; Li, J.Y.; Du, H.; Wang, C.Y.; Yang, H.L.; Zhou, Q.; Liu, Z.G.; et al. Rapid change in Yangtze fisheries and its implications for global freshwater ecosystem management. Fish Fish. 2020, 21, 601–620. [Google Scholar] [CrossRef]
- Collas, F.P.L.; Buijse, A.D.; van den Heuvel, L.; van Kessel, N.; Schoor, M.M.; Eerden, H.; Leuven, R.S.E.W. Longitudinal training dams mitigate effects of shipping on environmental conditions and fish density in the littoral zones of the river Rhine. Sci. Total Environ. 2018, 619–620, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fujiwara, M.; Pawluk, M.; Liu, H.; Cao, W.; Gao, X. Changes in taxonomic and functional diversity of fish communities after catastrophic habitat alteration caused by construction of Three Gorges Dam. Ecol. Evol. 2020, 10, 5829–5839. [Google Scholar] [CrossRef]
- Gao, X.; Fujiwara, M.; Winemiller, K.O.; Lin, P.; Li, M.; Liu, H. Regime shift in fish assemblage structure in the Yangtze River following construction of the Three Gorges Dam. Sci. Rep. 2019, 9, 4212. [Google Scholar] [CrossRef] [PubMed]
- Zuo, S.; Zhu, F.; Chen, D.; Liu, S.; Duan, X.; Liu, M. Fish Community Structure and Diversity in the Xizang Section of Nujiang River. J. Hydroecol. 2024, 45, 73–81. [Google Scholar]
- Wang, J.; Liao, C.; Lian, Y.; Lin, X.; Zhang, Y.; Bi, Y.; Liu, J.; Ye, S. Characteristics and historical of fish community structure in Xiangxi River, Three Gorges Reservoir, China. J. Lake Sci. 2023, 35, 2082–2091. [Google Scholar]
- Yang, J.; Yan, D.; Yang, Q.; Gong, S.; Shi, Z.; Qiu, Q.; Huang, S.; Zhou, S.; Hu, M. Fish species composition, distribution and community structure in the Fuhe River Basin, Jiangxi Province, China. Glob. Ecol. Conserv. 2021, 27, e01559. [Google Scholar] [CrossRef]
- Zhu, T.; Hu, F.; Gong, J.; Wang, X.; Chen, K.; Du, H.; Yang, D.; Wu, X. Community structure and species diversity of fishes in the Tibet reach of the Lancang River, China. J. Fish. Sci. China 2022, 29, 304–313. [Google Scholar]
- Scott, M.C.; Helfman, G.S. Native Invasions, Homogenization, and the Mismeasure of Integrity of Fish Assemblages. Fisheries 2001, 26, 6–15. [Google Scholar] [CrossRef]
- Alma, V.; Romagnoni, G.; Wolff, M. Exploration of fisheries management policies in the Gulf of Nicoya (Costa Rica) using ecosystem modelling. Ocean Coast. Manag. 2022, 230, 106349. [Google Scholar] [CrossRef]
- Comdie, H.M.; Grant, A.; Catchpole, T.L. Incentivising selective fishing under a policy to ban discards; lessons from European and global fisheries. Mar. Pol. 2014, 45, 287–292. [Google Scholar] [CrossRef]
- Macusi, E.D.; Liguez, A.K.O.; Digal, L.N. Factors influencing catch and support for the implementation of the closed fishing season in Davao Gulf, Philippines. Mar. Pol. 2021, 217, 105997. [Google Scholar] [CrossRef]
- Zorrozua, N.; Granado, I.; Fernandes-Salvador, J.A.A.; Louzao, M.; Basterretxea, M.; Arizaga, J. Evaluating the dependence of opportunistic Yellow-legged Gulls (Larus michahellis) on marine habitat and fishing discards. Int. J. Avian Sci. 2023, 166, 112–128. [Google Scholar] [CrossRef]
- Harmelin-Vivien, M.; Cottalorda, J.M.; Dominici, J.M.; Harmelin, J.G.; Diréach, L.L.; Ruitton, S. Effects of reserve protection level on the vulnerable fish species Sciaena umbra and implications for fishing management and policy. Glob. Ecol. Conserv. 2015, 3, 279–287. [Google Scholar] [CrossRef]
- Muawanah, U.; Gellwynn Yusuf, G.; Adrianto, L.; Kalther, J.; Pomeroy, R.; Abdullah, H.; Ruchimat, T. Review of national laws and regulation in Indonesia in relation to an ecosystem approach to fisheries management. Mar. Pol. 2018, 91, 150–160. [Google Scholar] [CrossRef]
Species Name | Number | Number | Body Length/mm | Body Weight/g | |||
---|---|---|---|---|---|---|---|
Female | Male | Range | Mean | Range | Mean | ||
S. o’connori | 51 | 16 | 28 | 23.02~440.00 | 268.77 | 0.3~1394.3 | 430.50 |
O. stewartii | 45 | 20 | 20 | 23.02~460.00 | 298.37 | 0.2~1013.0 | 425.33 |
P. dipogon | 97 | 42 | 53 | 45.18~418.00 | 307.01 | 1.2~814.3 | 399.90 |
Species | b CL 95% | L∞ CL 95% | k CL 95% | to CL 95% |
---|---|---|---|---|
S. o’connori | 2.886, 2.989 | 511.329, 671.136 | 0.075, 0.121 | −0.504, 0.054 |
O. stewarti | 2.902, 3.014 | 474.529, 540.586 | 0.104, 0.139 | −0.609, −0.105 |
P. dipogon | 2.875, 3.017 | 477.818, 552.766 | 0.100, 0.137 | −0.895, −0.255 |
Species Name | Inflection Point Age | Critical Age | Growth Performance Index |
---|---|---|---|
S. o’connori | 10.77 | 8.60 | 4.53 |
O. stewartii | 8.53 | 6.92 | 4.50 |
P. dipogon | 8.58 | 6.89 | 4.50 |
Species Name | Total Mortality (Z) | Natural Mortality (M) | Exploitation Rate (E) | E-Max |
---|---|---|---|---|
S. o’connori | 0.463 | 0.210 | 0.547 | 0.579 |
O. stewartii | 1.041 | 0.252 | 0.758 | 0.882 |
P. dipogon | 0.85 | 0.246 | 0.711 | 0.884 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, H.; Wang, L.; Zhang, C.; Li, H.; Ma, B. Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights. Animals 2025, 15, 2340. https://doi.org/10.3390/ani15162340
Han H, Wang L, Zhang C, Li H, Ma B. Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights. Animals. 2025; 15(16):2340. https://doi.org/10.3390/ani15162340
Chicago/Turabian StyleHan, Haoxiang, Lin Wang, Chi Zhang, Hongchi Li, and Bo Ma. 2025. "Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights" Animals 15, no. 16: 2340. https://doi.org/10.3390/ani15162340
APA StyleHan, H., Wang, L., Zhang, C., Li, H., & Ma, B. (2025). Population Structure and Resource Dynamics of Three Schizothoracinae Species in the Duoxiong Zangbo River Tributary of the Yarlung Zangbo River, Tibet: Threat Assessment and Conservation Insights. Animals, 15(16), 2340. https://doi.org/10.3390/ani15162340