Unravelling Heterozygosity-Rich Regions in the Holstein Genome
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Resources and SNP Genotyping
2.2. Identification of HRRs and ROHs
2.3. Calculation of HRRIs Significance
2.4. Tajima D Test
2.5. Chromosome Rank Calculation and Coefficient of Extended HRRs
2.6. Genes, SINE, and LINE Element Annotation
3. Results
3.1. Description of Genetic Differences Between Herds
3.2. Identification of HRRs
3.3. Identification of HRRIs and Annotation of Genes Within Them
3.4. Gene Annotation of Unevaluated HRRIs Identified by the Tajima D Test with Maximum D Values
3.5. Possible Role of Structural Elements in the Formation of the HRRIs
4. Discussion
4.1. Assessment of Heterozygosity-Rich Regions in the Studied Animals
4.2. Towards Deciphering Possible Causes That May Lead to the Phenomenon of HRRIs
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SNP | Single nucleotide polymorphism |
MAF | Minor allele frequency |
HRR | Heterozygosity-rich region |
ROH | Runs of homozygosity |
HRRI | HRR island |
References
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- Ceballos, F.; Joshi, P.; Clark, D.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef]
- Sumreddee, P.; Toghiani, S.; Hay, E.H.; Roberts, A.; Aggrey, S.E.; Rekaya, R. Runs of homozygosity and analysis of inbreeding depression. J. Anim. Sci. 2020, 98, skaa361. [Google Scholar] [CrossRef]
- Doekes, H.P.; Bijma, P.; Veerkamp, R.F.; de Jong, G.; Wientjes, Y.C.J.; Windig, J.J. Inbreeding depression across the genome of Dutch Holstein Friesian dairy cattle. Genet. Sel. Evol. 2020, 52, 64. [Google Scholar] [CrossRef]
- Ferencakovic, M.; Banadinovic, M.; Mercvajler, M.; Khayatzadeh, N.; Mészáros, G.; Cubric-Curik, V.; Curik, I.; Sölkner, J. Mapping of heterozygosity rich regions in Austrian pinzgauer cattle. Acta Agric. Slov. 2016, 5, 41–44. [Google Scholar] [CrossRef]
- Falchi, L.; Cesarani, A.; Criscione, A.; Hidalgo, J.; Garcia, A.; Mastrangelo, S.; Macciotta, N.P.P. Effect of genotyping density on the detection of runs of homozygosity and heterozygosity in cattle. J. Anim. Sci. 2024, 102, skae147. [Google Scholar] [CrossRef] [PubMed]
- Biscarini, F.; Mastrangelo, S.; Catillo, G.; Senczuk, G.; Ciampolini, R. Insights into Genetic Diversity, Runs of Homozygosity and Heterozygosity-Rich Regions in Maremmana Semi-Feral Cattle Using Pedigree and Genomic Data. Animals 2020, 10, 2285. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.L.; Hall, S.J.; Del Corvo, M.; Ballingall, K.T.; Colli, L.; Ajmone Marsan, P.; Biscarini, F. Inbreeding and purging at the genomic Level: The Chillingham cattle reveal extensive, non-random SNP heterozygosity. Anim. Genet. 2016, 47, 19–27. [Google Scholar] [CrossRef]
- Marras, G.; Wood, B.J.; Makanjuola, B.; Malchiodi, F.; Peeters, K.; Baes, C.F.; Biscarini, F. Characterization of runs of homozygosity and heterozygosity-rich regions in a commercial turkey (Meleagris gallopavo) population. In Proceedings of the 11th World Congress of Genetics Applied to Livestock Production, Auckland, New Zealand, 7–11 February 2018. [Google Scholar]
- Dos Santos, W.B.; Schettini, G.; Fonseca, M.G.; Pereira, G.L.; Chardulo, L.; Neto, O.R.M.; Baldassini, W.A.; de Oliveira, H.N.; Curi, R.A. Fine-scale estimation of inbreeding rates, runs of homozygosity and genome-wide heterozygosity levels in the Mangalarga Marchador horse breed. J. Anim. Breed. Genet. 2021, 138, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Ruan, D.; Yang, J.; Zhuang, Z.; Ding, R.; Huang, J.; Quan, J.; Gu, T.; Hong, L.; Zheng, E.; Li, Z.; et al. Assessment of Heterozygosity and Genome-Wide Analysis of Heterozygosity Regions in Two Duroc Pig Populations. Front. Genet. 2022, 12, 812456. [Google Scholar] [CrossRef] [PubMed]
- Selli, A.; Ventura, R.V.; Fonseca, P.A.S.; Buzanskas, M.E.; Andrietta, L.T.; Balieiro, J.C.C.; Brito, L.F. Detection and Visualization of Heterozygosity-Rich Regions and Runs of Homozygosity in Worldwide Sheep Populations. Animals 2021, 11, 2696. [Google Scholar] [CrossRef]
- Biscarini, F.; Manunza, A.; Cozzi, P.; Stella, A. Common heterozygosity-rich regions across the genomes of commercial and local goat breeds. In Proceedings of the 12th World Congress on Genetics Applied to Livestock Production (WCGALP), Rotterdam, The Netherlands, 3–8 July 2022; pp. 798–801. [Google Scholar]
- Chessari, G.; Criscione, A.; Marletta, D.; Crepaldi, P.; Portolano, B.; Manunza, A.; Cesarani, A.; Biscarini, F. Characterization of heterozygosity-rich regions in Italian and worldwide goat breeds. Sci. Rep. 2024, 14, 3. [Google Scholar] [CrossRef]
- Pegolo, S.; Bisutti, V.; Mota, L.F.M.; Cecchinato, A.; Amalfitano, N.; Dettori, M.L.; Pazzola, M.; Vacca, G.M.; Bittante, G. Genome-wide landscape of genetic diversity, runs of homozygosity, and runs of heterozygosity in five Alpine and Mediterranean goat breeds. J. Anim. Sci. Biotechnol. 2025, 16, 33. [Google Scholar] [CrossRef]
- Tsartsianidou, V.; Otapasidis, A.; Papakostas, S.; Karaiskou, N.; Vouraki, S.; Triantafyllidis, A. Genome-Wide Patterns of Homozygosity and Heterozygosity and Candidate Genes in Greek Insular and Mainland Native Goats. Genes 2025, 16, 27. [Google Scholar] [CrossRef]
- Halvoník, A.; Moravčíková, N.; Vostrý, L.; Vostra-Vydrova, H.; Mészáros, G.; Demir, E.; Chalupková, M.; Kasarda, R. Heterozygosity-Rich Regions in Canine Genome: Can They Serve as Indicators of Balancing Selection? Animals 2025, 15, 612. [Google Scholar] [CrossRef] [PubMed]
- Mulim, H.A.; Pedrosa, V.B.; Pinto, L.F.B.; Tiezzi, F.; Maltecca, C.; Schenkel, F.S.; Brito, L.F. Detection and evaluation of parameters influencing the identification of heterozygous-enriched regions in Holstein cattle based on SNP chip or whole-genome sequence data. BMC Genom. 2024, 25, 726. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.C.; Tiezzi, F.; Crovetti, A.; Maltecca, C.; Bozzi, R. Investigation of cosmopolitan and local Italian beef cattle breeds uncover common patterns of heterozygosity. Animal 2024, 18, 101142. [Google Scholar] [CrossRef]
- DeGiorgio, M.; Lohmueller, K.E.; Nielsen, R. A model-based approach for identifying signatures of ancient balancing selection in genetic data. PLoS Genet. 2014, 10, e1004561. [Google Scholar] [CrossRef]
- Fijarczyk, A.; Babik, W. Detecting balancing selection in genomes: Limits and prospects. Mol. Ecol. 2015, 24, 3529–3545. [Google Scholar] [CrossRef] [PubMed]
- Mulim, H.A.; Brito, L.F.; Pinto, L.F.B.; Ferraz, J.B.S.; Grigoletto, L.; Silva, M.R.; Pedrosa, V.B. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genom. 2022, 16, 209. [Google Scholar] [CrossRef]
- Kudinov, A.A.; Mäntysaari, E.A.; Pitkänen, T.J.; Saksa, E.I.; Aamand, G.P.; Uimari, P.; Strandén, I. Single-step genomic evaluation of Russian dairy cattle using internal and external information. J. Anim. Breed. Genet. 2022, 139, 259–270. [Google Scholar] [CrossRef]
- Smaragdov, M.G.; Kudinov, A.A. Assessing the power of principal components and wright’s fixation index analyzes applied to reveal the genome-wide genetic differences between herds of Holstein cows. BMC Genet. 2020, 21, 47. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: An R Package to Detect Runs of Homozygosity and Heterozygosity in Diploid Genomes. CRAN (The Compr. R Arch. Network). Available online: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html (accessed on 24 October 2019).
- Tsartsianidou, V.; Sánchez-Molano, E.; Kapsona, V.V.; Basdagianni, Z.; Chatziplis, D.; Arsenos, G.; Triantafyllidis, A.; Banos, G. A comprehensive genome-wide scan detects genomic regions related to local adaptation and climate resilience in Mediterranean domestic sheep. Genet. Sel. Evol. 2021, 53, 90. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2218. [Google Scholar] [CrossRef]
- Perez, G.; Barber, G.P.; Benet-Pages, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, C.M.; et al. The UCSC Genome Browser database: 2025 update. Nucleic Acids Res. 2025, 53, D1243–D1249. [Google Scholar] [CrossRef] [PubMed]
- Smaragdov, M.G. Identification of homozygosity-rich regions in the Holstein genome. Vavilovskii Zhurnal Genet. Sel. 2023, 27, 471–479. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Himmerkus, N.; Sunq, A.; Milatz, S.; Merkel, C.; Bleich, M.; Hou, J. ILDR1 is important for paracellular water transport and urine concentration mechanism. Proc. Natl. Acad. Sci. USA 2017, 114, 5271–5276. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, L.; Prakapenka, D.; VanRaden, P.M.; Cole, J.B.; Da, Y. A Large-Scale Genome-Wide Association Study in U.S. Holstein Cattle. Front. Genet. 2019, 10, 412. [Google Scholar] [CrossRef]
- Randall, E.M.; Sopp, P.; Raper, A.; Dry, I.; Burdon, T.; Hope, J.C.; Waddell, L.A. Phenotypic characterisation of bovine alveolar macrophages reveals two major subsets with differential expression of CD163. Sci. Rep. 2024, 14, 14974. [Google Scholar] [CrossRef]
- Wang, X.; Guo, L.; Zhang, W. Extraction of Innate Immune Genes in Dairy Cattle and the Regulation of Their Expression in Early Embryos. Genes 2024, 15, 372. [Google Scholar] [CrossRef]
- Yan, H.; Li, J.; Zhang, K.; Duan, H.; Sun, A.; Zhang, B.; Li, F.; Chen, N.; Lei, C.; Yi, K. Local Ancestry and Adaptive Introgression in Xiangnan Cattle. Biology 2024, 13, 1000. [Google Scholar] [CrossRef]
- Boitard, S.; Paris, C.; Sevane, N.; Servin, B.; Bazi-Kabbaj, K.; Dunner, S. Gene Banks as Reservoirs to Detect Recent Selection: The Example of the Asturiana de los Valles Bovine Breed. Front. Genet. 2021, 12, 575405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Chao, Z.; Zhang, R.; Ding, R.; Wang, Y.; Wu, W.; Han, Q.; Li, C.; Xu, H.; Wang, L.; et al. Circular RNA Regulation of Myogenesis. Cells 2019, 8, 885. [Google Scholar] [CrossRef]
- De Cesaro, M.P.; de Macedo, M.P.; da Rosa, P.R.A.; Dos Santos, J.T.; Mea, R.D.; da Nóbrega, J.E.; Duggavathi, R.; Gasperin, B.G.; Gonçalves, P.B.D.; Bordignon, V.; et al. NPR3 is regulated by gonadotropins and modulates bovine cumulus cell expansion. Reproduction 2024, 169, e240187. [Google Scholar] [CrossRef]
- Okamoto, S.; Naito, T.; Shigetomi, R.; Kosugi, Y.; Nakayama, K.; Takatsu, H.; Shin, H. The N- or C-terminal cytoplasmic regions of P4-ATPases determine their cellular localization. Mol. Biol. Cell 2020, 31, 2115–2124. [Google Scholar] [CrossRef]
- Jia, J.; Zhao, M.; Ma, K.; Zhang, H.; Gui, L.; Sun, H.; Ren, H.; Okabayashi, T.; Zhao, J. The Immunoprotection of OmpH Gene Deletion Mutation of Pasteurella multocida on Hemorrhagic Sepsis in Qinghai Yak. Vet. Sci. 2023, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Li, S.; Yan, H.; Chen, S.; Li, R.; Zhang, W.; Chao, S.; Guo, W.; Li, W.; Ahmed, Z.; et al. Unraveling genomic diversity and positive selection signatures of Qaidam cattle through whole-genome re-sequencing. Anim. Genet. 2024, 55, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Romaniuk, E.; Vera, B.; Peraza, P.; Ciappesoni, G.; Damián, J.P.; Van Lier, E. Identification of Candidate Genes and Pathways Linked to the Temperament Trait in Sheep. Genes 2024, 15, 229. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, A.; Xu, T.; Mo, X.; Zhang, Y. Promoter DNA Methylation in GWAS-Identified Genes as Potential Functional Elements for Blood Pressure: An Observational and Mendelian Randomization Study. Front. Genet. 2022, 12, 791146. [Google Scholar] [CrossRef]
- Nayak, S.S.; Panigrahi, M.; Rajawat, D.; Jain, K.; Sharma, A.; Bhushan, B.; Dutt, T. Unique footprints of balancing selection in bovine genome. BioTech 2024, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Kent-Dennis, C.; Klotz, J.L. The endocannabinoid system in bovine tissues: Characterization of transcript abundance in the growing Holstein steer. BMC Vet. Res. 2024, 20, 481. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.B.; Xu, Z.; Shen, S.; Wang, Z.; Wang, Z. MYRF: A unique transmembrane transcription factor- from proteolytic self-processing to its multifaceted roles in animal development. Bioessays 2024, 46, e2300209. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, N.; Zhang, Y.; Wang, J.; Lv, Q.; Zhang, J. Single-Cell Transcriptome Analysis Reveals Development-Specific Networks at Distinct Synchronized Antral Follicle Sizes in Sheep Oocytes. Int. J. Mol. Sci. 2024, 25, 910. [Google Scholar] [CrossRef] [PubMed]
- Tajima, F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Alves, A.A.C.; da Costa, R.M.; Fonseca, L.F.S.; Carvalheiro, R.; Ventura, R.V.; Rosa, G.J.M.; Albuquerque, L.G. A Random Forest-Based Genome-Wide Scan Reveals Fertility-Related Candidate Genes and Potential Inter Chromosomal Epistatic Regions Associated With Age at First Calving in Nellore Cattle. Front. Genet. 2022, 13, 834724. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.K.; Chang, Y.T.; Korinek, M.; Chen, Y.T.; Yang, Y.T.; Leu, S.; Lin, I.-L.; Tang, C.-J.; Chiu, C.-C. The Regulations of Deubiquitinase USP15 and Its Pathophysiological Mechanisms in Diseases. Int. J. Mol. Sci. 2017, 18, 483, Erratum in Int. J. Mol. Sci. 2017, 18, 902. [Google Scholar] [CrossRef]
- Liang, C.H.; Tang, L.Y.; Ge, H.Y.; Chen, M.M.; Lu, S.Y.; Zhang, H.X.; Shen, C.L.; Shen, Y.; Fei, J.; Wang, Z.G. Neuronal survival factor TAFA2 suppresses apoptosis through binding to ADGRL1 and activating cAMP/PKA/CREB/BCL2 signaling pathway. Life Sci. 2023, 334, 122241. [Google Scholar] [CrossRef]
- Zhou, D.X.; Ma, Z.; Cheng, Q.; Jiang, N.; Li, J.; Zhan, T.; Yuan, N.; Chen, Y.; Wang, L.; Wang, J.; et al. Sour Neuronal Signalling Attenuates Macrophage-Mediated Liver Injury. J. Hepatol. 2025; in press. [Google Scholar] [CrossRef]
- Akinsola, O.M.; Musa, A.A.; Muansangi, L.; Singh, S.P.; Mukherjee, S.; Mukherjee, A. Genomic insights into adaptation and inbreeding among Sub-Saharan African cattle from pastoral and agropastoral systems. Front. Genet. 2024, 15, 1430291. [Google Scholar] [CrossRef]
- Khayatzadeh, N.; Mészáros, G.; Utsunomiya, Y.T.; Schmitz-Hsu, F.; Seefried, F.; Schnyder, U.; Ferenčaković, M.; Garcia, J.; Curik, I.; Sölkner, J. Genome-wide mapping of the dominance effects based on breed ancestry for semen traits in admixed Swiss Fleckvieh bulls. J. Dairy Sci. 2019, 102, 11217–11224. [Google Scholar] [CrossRef]
- Boesch, S.; Zech, M. AOPEP-related autosomal recessive dystonia: Update on Zech-Boesch syndrome. J. Med. Genet. 2025, 62, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Traspov, A.A.; Kostyunina, O.V.; Belous, A.A.; Karpushkina, T.V.; Svezhentseva, N.A.; Zinovieva, N.A. Whole-genome association studies of distribution of developmental abnormalities and other breeding-valuable qualitative traits in offspring of the Russian large-white boars. Vavilovskii Zhurnal Genet. Sel. 2020, 24, 185–190. (In Russian) [Google Scholar] [CrossRef]
- Beesetti, S.; Guy, C.; Sirasanagandla, S.; Yang, M.; Sumpter, R.J.; Sheppard, H.; Pelletier, S.; Wlodarski, M.W.; Green, D.R. Distinct developmental outcomes in DNA repair-deficient FANCC c.67delG mutant and FANCC−/− Mice. Cell Death Differ. 2025, 32, 1294–1302. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cao, J.; Guo, G.; Li, X.; Wang, Y.; Yu, Y.; Zhang, S.; Zhang, Q.; Zhang, Y. Genome-wide association study identifies QTLs for displacement of abomasum in Chinese Holstein cattle. J. Anim. Sci. 2019, 97, 1133–1142. [Google Scholar] [CrossRef]
- Haque, M.A.; Kim, N.-K.; Yeji, R.; Lee, B.; Ha, J.H.; Lee, Y.-M.; Kim, J.-J.; Abo-Al-Ela, H. Genomic prediction and genome-wide association studies of morphological traits and distraction index in Korean Sapsaree dogs. PLoS ONE 2024, 19, e0312583. [Google Scholar] [CrossRef]
- Richardson, S.R.; Doucet, A.J.; Kopera, H.C.; Moldovan, J.B.; Garcia-Perez, J.L.; Moran, J.V. The Influence of LINE-1 and SINE Retrotransposons on Mammalian Genomes. Microbiol. Spectr. 2015, 3, 1165–1208. [Google Scholar] [CrossRef]
- Smaragdov, M.G.; Kudinov, A.A.; Uimari, P. Assessing the genetic differentiation of Holstein cattle herds in Leningrad region using Fst statistics. Agric. Foods Sci. 2018, 27, 96–101. [Google Scholar] [CrossRef]
- Qanbari, S.; Wittenburg, D. Male recombination map of the autosomal genome in German Holstein. Genet. Sel. Evol. 2020, 52, 73. [Google Scholar] [CrossRef]
- Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 2010, 8, e1000501. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chamberlain, A.J.; Reich, C.; Daetwyler, H.D.; Hayes, B.J. Detection and validation of structural variations in bovine whole-genome sequence data. Genet. Sel. Evol. 2017, 49, 13. [Google Scholar] [CrossRef]
- Hedrick, P.W. What is the evidence for heterozygote advantage selection? Trends Ecol. Evol. 2012, 27, 698–704. [Google Scholar] [CrossRef]
- Hudson, R.R.; Kaplan, N.L. The coalescent process in models with selection and recombination. Genetics 1988, 120, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Charlesworth, B.; Nordborg, M.; Charlesworth, D. The effects of local selection, balanced polymorphism and background selection on equilibrium patterns of genetic diversity in subdivided populations. Genet. Res. 1997, 70, 155–174. [Google Scholar] [CrossRef]
- Otto, S.P.; Barton, N.H. Selection for recombination in small populations. Evolution 2001, 55, 1921–1931. [Google Scholar] [CrossRef]
- Kimura, M. The Neutral Theory of Molecular Evolution, 1st ed.; Cambridge University Press: Cambridge, UK, 1983; p. 367. [Google Scholar] [CrossRef]
- Soni, V.; Jensen, J.D. Temporal challenges in detecting balancing selection from population genomic data. G3 Genes Genomes Genet. 2024, 14, jkae069. [Google Scholar] [CrossRef]
- Kemper, K.E.; Saxton, S.J.; Bolormaa, S.; Hayes, B.J.; Goddard, M.E. Selection for complex traits leaves little or no classic signatures of selection. BMC Genom. 2014, 15, 246. [Google Scholar] [CrossRef]
- Kühn, C.; Thaller, G.; Winter, A.; Bininda-Emonds, O.R.; Kaupe, B.; Erhardt, G.; Bennewitz, J.; Schwerin, M.; Fries, R. Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle. Genetics 2004, 167, 1873–1881. [Google Scholar] [CrossRef] [PubMed]
- Kemper, K.E.; Hayes, B.J.; Daetwyler, H.D.; Goddard, M.E. How old are quantitative trait loci and how widely do they segregate? J. Anim. Breed. Genet. 2015, 132, 121–134. [Google Scholar] [CrossRef]
- Glick, S.G.; Shirak, A.; Uliel, S.; Zeron, U.Y.; Ezra, E.; Seroussi, E.; Ron, M.; Weller, J.I. Signatures of contemporary selection in the Israeli Holstein dairy cattle. Anim. Genet. 2011, 43 (Suppl. S1), 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, F.C.; Hazelhurst, S.; Ramsay, M. Assessing runs of Homozygosity: A comparison of SNP Array and whole genome sequence low coverage data. BMC Genom. 2018, 19, 106. [Google Scholar] [CrossRef]
- Li, R.; Gong, M.; Zhang, X.; Wang, F.; Liu, Z.; Zhang, L.; Yang, Q.; Xu, Y.; Xu, M.; Zhang, H.; et al. A sheep pangenome reveals the spectrum of structural variations and their effects on tail phenotypes. Genome Res. 2023, 33, 463–477. [Google Scholar] [CrossRef] [PubMed]
Herd Number of Cows | 1 N = 57 | 2 N = 85 | 3 N = 73 | 4 N = 44 | 5 N = 58 | 6 N = 54 | The Mean Number of HRRs Across Six Herds |
---|---|---|---|---|---|---|---|
Set of SNP with all MAFs | |||||||
The mean number of HRRs | 337 ± 2 | 335 ± 1 | 336 ± 2 | 334 ± 3 | 333 ± 2 | 334 ± 3 | 335 ± 6 |
Maximum | 375 | 382 | 379 | 382 | 367 | 376 | |
Minimum | 300 | 294 | 292 | 282 | 296 | 285 | |
SNPs with an MAF less than 0.01 were removed | |||||||
The mean number of HRRs | 452 ± 3 | 436 ± 2 | 435 ± 2 | 422 ± 4 | 446 ± 3 | 442 ± 3 | 439 ± 7 |
Maximum | 492 | 478 | 492 | 461 | 496 | 500 | |
Minimum | 399 | 381 | 386 | 368 | 401 | 398 |
Herd Number of Cows | 1 N = 57 | 2 N = 85 | 3 N = 73 | 4 N = 44 | 5 N = 58 | 6 N = 54 | The Mean Number of HRRs Across Six Herds |
---|---|---|---|---|---|---|---|
Set of SNP with all MAFs | |||||||
The mean number of HRRs | 112 ± 1 | 110 ± 1 | 111 ± 1 | 111 ± 2 | 108 ± 1 | 112 ± 1 | 111 ± 3 |
Maximum | 128 | 130 | 129 | 128 | 129 | 135 | |
Minimum | 96 | 84 | 86 | 86 | 91 | 87 | |
SNPs with an MAF less than 0.01 were removed | |||||||
The mean number of HRRs | 205 ± 2 | 205 ± 2 | 205 ± 3 | 182 ± 2 | 202 ± 2 | 203 ± 2 | 200 ± 5 |
Maximum | 233 | 228 | 220 | 209 | 225 | 237 | |
Minimum | 173 | 161 | 166 | 149 | 176 | 174 |
Class (Mb) | 1 N = 57 | 2 N = 85 | 3 N = 73 | 4 N = 44 | 5 N = 58 | 6 N = 54 | The Mean Number of HRRs Across Six Herds | The Mean Proportion of HRRs |
---|---|---|---|---|---|---|---|---|
SNPs with all MAFs | ||||||||
0.05–0.2 | 8565 | 13,669 | 11,753 | 7062 | 9289 | 8596 | 9822 ± 992 | 0.48 |
0.2–0.4 | 7856 | 12,623 | 10,415 | 6471 | 8517 | 8021 | 8983 ± 895 | 0.44 |
0.4–0.8 | 1352 | 2128 | 1913 | 1095 | 1403 | 1343 | 1539 ± 161 | 0.08 |
0.8–1.6 | 54 | 71 | 66 | 47 | 58 | 55 | 59 ± 4 | 0.003 |
>1.6 | 14 | 20 | 16 | 15 | 16 | 14 | 16 ± 1 | 0.0008 |
SNPs with an MAF < 0.01 were removed | ||||||||
0.05–0.2 | 8594 | 13,651 | 11,742 | 7076 | 9174 | 8534 | 9795 ± 991 | 0.37 |
0.2–0.4 | 11,707 | 18,066 | 15,099 | 9050 | 12,810 | 11,767 | 13,083 ± 1276 | 0.49 |
0.4–0.8 | 3376 | 5019 | 4146 | 2291 | 3604 | 3314 | 3625 ± 372 | 0.13 |
0.8–1.6 | 252 | 333 | 293 | 146 | 256 | 235 | 253 ± 26 | 0.01 |
>1.6 | 18 | 24 | 17 | 17 | 21 | 17 | 19 ± 1 | 0.0007 |
Class (Mb) | 1 N = 57 | 2 N = 85 | 3 N = 73 | 4 N = 44 | 5 N = 58 | 6 N = 54 | The Mean Number of HRRs Across Six Herds | The Mean Proportion of HRRs |
---|---|---|---|---|---|---|---|---|
SNPs with all MAFs | ||||||||
0.25–0.4 | 4515 | 7108 | 5965 | 3718 | 4791 | 4623 | 5120 ± 495 | 0.76 |
0.4–0.8 | 1352 | 2128 | 1913 | 1095 | 1403 | 1343 | 1539 ± 161 | 0.23 |
0.8–1.6 | 54 | 71 | 66 | 47 | 58 | 55 | 59 ± 4 | 0.009 |
>1.6 | 14 | 20 | 16 | 15 | 16 | 14 | 16 ± 1 | 0.002 |
SNPs with an MAF < 0.01 were removed | ||||||||
0.25–0.4 | 7215 | 11,042 | 9240 | 5554 | 7866 | 7395 | 8052 ± 769 | 0.67 |
0.4–0.8 | 3376 | 5019 | 4156 | 2291 | 3604 | 3314 | 3627 ± 373 | 0.30 |
0.8–1.6 | 252 | 333 | 293 | 146 | 256 | 235 | 253 ± 26 | 0.02 |
>1.6 | 18 | 24 | 17 | 17 | 21 | 17 | 19 ± 1 | 0.002 |
SNPs with All MAFs | ||||||||||
Chromosome | 14 | 25 | 6 | 13 | 18 | 16 | 1 | 10 | 2 | 21 |
Rank value | 1.284 | 1.188 | 1.165 | 1.158 | 1.110 | 1.109 | 1.107 | 1.070 | 1.069 | 1.046 |
Chromosome | 7 | 19 | 8 | 28 | 3 | 17 | 15 | 23 | 5 | 26 |
Rank value | 1.046 | 1.035 | 1.001 | 0.999 | 0.994 | 0.983 | 0.933 | 0.929 | 0.919 | 0.914 |
Chromosome | 20 | 4 | 27 | 11 | 29 | 9 | 24 | 22 | 12 | |
Rank value | 0.900 | 0.899 | 0.891 | 0.888 | 0.883 | 0.860 | 0.804 | 0.803 | 0.797 | |
SNPs with MAF < 0.01 were removed | ||||||||||
Chromosome | 14 | 13 | 6 | 25 | 1 | 2 | 10 | 18 | 16 | 21 |
Rank value | 1.252 | 1.174 | 1.160 | 1.123 | 1.090 | 1.067 | 1.064 | 1.059 | 1.057 | 1.052 |
Chromosome | 7 | 19 | 3 | 11 | 8 | 26 | 17 | 28 | 5 | 4 |
Rank value | 1.021 | 1.015 | 1.000 | 0.993 | 0.980 | 0.966 | 0.960 | 0.949 | 0.946 | 0.932 |
Chromosome | 15 | 24 | 22 | 29 | 20 | 12 | 23 | 27 | 9 | |
0.931 | 0.928 | 0.872 | 0.873 | 0.870 | 0.864 | 0.838 | 0.834 | 0.823 |
SNPs with All MAFs | ||||||||||
Chromosome | 14 | 25 | 5 | 1 | 7 | 21 | 2 | 23 | 16 | 13 |
Rank value | 1.541 | 1.287 | 1.218 | 1.133 | 1.130 | 1.122 | 1.095 | 1.093 | 1.067 | 1.053 |
Chromosome | 18 | 9 | 6 | 19 | 3 | 29 | 8 | 4 | 17 | 10 |
Rank value | 1.049 | 1.016 | 1.007 | 1.005 | 0.993 | 0.992 | 0.957 | 0.941 | 0.895 | 0.886 |
Chromosome | 27 | 15 | 11 | 26 | 28 | 24 | 20 | 12 | 22 | |
Rank value | 0.880 | 0.842 | 0.837 | 0.835 | 0.829 | 0.82 | 0.768 | 0.745 | 0.584 | |
SNPs with an MAF < 0.01 were removed | ||||||||||
Chromosome | 14 | 5 | 13 | 21 | 1 | 7 | 25 | 2 | 10 | 6 |
Rank value | 1.405 | 1.249 | 1.157 | 1.135 | 1.121 | 1.116 | 1.106 | 1.095 | 1.048 | 1.034 |
Chromosome | 16 | 3 | 4 | 18 | 11 | 8 | 9 | 19 | 26 | 17 |
Rank value | 1.025 | 1.016 | 0.990 | 0.962 | 0.960 | 0.950 | 0.937 | 0.925 | 0.923 | 0.915 |
Chromosome | 29 | 22 | 24 | 15 | 12 | 23 | 28 | 20 | 27 | |
Rank value | 0.902 | 0.893 | 0.892 | 0.824 | 0.808 | 0.806 | 0.755 | 0.727 | 0.710 |
BTA (Herd) | HRRI Regions (bp) | Number of SNPs | Length of HRRI (kb) | Proportion of HRRs | Permuted Data Sets | Mean | Mann–Whitney U Test (p Value) | Proportion of HRRs Across Six Herds | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||||||||
The minimum length of scanned HRRs was 50 kb, SNPs with all MAFs were used | |||||||||||||
1 (1) | 66,483,743–66,668,755 | 4 | 187.0 | 0.62 | 0.46 | 0.40 | 0.52 | 0.50 | 0.54 | 0.48 | 0.48 ± 0.02 | 0.002 | 0.48 |
1 (2) | 66,483,743–66,630,647 | 4 | 146.9 | 0.54 | 0.46 | 0.40 | 0.52 | 0.50 | 0.54 | 0.48 | 0.48 ± 0.03 | 0.015 | 0.48 |
1 (4) | 66,483,743–66,630,647 | 4 | 146.9 | 0.56 | 0.46 | 0.40 | 0.52 | 0.50 | 0.54 | 0.48 | 0.48 ± 0.02 | 0.002 | 0.48 |
10 (1) | 45,465,423–45,564,676 | 5 | 99.3 | 0.60 | 0.46 | 0.52 | 0.60 | 0.50 | 0.44 | 0.54 | 0.51 ± 0.02 | 0.015 | 0.50 |
20 (3) | 40,831,029–40,986,540 | 4 | 155.5 | 0.62 | 0.52 | 0.50 | 0.58 | 0.56 | 0.54 ± 0.02 | 0.029 | 0.50 | ||
21 (4) | 2,938,326–2,985,827 | 2 | 47.5 | 0.56 | 0.54 | 0.54 | 0.48 | 0.48 | 0.51 ± 0.02 | 0.029 | 0.50 | ||
The minimum length of scanned HRRs was 50 kb, SNPs with an MAF < 0.01 were removed | |||||||||||||
1 (1) | 66,483,743–66,668,755 | 4 | 185.0 | 0.62 | 0.48 | 0.48 | 0.50 | 0.48 | 0.48 | 0.48 | 0.483 ± 0.003 | 0.002 | 0.46 |
1 (2) | 66,483,743–66,630,647 | 3 | 146.9 | 0.54 | 0.48 | 0.48 | 0.50 | 0.48 | 0.48 | 0.48 | 0.483 ± 0.003 | 0.002 | 0.46 |
1 (4) | 66,483,743–66,630,647 | 4 | 146.9 | 0.56 | 0.48 | 0.48 | 0.50 | 0.48 | 0.48 | 0.48 | 0.483 ± 0.003 | 0.002 | 0.46 |
1 (1) | 103,675,933–103,728,420 | 2 | 52.5 | 0.50 | 0.48 | 0.44 | 0.40 | 0.38 | 0.40 | 0.48 | 0.43 ± 0.018 | 0.002 | 0.44 |
10 (1) | 45,465,423–45,564,676 | 5 | 99.3 | 0.60 | 0.50 | 0.48 | 0.48 | 0.42 | 0.56 | 0.58 | 0.50 ± 0.02 | 0.002 | 0.50 |
10 (4) | 45,465,423–45,564,676 | 5 | 99.3 | 0.58 | 0.50 | 0.48 | 0.48 | 0.42 | 0.56 | 0.58 | 0.50 ± 0.02 | 0.015 | 0.50 |
The minimum length of scanned HRRs was 250 kb, SNPs, SNPs with all MAFs were used | |||||||||||||
29 (5) | 40,025,469–40,281,016 | 4 | 255.5 | 0.54 | 0.42 | 0.40 | 0.46 | 0.50 | 0.029 | 0.42 |
BTA (Herd) | Tajima D Regions (Mb) | Number of SNPs in the Regions | Tajima D Values | 3 SD Values * | Number of Regions Exceeding 3 SD | Maximum D Value |
---|---|---|---|---|---|---|
1 (1) | 66.5–66.6 65.4–66.5 | 4 1 | 3.47 1.86 | 2.61 | 114 | 3.47 |
1 (1) | 103.6–103.7 | 3 | 1.95 | 2.61 | 29 | 3.20 |
9 (5) | 43.9–44.0 | 4 | 2.43 | 2.64 | 20 | 3.25 |
10 (1) | 45.3–45.4 45.4–45.5 | 3 3 | 2.82 2.78 | 2.61 | 10 | 3.09 |
11 (2) | 34.1–34.2 34.3–34.4 | 2 2 | 2.27 2.21 | 2.55 | 48 | 3.22 |
20 (3) | 40.7–40.8 40.8–40.9 40.9–41.0 | 3 2 3 | 2.93 2.51 2.49 | 2.88 | 8 | 3.03 |
21 (4) | 2.8–2.9 2.9–3.0 | 3 3 | 2.83 2.52 | 2.59 | 8 | 2.96 |
29 (1) | 40.0–40.1 40.1–40.2 40.2–40.3 | 2 2 3 | 2.49 2.49 2.70 | 2.47 | 23 | 2.91 |
LINE (HRR islands) | 0.870 ± 0.034 | Mann–Whitney U test p = 0.011 |
LINE (ROH islands) | 0.725 ± 0.025 | |
SINE (HRR islands) | 0.749 ± 0.049 | Mann–Whitney U test p = 1.0 |
SINE (ROH islands) | 0.765 ± 0.043 | |
Simple repeats (HRR islands) | 0.163 ± 0.020 | Mann–Whitney U test p = 0.613 |
Simple repeats (ROH islands) | 0.183 ± 0.024 | |
LTR (HRR islands) | 0.216 ± 0.042 | Mann–Whitney U test p = 0.867 |
LTR (ROH islands) | 0.188 ± 0.028 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smaragdov, M. Unravelling Heterozygosity-Rich Regions in the Holstein Genome. Animals 2025, 15, 2320. https://doi.org/10.3390/ani15152320
Smaragdov M. Unravelling Heterozygosity-Rich Regions in the Holstein Genome. Animals. 2025; 15(15):2320. https://doi.org/10.3390/ani15152320
Chicago/Turabian StyleSmaragdov, Michael. 2025. "Unravelling Heterozygosity-Rich Regions in the Holstein Genome" Animals 15, no. 15: 2320. https://doi.org/10.3390/ani15152320
APA StyleSmaragdov, M. (2025). Unravelling Heterozygosity-Rich Regions in the Holstein Genome. Animals, 15(15), 2320. https://doi.org/10.3390/ani15152320