Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Hens, and Management
2.2. Productive Performance Measurements
2.3. Determination of Egg Quality
2.4. Sample Collection and Procedures
2.5. Determination of Serum Antioxidant Enzyme Activity
2.6. Morphological Analyses of the Liver and Intestines
2.7. Statistical Analysis
3. Results
3.1. Productive Performances
3.2. Egg Quality
3.3. Body Weight and Organ Index
3.4. Liver and Intestinal Morphology
3.5. Serum Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, X.; Amevor, F.K.; Du, X.; Wu, Y.; Xu, D.; Wei, S.; Shu, G.; Feng, J.; Zhao, X. Supplementation of the Combination of Quercetin and Vitamin E Alleviates the Effects of Heat Stress on the Uterine Function and Hormone Synthesis in Laying Hens. Animals 2024, 14, 1554. [Google Scholar] [CrossRef]
- Ibtisham, F.; Nawab, A.; Niu, Y.; Wang, Z.; Wu, J.; Xiao, M.; An, L. The Effect of Ginger Powder and Chinese Herbal Medicine on Production Performance, Serum Metabolites and Antioxidant Status of Laying Hens under Heat-Stress Condition. J. Therm. Biol. 2019, 81, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Xu, Q.; Wang, X.; Liu, Y.; Miao, S.; Li, Y.; Mou, T.; Dong, X.; Zou, X. Amino Acid and Fatty Acid Metabolism Disorders Trigger Oxidative Stress and Inflammatory Response in Excessive Dietary Valine-Induced NAFLD of Laying Hens. Front. Nutr. 2022, 9, 849767. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat Stress Decreases Egg Production of Laying Hens by Inducing Apoptosis of Follicular Cells via Activating the FasL/Fas and TNF-α Systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Anagnostopoulos, E.C.; Brouklogiannis, I.P.; Griela, E.; Paraskeuas, V.V.; Mountzouris, K.C. Phytogenic Effects on Layer Production Performance and Cytoprotective Response in the Duodenum. Animals 2023, 13, 294. [Google Scholar] [CrossRef]
- Surai, P.F.; Kochish, I.I.; Romanov, M.N.; Griffin, D.K. Nutritional Modulation of the Antioxidant Capacities in Poultry: The Case of Vitamin E. Poult. Sci. 2019, 98, 4030–4041. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Seidavi, A.; Tavakoli, M.; Asroosh, F.; Scanes, C.G.; Abd El-Hack, M.E.; Naiel, M.A.E.; Taha, A.E.; Aleya, L.; El-Tarabily, K.A.; Swelum, A.A. Antioxidant and Antimicrobial Activities of Phytonutrients as Antibiotic Substitutes in Poultry Feed. Environ. Sci. Pollut. Res. 2022, 29, 5006–5031. [Google Scholar] [CrossRef]
- Abd El-Hack, M.E.; Alagawany, M.; Shaheen, H.; Samak, D.; Othman, S.I.; Allam, A.A.; Taha, A.E.; Khafaga, A.F.; Arif, M.; Osman, A.; et al. Ginger and Its Derivatives as Promising Alternatives to Antibiotics in Poultry Feed. Animals 2020, 10, 452. [Google Scholar] [CrossRef]
- Abreu, R.; Semedo-Lemsaddek, T.; Cunha, E.; Tavares, L.; Oliveira, M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms 2023, 11, 953. [Google Scholar] [CrossRef]
- Nemati, Z.; Moradi, Z.; Alirezalu, K.; Besharati, M.; Raposo, A. Impact of Ginger Root Powder Dietary Supplement on Productive Performance, Egg Quality, Antioxidant Status and Blood Parameters in Laying Japanese Quails. Int. J. Environ. Res. Public Health 2021, 18, 2995. [Google Scholar] [CrossRef]
- Rawat, P.; Kaur, V.I.; Tyagi, A.; Norouzitallab, P.; Baruah, K. A Pilot Field Evaluation of Dietary Ginger Zingiber officinale Effects on Immunity, Blood Metabolic Profile, and Disease Resistance in Labeo Rohita Under Semi-Intensive Farming. Biology 2025, 14, 135. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Sun, W.; Cheng, Q. Clinical Aspects and Health Benefits of Ginger (Zingiber officinale) in Both Traditional Chinese Medicine and Modern Industry. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 546–556. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (Zingiber officinale Rosc.) and Its Bioact. Compon. Are Potential Resources for Health Beneficial Agents. Phytother. Res. 2021, 35, 711–742. [Google Scholar] [CrossRef] [PubMed]
- Mao, Q.-Q.; Xu, X.-Y.; Cao, S.-Y.; Gan, R.-Y.; Corke, H.; Beta, T.; Li, H.-B. Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods 2019, 8, 185. [Google Scholar] [CrossRef]
- Abibu, M.A.; Taleat, A.A.T.; Olaoluwa, D.T.; Muraina, T.A.; Adenipekun, O.D.; Adeniyi, B.O. Elemental Assessment of Four Popular African Immunity Boosting Medicinal Plants Marketed in Ede Local Market, Nigeria. Int. J. Innov. Sci. Res. Technol. 2025, 10, 144–150. [Google Scholar] [CrossRef]
- Safavipour, S.; Tabeidian, S.A.; Toghyani, M.; Foroozandeh Shahraki, A.D.; Ghalamkari, G.; Habibian, M. Laying Performance, Egg Quality, Fertility, Nutrient Digestibility, Digestive Enzymes Activity, Gut Microbiota, Intestinal Morphology, Antioxidant Capacity, Mucosal Immunity, and Cytokine Levels in Meat-Type Japanese Quail Breeders Fed Different Phytogenic Levels. Res. Vet. Sci. 2022, 153, 74–87. [Google Scholar] [CrossRef]
- Kujero, M.; Adeyemi, O.A.; Njoku, C.; Sogunle, O.; Sobayo, R.; Oke, O.E. Reproductive and Physiological Responses and Egg Quality Traits of Isa Brown Chickens Fed Diets Fed Ginger or Turmeric Powder under Tropical Hot Environments. Arch. Vet. Sci. 2024, 29, 1–11. [Google Scholar] [CrossRef]
- Wen, C.; Gu, Y.; Tao, Z.; Cheng, Z.; Wang, T.; Zhou, Y. Effects of Ginger Extract on Laying Performance, Egg Quality, and Antioxidant Status of Laying Hens. Animals 2019, 9, 857. [Google Scholar] [CrossRef]
- Ogbu, C.C.; Ndifereke, S.; Ogbu, N.N. Response of Laying Hens to Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation Pre- and Post Moulting. Niger. J. Anim. Prod. 2022, 49, 78–101. [Google Scholar] [CrossRef]
- Asghar, M.U.; Rahman, A.; Hayat, Z.; Rafique, M.K.; Badar, I.H.; Yar, M.K.; Ijaz, M. Exploration of Zingiber Officinale Effects on Growth Performance, Immunity and Gut Morphology in Broilers. Braz. J. Biol. 2023, 83, e250296. [Google Scholar] [CrossRef] [PubMed]
- Kairalla, M.A.; Aburas, A.A.; Alshelmani, M.I. Effect of Diet Supplemented with Graded Levels of Ginger (Zingiber officinale) Powder on Growth Performance, Hematological Parameters, and Serum Lipids of Broiler Chickens. Arch. Razi Inst. 2022, 77, 2089–2095. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalaifah, H.; Al-Nasser, A.; Al-Surrayai, T.; Sultan, H.; Al-Attal, D.; Al-Kandari, R.; Al-Saleem, H.; Al-Holi, A.; Dashti, F. Effect of Ginger Powder on Production Performance, Antioxidant Status, Hematological Parameters, Digestibility, and Plasma Cholesterol Content in Broiler Chickens. Animals 2022, 12, 901. [Google Scholar] [CrossRef]
- Xin, Q.; Ma, N.; Jiao, H.; Wang, X.; Li, H.; Zhou, Y.; Zhao, J.; Lin, H. Dietary Energy and Protein Levels During the Prelay Period on Production Performance, Egg Quality, Expression of Genes in Hypothalamus-Pituitary-Ovary Axis, and Bone Parameters in Aged Laying Hens. Front. Physiol. 2022, 13, 887381. [Google Scholar] [CrossRef]
- Hanlon, C.; Ramachandran, R.; Zuidhof, M.J.; Bédécarrats, G.Y. Should I Lay or Should I Grow: Photoperiodic Versus Metabolic Cues in Chickens. Front. Physiol. 2020, 11, 707. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Q.; Ruan, Z.; Wang, L.; Fan, J.; Chen, F.; Liu, Z.; Lu, L. Yacon (Smallanthus sonchifolius) Root Extracts Affect Laying Performance, Egg Quality, Serum Biochemical Parameters and Intestinal Microbiota in Hens. Anim Biosci 2024, 37, 1770–1780. [Google Scholar] [CrossRef]
- Gao, C.; Du, W.; Tian, K.; Wang, K.; Wang, C.; Sun, G.; Kang, X.; Li, W. Analysis of Conservation Priorities and Runs of Homozygosity Patterns for Chinese Indigenous Chicken Breeds. Animals 2023, 13, 599. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Poultry, 9th ed.; National Academies Press: Washington, DC, USA, 1994; ISBN 978-0-309-04892-7. [Google Scholar]
- MacArthur Clark, J.A.; Sun, D. Guidelines for the Ethical Review of Laboratory Animal Welfare People’s Republic of China National Standard GB/T 35892-2018 [Issued 6 February 2018 Effective from 1 September 2018]. Anim Models Exp Med. 2020, 3, 103–113. [Google Scholar] [CrossRef]
- Uyanga, V.A.; Xin, Q.; Sun, M.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Research Note: Effects of Dietary L-Arginine on the Production Performance and Gene Expression of Reproductive Hormones in Laying Hens Fed Low Crude Protein Diets. Poult. Sci. 2022, 101, 101816. [Google Scholar] [CrossRef]
- Sharma, M.K.; Singh, A.K.; Goo, D.; Choppa, V.S.R.; Ko, H.; Shi, H.; Kim, W.K. Graded Levels of Eimeria Infection Modulated Gut Physiology and Temporarily Ceased the Egg Production of Laying Hens at Peak Production. Poult. Sci. 2024, 103, 103229. [Google Scholar] [CrossRef] [PubMed]
- Sabour, S.; Tabeidian, S.A.; Sadeghi, G. Dietary Organic Acid and Fiber Sources Affect Performance, Intestinal Morphology, Immune Responses and Gut Microflora in Broilers. Anim. Nutr. 2019, 5, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Ajao, A.M.; Oso, A.O.; Lala, A.O.; Olowofeso, O.; Adeniran, A.D. Effect of Varying Level of Ginger Powder in the Diet of Starter Turkeys on Performance, Haematological and Serum Biochemical Indices. Niger. J. Anim. Prod. 2018, 45, 212–223. [Google Scholar] [CrossRef]
- Shewita, R.S.; Taha, A.E. Influence of Dietary Supplementation of Ginger Powder at Different Levels on Growth Performance, Haematological Profiles, Slaughter Traits and Gut Morphometry of Broiler Chickens. SA J. An. Sci. 2018, 48, 998–1008. [Google Scholar] [CrossRef]
- Flees, J.J.; Ganguly, B.; Dridi, S. Phytogenic Feed Additives Improve Broiler Feed Efficiency via Modulation of Intermediary Lipid and Protein Metabolism–Related Signaling Pathways. Poult. Sci. 2021, 100, 100963. [Google Scholar] [CrossRef]
- Shi, L.; Sun, Y.; Xu, H.; Liu, Y.; Li, Y.; Huang, Z.; Ni, A.; Chen, C.; Wang, P.; Ye, J.; et al. Effect of Age at Photostimulation on Reproductive Performance of Beijing-You Chicken Breeders. Poult. Sci. 2019, 98, 4522–4529. [Google Scholar] [CrossRef]
- Zagórska, J.; Czernicka-Boś, L.; Kukula-Koch, W.; Iłowiecka, K.; Koch, W. Impact of Thermal Processing on the Selected Biological Activities of Ginger Rhizome—A Review. Molecules 2023, 28, 412. [Google Scholar] [CrossRef]
- Yenice, E.; Çenesiz, A.A.; Çiftci, İ.; Ceylan, N.; Toprak, N.N.; Yavaş, İ. Effects of Particle Size and Feed Form on the Performance, Egg Quality, Digestive Organs and Plumage Condition in Laying Hens. Poult. Sci. 2025, 104, 105230. [Google Scholar] [CrossRef]
- Huang, Q.; Yi, W.; Fan, J.; Chen, R.; Ma, X.; Chen, Z.; Wu, W.; Qian, L. Effects Supplementation of Novel Multi-Enzyme on Laying Performance, Egg Quality, and Intestinal Health and Digestive Function of Laying Hens. Poult. Sci. 2024, 103, 104461. [Google Scholar] [CrossRef]
- Qin, M.; Ma, C.; Wang, Z.; Liang, M.; Sha, Y.; Liu, J.; Ge, S.; Guo, L.; Li, R. Integrated Transcriptome and Metabolomics Analysis Reveals That Probiotics and Tea Polyphenols Synergetically Regulate Lipid Metabolism in Laying Hens. Agriculture 2024, 14, 2072. [Google Scholar] [CrossRef]
- Hejdysz, M.; Nowaczewski, S.; Perz, K.; Szablewski, T.; Stuper-Szablewska, K.; Cegielska-Radziejewska, R.; Tomczyk, Ł.; Przybylska-Balcerek, A.; Buśko, M.; Kaczmarek, S.A.; et al. Influence of the Genotype of the Hen (Gallus gallus domesticus) on Main Parameters of Egg Quality, Chemical Composition of the Eggs under Uniform Environmental Conditions. Poult. Sci. 2024, 103, 103165. [Google Scholar] [CrossRef] [PubMed]
- Bedada, B.K.; Bogale, B.M.; Derese, D.B.; Dabi, S.B. Chicken Production Systems, Flock Composition and Structure, Genotype and the Effect of Production Systems on Egg Quality Traits in Bovans Brown Layers: A Case of Bacho and Dawo Districts, Ethiopia. Cogent Food Agric. 2024, 10, 2356940. [Google Scholar] [CrossRef]
- Aikpitanyi, K.U.; Imasuen, J.A. Assessment of Production Performance and Egg Quality of Commercial Laying Hens Fed Black Pepper and Red Pepper Additives. Eur. J. Vet. Med. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Lioliopoulou, S.; Papadopoulos, G.A.; Giannenas, I.; Vasilopoulou, K.; Squires, C.; Fortomaris, P.; Mantzouridou, F.T. Effects of Dietary Supplementation of Pomegranate Peel with Xylanase on Egg Quality and Antioxidant Parameters in Laying Hens. Antioxidants 2023, 12, 208. [Google Scholar] [CrossRef]
- Mosayyeb Zadeh, A.; Mirghelenj, S.A.; Daneshyar, M.; Eslami, M.; Karimi Torshizi, M.A.; Zhandi, M. Effects of Dietary Supplementation of Tomato Pomace (Solanum lycopersicum L.) and L-Arg on Reproductive Performance of Aged Male Broiler Breeders. Poult. Sci. 2023, 102, 102614. [Google Scholar] [CrossRef]
- Amini, S.; MohamadZamani, D.; Javidan, S.M. Investigation of the Relationship Between Egg Shell Strength and Thickness Using Non-Destructive Ultrasound Method. J. Biosyst. Eng. 2022, 47, 263–269. [Google Scholar] [CrossRef]
- Fathi, M.M.; Galal, A.; Ali, U.M.; Abou-Emera, O.K. Physical and Mechanical Properties of Eggshell as Affected by Chicken Breed and Flock Age. Br. Poult. Sci. 2019, 60, 506–512. [Google Scholar] [CrossRef]
- Jang, E. Correlation between Internal and External Egg Quality Indicators in the Early Phase of Hy-Line Brown Laying Hens. Korean J. Poult. Sci. 2022, 49, 53–60. [Google Scholar] [CrossRef]
- Muir, W.I.; Akter, Y.; Bruerton, K.; Groves, P.J. The Influence of Hen Size and Diet Nutrient Density in Early Lay on Hen Performance, Egg Quality, and Hen Health in Late Lay. Poult. Sci. 2022, 101, 102041. [Google Scholar] [CrossRef]
- Alig, B.N.; Malheiros, R.D.; Anderson, K.E. Evaluation of Physical Egg Quality Parameters of Commercial Brown Laying Hens Housed in Five Production Systems. Animals 2023, 13, 716. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Shan, Y. Assessment of the Relationship between Ovomucin and Albumen Quality of Shell Eggs during Storage. Poult. Sci. 2019, 98, 473–479. [Google Scholar] [CrossRef]
- Geng, A.L.; Zhang, Q.Q.; Chang, C.; Wang, H.H.; Chu, Q.; Zhang, J.; Yan, Z.X.; Liu, H.G. Dietary Metabolizable Energy and Crude Protein Levels Affect the Performance, Egg Quality and Biochemical Parameters of a Dual-Purpose Chicken. Anim. Biotechnol. 2023, 34, 2714–2723. [Google Scholar] [CrossRef]
- Liao, W.; Cai, H.; Lian, H.; Huang, Z.; Sun, Y.; Ni, H. Quality Evaluation of Table Eggs under Different Rearing Systems in China. Food Sci. Technol. 2023, 43, e110322. [Google Scholar] [CrossRef]
- Risdianto, D.; Suthama, N.; Suprijatna, E.; Sunarso, S. Inclusion Effect of Ginger and Turmeric Mixture Combined with Lactobacillus Spp. Isolated from Rumen Fluid of Cattle on Health Status and Growth of Broiler. J. Indones. Trop. Anim. Agric. 2019, 44, 423. [Google Scholar] [CrossRef]
- Tu, P.T.C.; Lien, N.T.K.; Diep, D.X.; Ly, T.H. Effect of Ginger, Zingiber officinale Extract on Growth Performance, Digestive Enzyme and Stress Tolerance of Whiteleg Shrimp, Litopenaeus vannamei Juveniles. Isr. J. Aquac. Bamidgeh 2023, 75, 1–8. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, E.; Chen, X.; Huang, C.; Liu, G.; Chen, H.; Wang, D.; Shi, L.; Xuan, F.; Chang, D.; et al. Dietary Fiber Level Improve Growth Performance, Nutrient Digestibility, Immune and Intestinal Morphology of Broilers from Day 22 to 42. Animals 2023, 13, 1227. [Google Scholar] [CrossRef]
- Olayemi, W.A.; Williams, G.A.; Olatidoye, O.P.; Omofunmilola, E.O. Influence of Dietary Inclusion of Phytobiotics on Growth Performance, Carcass and Organ Weight of Broiler Chickens. J. Agric. Food Sci. 2021, 18, 26–38. [Google Scholar] [CrossRef]
- Al-Garadi, M.A.; Al-Baadani, H.H.; Alqhtani, A.H. Growth Performance, Histological Changes and Functional Tests of Broiler Chickens Fed Diets Supplemented with Tribulus Terrestris Powder. Animals 2022, 12, 1930. [Google Scholar] [CrossRef]
- Derese, D.B.; Lu, L.; Shi, F. Major Regulatory Factors for Reproductive Performances of Female Chickens. Asian Pac. J. Reprod. 2024, 13, 197–206. [Google Scholar] [CrossRef]
- Ducatelle, R.; Goossens, E.; De Meyer, F.; Eeckhaut, V.; Antonissen, G.; Haesebrouck, F.; Van Immerseel, F. Biomarkers for Monitoring Intestinal Health in Poultry: Present Status and Future Perspectives. Vet. Res. 2018, 49, 43. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Di Luca, A.; Desantis, S.; Martemucci, G. Antioxidant Synergy in a Mixture of Powder Plant Leaves and Effects on Metabolic Profile, Oxidative Status and Intestinal Morpho-Histochemical Features of Laying Hens. Animals 2025, 15, 308. [Google Scholar] [CrossRef]
- Korczowska-Łącka, I.; Słowikowski, B.; Piekut, T.; Hurła, M.; Banaszek, N.; Szymanowicz, O.; Jagodziński, P.P.; Kozubski, W.; Permoda-Pachuta, A.; Dorszewska, J. Disorders of Endogenous and Exogenous Antioxidants in Neurological Diseases. Antioxidants 2023, 12, 1811. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Bao, J.; He, X.; Tong, D.; Chen, C.; Ying, Q.; Zhang, Q.; Zhang, C.; Li, J. Melatonin Improves Laying Performance by Enhancing Intestinal Amino Acids Transport in Hens. Front. Endocrinol. 2018, 9, 426. [Google Scholar] [CrossRef]
- Malyar, R.M.; Ding, W.; Wei, Q.; Sun, J.; Hou, L.; Elsaid, S.H.; Ali, I.; Zhou, W.; Shi, F. Effects of Fermented Bamboo Powder Supplementation on Gene Expressions of Antioxidant, Odorant Receptors, Growth and Immunity in Yellow-Feather Broiler Chickens. Anim. Adv. 2024, 1, e005. [Google Scholar] [CrossRef]
- Wen, C.; Jia, X.; Zhu, C.; Fang, X.; Tian, H.; Ma, S.; Wang, A.; Jiang, W.; Liu, W.; Zhang, D. Berberine Supplementation Enhances Antioxidant Defense and Glucose Metabolism in Crayfish (Procambarus clarkii) Fed a High-Carbohydrate Diet. Anim. Adv. 2025, 2, e020. [Google Scholar] [CrossRef]
Ingredients | Content (%) | Nutrients ** | Content |
---|---|---|---|
Corn | 69.00 | Metabolic energy (MJ/kg) | 11.00 |
Soybean meal | 21.00 | Crude protein (%) | 16.10 |
Limestone | 2.20 | Calcium (%) | 2.60 |
Dicalcium phosphate | 2.80 | Total phosphorus (%) | 0.42 |
Sodium chloride | 0.30 | Available phosphorus (%) | 0.22 |
Premix * | 4.70 | Methionine (%) | 0.45 |
Lysine (%) | 0.62 | ||
Total | 100 | ||
Nutrient composition of ginger powder (% DM 1) | |||
Nutrients | Contents (%) | ||
Dry matter | 90.35 | ||
Moisture | 9.65 | ||
Crude protein | 5.70 | ||
Ether extract | 5.42 | ||
Neutral detergent fiber | 8.14 | ||
Ash | 4.10 | ||
Nitrogen-free extract | 66.99 | ||
Organic matter | 84.58 | ||
Unknown substances | 2.10 |
Items | Groups | SEM 1 | p-Values | ||||
---|---|---|---|---|---|---|---|
CN | T1 | T2 | An 2 | Ln 3 | Qu 4 | ||
Egg weight (g) | 48.23 | 51.79 | 50.83 | 1.85 | 0.1731 | 0.181 | 0.180 |
% Shell weight | 12.54 | 12.53 | 12.56 | 0.61 | 0.9989 | 0.981 | 0.969 |
% Albumen weight | 56.84 | 56.66 | 56.33 | 1.98 | 0.9659 | 0.798 | 0.968 |
% Yolk weight | 30.70 | 30.78 | 31.21 | 2.21 | 0.9690 | 0.819 | 0.927 |
Egg length (mm) | 54.07 | 55.34 | 55.19 | 1.13 | 0.4914 | 0.339 | 0.485 |
Egg width (mm) | 39.77 | 40.83 | 40.63 | 0.47 | 0.0911 | 0.090 | 0.145 |
Egg shape index | 73.57 | 73.83 | 73.73 | 1.49 | 0.9844 | 0.917 | 0.889 |
Albumen height (mm) | 4.65 b | 4.97 ab | 5.62 a | 0.35 | 0.0427 | 0.015 | 0.593 |
Yolk color | 14.17 | 14.50 | 14.50 | 0.69 | 0.8597 | 0.639 | 0.786 |
Haugh unit | 70.55 b | 71.86 b | 77.26 a | 2.46 | 0.036 | 0.015 | 0.352 |
Shell thickness (mm) | 0.32 b | 0.33 ab | 0.39 a | 0.02 | 0.0268 | 0.013 | 0.275 |
Shell strength (kgf) | 4.19 b | 4.56 ab | 4.96 a | 0.26 | 0.0295 | 0.009 | 0.942 |
Items | Groups | SEM 1 | p-Values | ||||
---|---|---|---|---|---|---|---|
CN | T1 | T2 | An 2 | Ln 3 | Qu 4 | ||
BW (kg) 5 | 2.49 | 2.48 | 2.48 | 0.06 | 0.9924 | 0.916 | 0.952 |
Heart weight (g) | 6.46 | 7.46 | 9.04 | 0.56 | 0.1635 | 0.063 | 0.796 |
Heart index (g kg−1) | 2.60 | 3.02 | 3.79 | 0.29 | 0.2540 | 0.108 | 0.772 |
Liver weight (g) | 35.67 | 36.41 | 36.93 | 0.76 | 0.8132 | 0.529 | 0.948 |
Liver index (g kg−1) | 14.48 | 14.72 | 15.09 | 0.43 | 0.8559 | 0.586 | 0.948 |
Gizzard weight (g) | 15.98 | 18.07 | 19.95 | 0.79 | 0.1186 | 0.042 | 0.949 |
Gizzard index (g kg−1) | 6.34 b | 7.31 ab | 8.08 a | 0.26 | 0.0140 | 0.004 | 0.818 |
Items | Groups | SEM 1 | p-Values | |||||
---|---|---|---|---|---|---|---|---|
CN | T1 | T2 | An 2 | Ln 3 | Qu 4 | |||
Duodenum | VH (µm) | 1419.73 b | 1430.24 b | 1452.43 a | 5.08 | 0.001 | 0.001 | 0.193 |
CD (µm) | 248.29 b | 242.18 ab | 234.91 a | 2.27 | 0.020 | 0.007 | 0.848 | |
VH/CD | 5.72 b | 5.91 b | 6.18 a | 0.07 | 0.005 | 0.002 | 0.584 | |
Jejunum | VH (µm) | 877.94 b | 884.95 ab | 899.92 a | 3.71 | 0.014 | 0.005 | 0.406 |
CD (µm) | 191.05 a | 186.10 b | 178.93 b | 1.96 | 0.007 | 0.002 | 0.616 | |
VH/CD | 4.59 b | 4.76 b | 5.03 a | 0.07 | 0.003 | 0.001 | 0.413 | |
Ileum | VH (µm) | 858.32 c | 867.81 b | 894.31 a | 5.46 | <0.0001 | <0.0001 | 0.009 |
CD (µm) | 185.28 a | 159.95 b | 150.18 c | 5.30 | <0.0001 | <0.0001 | 0.011 | |
VH/CD | 4.63 c | 5.43 b | 5.96 a | 0.19 | <0.0001 | <0.0001 | 0.136 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derese, D.B.; Sun, H.; Xiong, X.; Li, Z.; Malyar, R.M.; Lu, L.; Shi, F. Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens. Animals 2025, 15, 2315. https://doi.org/10.3390/ani15152315
Derese DB, Sun H, Xiong X, Li Z, Malyar RM, Lu L, Shi F. Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens. Animals. 2025; 15(15):2315. https://doi.org/10.3390/ani15152315
Chicago/Turabian StyleDerese, Debela Bayu, Hanxue Sun, Xihuai Xiong, Ziqing Li, Rahmani Mohammad Malyar, Lizhi Lu, and Fangxiong Shi. 2025. "Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens" Animals 15, no. 15: 2315. https://doi.org/10.3390/ani15152315
APA StyleDerese, D. B., Sun, H., Xiong, X., Li, Z., Malyar, R. M., Lu, L., & Shi, F. (2025). Effects of Dietary Ginger (Zingiber officinale) Rhizome Powder Supplementation on Productive Performance, Egg Quality, Antioxidant Capacity, and Hepato-Intestinal Morphology in Pre-Peak Xiaoshan Laying Hens. Animals, 15(15), 2315. https://doi.org/10.3390/ani15152315