Genetic Evaluation of Growth Traits in Black-Boned and Thai Native Synthetic Chickens Under Heat Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Management
2.2. Air Temperature and Relative Humidity Data
2.3. Statistical Analysis and Growth Curve Estimation
2.4. Estimation of Genetic Parameters
3. Results
3.1. Determination of the Onset of Heat Stress Threshold Using THI
3.2. Growth Comparisons
3.3. Heritability Estimates
3.4. Genetic and Phenotypic Correlation Estimates
3.5. Trait Reductions Under Heat Stress
3.6. EBV Trends Across THI Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Padhi, M.K. Importance of indigenous breeds of chicken for rural economy and their improvements for higher production performance. Scientifica 2016, 2016, 2604685. [Google Scholar] [CrossRef]
- Attia, Y.A.; Rahman, M.T.; Hossain, M.J.; Basiouni, S.; Khafaga, A.F.; Shehata, A.A.; Hafez, H.M. Poultry production and sustainability in developing countries under the COVID-19 crisis: Lessons learned. Animals 2022, 12, 644. [Google Scholar] [CrossRef]
- Birhanu, M.Y.; Osei-Amponsah, R.; Obese, F.Y.; Dessie, T. Smallholder poultry production in the context of increasing global food prices: Roles in poverty reduction and food security. Anim. Front. 2023, 13, 17–25. [Google Scholar] [CrossRef]
- Loengbudnark, W.; Chankitisakul, V.; Duangjinda, M.; Boonkum, W. Sustainable growth through Thai native chicken farming: Lessons from rural communities. Sustainability 2024, 16, 7811. [Google Scholar] [CrossRef]
- Chomchuen, K.; Tuntiyasawasdikul, V.; Chankitisakul, V.; Boonkum, W. Genetic evaluation of body weights and egg production traits using a multi-trait animal model and selection index in Thai native synthetic chickens (Kaimook e-san2). Animals 2022, 12, 335. [Google Scholar] [CrossRef]
- Sungkhapreecha, P.; Chankitisakul, V.; Duangjinda, M.; Boonkum, W. Combining abilities, heterosis, growth performance, and carcass characteristics in a diallel cross from black-bone chickens and Thai native chickens. Animals 2022, 12, 1602. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Cao, C.; Cai, Y.; Li, Y.; Song, Y.; Bao, X.; Zhang, J. Effects of different rearing systems on Lueyang black-bone chickens: Meat quality, amino acid composition, and breast muscle transcriptome. Genes 2022, 13, 1898. [Google Scholar] [CrossRef]
- Budi, T.; Singchat, W.; Tanglertpaibul, N.; Wongloet, W.; Chaiyes, A.; Ariyaraphong, N.; Thienpreecha, W.; Wannakan, W.; Mungmee, A.; Thong, T.; et al. Thai local chicken breeds, Chee Fah and Fah Luang, originated from Chinese black-boned chicken with introgression of red junglefowl and domestic chicken breeds. Sustainability 2023, 15, 6878. [Google Scholar] [CrossRef]
- Li, W.; Zheng, M.; Zhao, G.; Wang, J.; Liu, J.; Wang, S.; Feng, F.; Liu, D.; Zhu, D.; Li, Q.; et al. Identification of QTL regions and candidate genes for growth and feed efficiency in broilers. Genet. Sel. Evol. 2021, 53, 13. [Google Scholar] [CrossRef] [PubMed]
- Boonkum, W.; Chankitisakul, V.; Kananit, S.; Kenchaiwong, W. Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum). Anim. Biosci. 2024, 37, 16–27. [Google Scholar] [CrossRef]
- Gheyas, A.A.; Vallejo-Trujillo, A.; Kebede, A.; Lozano-Jaramillo, M.; Dessie, T.; Smith, J.; Hanotte, O. Integrated environmental and genomic analysis reveals the drivers of local adaptation in African indigenous chickens. Mol. Biol. Evol. 2021, 38, 4268–4285. [Google Scholar] [CrossRef]
- Kpomasse, C.C.; Kouame, Y.A.E.; N’nanle, O.; Houndonougbo, F.M.; Tona, K.; Oke, O.E. The productivity and resilience of the indigenous chickens in the tropical environments: Improvement and future perspectives. J. Appl. Anim. Res. 2023, 51, 456–469. [Google Scholar] [CrossRef]
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 56–369. [Google Scholar] [CrossRef]
- Boonkum, W.; Duangjinda, M.; Kananit, S.; Chankitisakul, V.; Kenchaiwong, W. Genetic effect and growth curve parameter estimation under heat stress in slow-growing Thai native chickens. Vet. Sci. 2021, 8, 297. [Google Scholar] [CrossRef]
- Bhawa, S.; Morêki, J.C.; Machete, J.B. Poultry management strategies to alleviate heat stress in hot climates: A review. J. World Poult. Res. 2023, 13, 1–19. [Google Scholar] [CrossRef]
- Sesay, A.R. Impact of heat stress on chicken performance, welfare, and probable mitigation strategies. Int. J. Environ. Clim. Chang. 2022, 12, 3120–3133. [Google Scholar] [CrossRef]
- Uyanga, V.A.; Musa, T.H.; Oke, O.E.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Global trends and research frontiers on heat stress in poultry from 2000 to 2021: A bibliometric analysis. Front. Physiol. 2023, 14, 1123582. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Mishra, B. Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Choi, Y.-H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef]
- Brugaletta, G.; Teyssier, J.-R.; Rochell, S.J.; Dridi, S.; Sirri, F. A review of heat stress in chickens. Part I: Insights into physiology and gut health. Front. Physiol. 2022, 13, 934381. [Google Scholar] [CrossRef]
- Yahav, S.; Shinder, D.; Tanny, J.; Cohen, S. Sensible heat loss: The broiler’s paradox. World Poult. Sci. J. 2005, 61, 419–434. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.D.; Ferreira, A.J.P.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Prates, J.A.M. Heat stress effects on animal health and performance in monogastric livestock: Physiological responses, molecular mechanisms, and management interventions. Vet Sci. 2025, 12, 429. [Google Scholar] [CrossRef]
- National Oceanic, & Atmospheric Administration (NOAA). In Livestock Hot Weather Stress; US Government Printing Office: Washington, DC, USA, 1976.
- Mignon-Grasteau, S. Genetic parameters of growth curve parameters in male and female chickens. Br. Poult. Sci. 1999, 40, 44–51. [Google Scholar] [CrossRef]
- Misztal, I.; Tsuruta, S.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs. University of Georgia: Athens, GA, USA, 2014. Available online: https://nce.ads.uga.edu/html/projects/programs/docs/blupf90_all8.pdf (accessed on 26 April 2024).
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Galván, I.; Palacios, D.; Negro, J.J. The bare head of the Northern bald ibis (Geronticus eremita) fulfills a thermoregulatory function. Front. Zool. 2017, 14, 15. [Google Scholar] [CrossRef]
- Rogalla, S.; D’Alba, L.; Verdoodt, A.; Shawkey, M.D. Hot wings: Thermal impacts of wing coloration on surface temperature during bird flight. J. R. Soc. Interface. 2019, 16, 20190032. [Google Scholar] [CrossRef]
- Rogalla, S.; Shawkey, M.D.; D’Alba, L. Thermal effects of plumage coloration. Int. J. Avian Sci. 2022, 164, 933–948. [Google Scholar] [CrossRef]
- Trullas, S.C.; van Wyk, J.H.; Spotila, J.R. Thermal melanism in ectotherms. J. Therm. Biol. 2007, 32, 235–245. [Google Scholar] [CrossRef]
- Roulin, A. Melanin-based colour polymorphism responding to climate change. Glob. Chang. Biol. 2014, 20, 3344–3350. [Google Scholar] [CrossRef]
- Galván, I.; Solano, F. Bird integumentary melanins: Biosynthesis, forms, function and evolution. Int. J. Mol. Sci. 2016, 17, 520. [Google Scholar] [CrossRef]
- Shinomiya, A.; Kayashima, Y.; Kinoshita, K.; Mizutani, M.; Namikawa, T.; Matsuda, Y.; Akiyama, T. Gene duplication of endothelin 3 is closely correlated with the hyperpigmentation of the internal organs (Fibromelanosis) in silky chickens. Genetics 2012, 190, 627–638. [Google Scholar] [CrossRef]
- Ito, S.; Wakamatsu, K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigment. Cell. Res. 2003, 16, 523–531. [Google Scholar] [CrossRef]
- Van Goor, A.; Bolek, K.J.; Ashwell, C.M.; Persia, M.E.; Rothschild, M.F.; Schmidt, C.J.; Lamont, S.J. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet. Sel. Evol. 2015, 47, 96. [Google Scholar] [CrossRef]
- Radwan, L.M.; Mahrous, M.Y. Improving growth traits and estimating heterosis, additive and maternal effects a cross diallel mating among three lines selected heaviest body weight under heat condition. Egypt. Poult. Sci. 2018, 38, 895–907. [Google Scholar] [CrossRef]
- Alam, M.; Chand, N.; Khan, S.; Suhail, S.M. Growth performance, proximate composition and immune competence of naked neck, Rhode Island Red and their F1 crossbred chickens in a tropical climate. J. Anim. Health Prod. 2021, 9, 303–311. [Google Scholar] [CrossRef]
- Elfwing, M.; Nätt, D.; Goerlich-Jansson, V.C.; Persson, M.; Hjelm, J.; Jensen, P. Early stress causes sex-specific, life-long changes in behaviour, levels of gonadal hormones, and gene expression in chickens. PLoS ONE 2015, 10, e0125808. [Google Scholar] [CrossRef] [PubMed]
- Resnyk, C.W.; Carré, W.; Wang, X.; Porter, T.E.; Simon, J.; Le Bihan-Duval, E.; Duclos, M.J.; Aggrey, S.E.; Cogburn, L.A. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: Validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genom. 2017, 18, 626. [Google Scholar] [CrossRef]
- Cahaner, A. Genotype by environment interaction in poultry. In Proceedings of the 4th World Genetics Applied to Livestock Production, Edinburgh, Scotland, 23–27 July 1990. [Google Scholar]
- Al-Abdullatif, A.; Azzam, M.M. Effects of hot arid environments on the production performance, carcass traits, and fatty acids composition of breast meat in broiler chickens. Life 2023, 13, 1239. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, K.; Kumar, H.; Park, W.; Byun, M.; Lim, D.; Kemp, S.; Te Pas, M.F.W.; Kim, J.-M.; Park, J.-E. Cardiac and skeletal muscle transcriptome response to heat stress in Kenyan chicken ecotypes adapted to low and high altitudes reveal differences in thermal tolerance and stress response. Front. Genet. 2019, 10, 993. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, A.H.; Lin, S.; Wang, F.; Zheng, J.; Sun, J.; Zhang, W.; Jiao, Z.; Zhu, Z.; An, L.; Zhang, L. Investigating the heat tolerance and production performance in local chicken breed having normal and dwarf size. Animal 2023, 17, 100707. [Google Scholar] [CrossRef]
- Adedeji, T.A.; Aderoju, O.T.; Adebimpe, A.M.; Matheuw, B. Genotype-sex interaction in relation to heat tolerance attributes of pure and crossbred chicken progenies. J. Biol. Agric. Healthc. 2015, 5, 43–49. [Google Scholar]
- Shehata, A.M.; Saadeldin, I.M.; Tukur, H.A.; Habashy, W.S. Modulation of heat-shock proteins mediates chicken cell survival against thermal stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, V.S. Heat stress biomarker amino acids and neuropeptide afford thermotolerance in chicks. J. Poult. Sci. 2019, 56, 1–11. [Google Scholar] [CrossRef]
- Lin, H.; Decuypere, E.; Buyse, J. Acute heat stress induces oxidative stress in broiler chickens. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2006, 144, 11–17. [Google Scholar] [CrossRef]
- Dmitriev, V.B.; Churkina, I.V.; Smirnov, A.F.; Nikolaeva, E.K. Destabilizing effect of chicken selection using the functional adrenal reserves criteria. Genetika 2001, 37, 517–523. [Google Scholar]
- Lee, P.; Yeon, S.-H.; Kim, J.-H.; Ko, Y.-G.; Son, J.-K.; Lee, H.-H.; Cho, C.Y. Genetic composition of Korean native chicken populations-national scale molecular genetic evaluation based on microsatellite markers. Korean J. Poult. Sci. 2011, 38, 81–87. [Google Scholar] [CrossRef]
- Fatai, R.B.; Akinyemi, M.O.; Osaiyuwu, O.H.; Ewuola, K.M.; Salako, A.E. Physiological response of Nigerian locally adapted chickens with different Heat Shock Protein 70 Genotypes to acute heat stress. Biotechnol. Anim. Husb. 2023, 39, 51–60. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 15 April 2025).
Chicken Breed | Black-Boned Chicken | Thai Native Synthetic Chicken | ||
---|---|---|---|---|
Temperature-Humidity Index (THI)/Statistic Criteria | −2logL | AIC | −2logL | AIC |
THI70 | +59 | +59 | +240 | +240 |
THI71 | +22 | +22 | +175 | +175 |
THI72 | 0 | 0 | +153 | +153 |
THI73 | +48 | +48 | +72 | +72 |
THI74 | +82 | +82 | +59 | +59 |
THI75 | +95 | +95 | +22 | +22 |
THI76 | +129 | +129 | 0 | 0 |
THI77 | +225 | +225 | +48 | +48 |
THI78 | +428 | +428 | +135 | +135 |
THI79 | +439 | +439 | +268 | +268 |
THI80 | +462 | +439 | +392 | +392 |
Parameters | Genetic Correlations | Phenotypic Correlations | ||
---|---|---|---|---|
Chicken Breeds and Traits | THI72 | THI76 | THI72 | THI76 |
Black-boned chickens | ||||
BW | −0.69 | −0.77 | −0.77 | −0.85 |
ADG | −0.74 | −0.85 | −0.86 | −0.92 |
AGR | −0.79 | −0.89 | −0.89 | −0.95 |
Thai native synthetic chickens | ||||
BW | −0.50 | −0.62 | −0.69 | −0.77 |
ADG | −0.59 | −0.70 | −0.72 | −0.78 |
AGR | −0.68 | −0.82 | −0.79 | −0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenchaiwong, W.; Promket, D.; Sirisan, V.; Chankitisakul, V.; Kananit, S.; Boonkum, W. Genetic Evaluation of Growth Traits in Black-Boned and Thai Native Synthetic Chickens Under Heat Stress. Animals 2025, 15, 2314. https://doi.org/10.3390/ani15152314
Kenchaiwong W, Promket D, Sirisan V, Chankitisakul V, Kananit S, Boonkum W. Genetic Evaluation of Growth Traits in Black-Boned and Thai Native Synthetic Chickens Under Heat Stress. Animals. 2025; 15(15):2314. https://doi.org/10.3390/ani15152314
Chicago/Turabian StyleKenchaiwong, Wootichai, Doungnapa Promket, Vatsana Sirisan, Vibuntita Chankitisakul, Srinuan Kananit, and Wuttigrai Boonkum. 2025. "Genetic Evaluation of Growth Traits in Black-Boned and Thai Native Synthetic Chickens Under Heat Stress" Animals 15, no. 15: 2314. https://doi.org/10.3390/ani15152314
APA StyleKenchaiwong, W., Promket, D., Sirisan, V., Chankitisakul, V., Kananit, S., & Boonkum, W. (2025). Genetic Evaluation of Growth Traits in Black-Boned and Thai Native Synthetic Chickens Under Heat Stress. Animals, 15(15), 2314. https://doi.org/10.3390/ani15152314