The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals
Simple Summary
Abstract
1. Introduction
2. Modifications of the Endocannabinoid System in the Context of Neoplastic Diseases
2.1. Alterations in Endocannabinoid Ligands
2.2. Changes in Cannabinoid Receptor Expression
2.3. Alterations in ECS-Related Enzymes
3. Antitumor Mechanisms of Cannabinoids
3.1. Induction of Cell Death
3.2. Inhibition of Angiogenesis, Invasion, and Metastasis
3.3. Regulation of Antitumor Immunity
4. Synergy Between Cannabinoids and Antitumor Drugs
5. Preclinical and Clinical Studies on the Antineoplastic Effects of Cannabinoids
5.1. Preclinical Studies
5.2. Clinical Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ECS | Endocannabinoid system |
eCB | Endocannabinoids |
pCB | Phytocannabinoids |
CB1R | Cannabinoid receptor type 1 |
CB2R | Cannabinoid receptor type 2 |
TRPV | Transient receptor potential vanilloid |
GPR55 | G protein-coupled receptor 55 |
MMP | Matrix metalloproteinase |
AEA | Anandamide |
2AG | 2-arachidonoyoglycerol |
OEA | Oleoylethanolamide |
PEA | Palmitoylethanolamide |
THC | Δ9-tetrahydrocannabinol |
CBD | Cannabidiol |
PKB | Protein kinase B |
ROS | Reactive oxygen species |
FAAH | Fatty acid amide hydrolase |
MAGL | Monoacylglycerol lipase |
VEGF | Vascular Endothelial Growth Factor |
FGF-2 | Fibroblast Growth Factor 2 |
ICAM-1 | Intercellular adhesion molecule 1 |
TIMP-1 | Tissue inhibitor of matrix metalloproteinases-1 |
Th | T helper |
IFN-γ | Interferon gamma |
IL | Interleukin |
OS | Osteosarcoma |
ASCO | American Society of Clinical Oncology |
References
- AVMA. Cancer in Pets. Available online: https://www.avma.org/resources/pet-owners/petcare/cancer-pets (accessed on 4 June 2025).
- Gray, M.; Meehan, J.; Turnbull, A.K.; Martínez-Pérez, C.; Kay, C.; Pang, L.Y.; Argyle, D.J. The Importance of the Tumor Microenvironment and Hypoxia in Delivering a Precision Medicine Approach to Veterinary Oncology. Front. Vet. Sci. 2020, 7, 598338. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, A.; Chiaradia, E.; Sforna, M.; della Rocca, G. Endocannabinoid system and phytocannabinoids in the main species of veterinary interest: A comparative review. Vet. Res. Commun. 2024, 48, 2915–2941. [Google Scholar] [CrossRef] [PubMed]
- Di Salvo, A.; Conti, M.B.; della Rocca, G. Pharmacokinetics, efficacy, and safety of cannabidiol in dogs: An update of current knowledge. Front. Vet. Sci. 2023, 10, 1204526. [Google Scholar] [CrossRef] [PubMed]
- Hermanson, D.J.; Marnett, L.J. Cannabinoids, endocannabinoids, and cancer. Cancer Metastasis Rev. 2011, 30, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Duarte, M.J.; Blázquez, C.; Ravina, J.; Rosa, M.C.; Galve-Roperh, I.; Sánchez, C.; Velasco, G.; González-Feria, L. A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br. J. Cancer 2006, 95, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Cavic, M.; Krivokuca, A.; Casadó, V.; Canela, E. The endocannabinoid system as a target in cancer diseases: Are we there yet? Front. Pharmacol. 2019, 10, 445673. [Google Scholar] [CrossRef] [PubMed]
- Fraguas-Sánchez, A.I.; Martín-Sabroso, C.; Torres-Suárez, A.I. Insights into the effects of the endocannabinoid system in cancer: A review. Br. J. Pharmacol. 2018, 175, 2566–2580. [Google Scholar] [CrossRef] [PubMed]
- Hay, J.K.; Hocker, S.E.; Monteith, G.; Woods, J.P. Circulating Endocannabinoids in Canine Multicentric Lymphoma Patients. Front. Vet. Sci. 2022, 9, 828095. [Google Scholar] [CrossRef] [PubMed]
- Cherkasova, V.; Wang, B.; Gerasymchuk, M.; Fiselier, A.; Kovalchuk, O.; Kovalchuk, I. Use of Cannabis and Cannabinoids for Treatment of Cancer. Cancers 2022, 14, 5142. [Google Scholar] [CrossRef] [PubMed]
- Börner, C.; Höllt, V.; Sebald, W.; Kraus, J. Transcriptional regulation of the cannabinoid receptor type 1 gene in T cells by cannabinoids. J. Leucoc. Biol. 2007, 81, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, C.; Barbero, R.; Re, G. Transient Receptor Potential Vanilloid 1 Involvement in Animal Pain Perception. Am. J. Anim. Vet. Sci. 2015, 10, 47–52. [Google Scholar] [CrossRef][Green Version]
- Barbero, R.; Vercelli, C.; Cuniberti, B.; della Valle, M.F.; Martano, M.; Re, G. Expression of Functional TRPV 1 Receptor in Primary Culture of Canine Keratinocytes. J. Vet. Pharmacol. Ther. 2018, 41, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, C.; Barbero, R.; Cuniberti, B.; Racca, S.; Abbadessa, G.; Piccione, F.; Re, G. Transient Receptor Potential Vanilloid 1 Expression and Functionality in MCF-7 Cells: A Preliminary Investigation. J. Breast Cancer 2014, 17, 332. [Google Scholar] [CrossRef] [PubMed]
- Vercelli, C.; Barbero, R.; Cuniberti, B.; Odore, R.; Re, G. Expression and Functionality of TRPV1 Receptor in Human MCF-7 and Canine CF.41 Cells. Vet. Comp. Oncol. 2015, 13, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, Cancer and Immunity—Implication of TRPV1 Channel. Front. Oncol. 2019, 9, 1087. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.; Andradas, C.; Medrano, M.; Caffarel, M.M.; Pérez-Gómez, E.; Blasco-Benito, S.; Gómez-Cañas, M.; Pazos, M.R.; Irving, A.J.; Lluís, C.; et al. Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. J. Biol. Chem. 2014, 289, 21960–21972. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, V.; Boari, A.; Ressel, L.; Bongiovanni, L.; Crisi, P.E.; Cabibbo, E.; Finotello, R. Expression of cannabinoid receptors CB1 and CB2 in canine cutaneous mast cell tumours. Res. Vet. Sci. 2022, 152, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Bulak, K.; Kycko, A.; Śmiech, A.; Łopuszyński, W. Immunoreactivity of p21, MMP-1 and CB2 receptor proteins in cutaneous canine mast cell tumours: An association with the three-tier grading system. J. Vet. Res. 2023, 67, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Afrin, F.; Chi, M.; Eamens, A.L.; Duchatel, R.J.; Douglas, A.M.; Schneider, J.; Gedye, C.; Woldu, A.S.; Dun, M.D. Can hemp help? Low-THC cannabis and non-THC cannabinoids for the treatment of cancer. Cancers 2020, 12, 1033. [Google Scholar] [CrossRef] [PubMed]
- Cridge, B.J.; Rosengren, R.J. Critical appraisal of the potential use of cannabinoids in cancer management. Cancer Manag. Res. 2013, 5, 301–313. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ebrahimi, N.; Far, N.P.; Fakhr, S.S.; Faghihkhorasani, F.; Miraghel, S.A.; Chaleshtori, S.R.; Rezaei-Tazangi, F.; Beiranvand, S.; Baziyar, P.; Manavi, M.S.; et al. The endocannabinoid system, a new gatekeeper in the pharmacology of human hepatocellular carcinoma. Environ. Res. 2023, 228, 115914. [Google Scholar] [CrossRef] [PubMed]
- Faiz, M.B.; Naeem, F.; Irfan, M.; Aslam, M.A.; Estevinho, L.M.; Ateşşahin, D.A.; Alshahrani, A.M.; Calina, D.; Khan, K.; Sharifi-Rad, J. Exploring the therapeutic potential of cannabinoids in cancer by modulating signaling pathways and addressing clinical challenges. Discov. Oncol. 2024, 15, 490. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Zhao, P.Y.; Yang, X.P.; Li, H.; Hu, S.D.; Xu, Y.X.; Du, X.H. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front. Pharmacol. 2023, 14, 1094020. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer 2003, 3, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Heider, C.G.; Itenberg, S.A.; Rao, J.; Ma, H.; Wu, X. Mechanisms of Cannabidiol (CBD) in Cancer Treatment: A Review. Biology 2022, 11, 817. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Ramer, R. Anti-tumour actions of cannabinoids. Br. J. Pharmacol. 2019, 176, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Hinz, B.; Ramer, R. Cannabinoids as anticancer drugs: Current status of preclinical research. Br. J. Cancer 2022, 127, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hosami, F.; Ghadimkhah, M.H.; Salimi, V.; Ghorbanhosseini, S.S.; Tavakoli-Yaraki, M. The strengths and limits of cannabinoids and their receptors in cancer: Insights into the role of tumorigenesis-underlying mechanisms and therapeutic aspects. Biomed. Pharmacother. 2021, 144, 112279. [Google Scholar] [CrossRef] [PubMed]
- Javid, F.A.; Phillips, R.M.; Afshinjavid, S.; Verde, R.; Ligresti, A. Cannabinoid pharmacology in cancer research: A new hope for cancer patients? Eur. J. Pharmacol. 2016, 775, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kienzl, M.; Kargl, J.; Schicho, R. The immune endocannabinoid system of the tumor microenvironment. Int. J. Mol. Sci. 2020, 21, 8929. [Google Scholar] [CrossRef] [PubMed]
- Kis, B.; Ifrim, F.C.; Buda, V.; Avram, S.; Pavel, I.Z.; Antal, D.; Paunescu, V.; Dehelean, C.A.; Ardelean, F.; Diaconeasa, Z.; et al. Cannabidiol—From plant to human body: A promising bioactive molecule with multi-target effects in cancer. Int. J. Mol. Sci. 2019, 20, 5905. [Google Scholar] [CrossRef] [PubMed]
- Kovalchuk, O.; Kovalchuk, I. Cannabinoids as anticancer therapeutic agents. Cell Cycle 2020, 19, 961–989. [Google Scholar] [CrossRef] [PubMed]
- Laezza, C.; Pagano, C.; Navarra, G.; Pastorino, O.; Proto, M.C.; Fiore, D.; Piscopo, C.; Gazzerro, P.; Bifulco, M. The endocannabinoid system: A target for cancer treatment. Int. J. Mol. Sci. 2020, 21, 747. [Google Scholar] [CrossRef] [PubMed]
- Lee, X.C.; Werner, E.; Falasca, M. Molecular mechanism of autophagy and its regulation by cannabinoids in cancer. Cancers 2021, 13, 1211. [Google Scholar] [CrossRef] [PubMed]
- Mangal, N.; Erridge, S.; Habib, N.; Sadanandam, A.; Reebye, V.; Sodergren, M.H. Cannabinoids in the landscape of cancer. J. Cancer Res. Clin. Oncol. 2021, 147, 2507–2534. [Google Scholar] [CrossRef] [PubMed]
- Mashabela, M.D.; Kappo, A.P. Anti-Cancer and Anti-Proliferative Potential of Cannabidiol: A Cellular and Molecular Perspective. Int. J. Mol. Sci. 2024, 25, 5659. [Google Scholar] [CrossRef] [PubMed]
- Massi, P.; Solinas, M.; Cinquina, V.; Parolaro, D. Cannabidiol as potential anticancer drug. Br. J. Clin. Pharmacol. 2013, 75, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Nahler, G. Cannabidiol and Other Phytocannabinoids as Cancer Therapeutics. Pharm. Med. 2022, 36, 99–129. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, K. Cannabidiol (CBD) in Cancer Management. Cancers 2022, 14, 885. [Google Scholar] [CrossRef] [PubMed]
- Seltzer, E.S.; Watters, A.K.; Mackenzie, D.; Granat, L.M.; Zhang, D. Cannabidiol (Cbd) as a promising anti-cancer drug. Cancers 2020, 12, 3203. [Google Scholar] [CrossRef] [PubMed]
- Sheik, A.; Farani, M.R.; Kim, E.; Kim, S.; Gupta, V.K.; Kumar, K.; Huh, Y.S. Therapeutic targeting of the tumor microenvironments with cannabinoids and their analogs: Update on clinical trials. Environ. Res. 2023, 231, 115862. [Google Scholar] [CrossRef] [PubMed]
- Śledziński, P.; Zeyland, J.; Słomski, R.; Nowak, A. The current state and future perspectives of cannabinoids in cancer biology. Cancer Med. 2018, 7, 765–775. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Hernández-Tiedra, S.; Dávila, D.; Lorente, M. The use of cannabinoids as anticancer agents. Prog. Neuropsychopharmacol. Biol. Psychiatry 2016, 64, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Velasco, G.; Sánchez, C.; Guzmán, M. Endocannabinoids and Cancer; Handbook of Experimental Pharmacology Series; Springer International Publishing: Cham, Switzerland, 2015; Volume 231, pp. 449–472. [Google Scholar] [CrossRef]
- Wang, F.; Multhoff, G. Repurposing cannabidiol as a potential drug candidate for anti-tumor therapies. Biomolecules 2021, 11, 582. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Li, X.; Nie, S.; Liu, J.; Wang, S. Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed. Pharmacother. 2023, 157, 113993. [Google Scholar] [CrossRef] [PubMed]
- Zhelyazkova, M.; Kirilov, B.; Momekov, G. The pharmacological basis for application of cannabidiol in cancer chemotherapy. Pharmacia 2020, 67, 239–252. [Google Scholar] [CrossRef]
- Newkirk, K.M.; Brannick, E.M.; Kusewitt, D.F. Neoplasia and Tumor Biology. In Pathologic Basis of Veterinary Disease, 6th ed.; Zachary, J.F., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 286–321.e1. [Google Scholar]
- Blázquez, C.; Carracedo, A.; Barrado, L.; José Real, P.; Luis Fernández-Luna, J.; Velasco, G.; Malumbres, M.; Guzmán, M.; Blázquez, C.; Carracedo, A.; et al. Cannabinoid receptors as novel targets for the treatment of melanoma. FASEB J. 2006, 20, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Greenhough, A.; Patsos, H.A.; Williams, A.C.; Paraskeva, C. The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells. Int. J. Cancer. 2007, 121, 2172–2180. [Google Scholar] [CrossRef] [PubMed]
- Blázquez, C.; Casanova, M.L.; Planas, A.; Gómez del Pulgar, T.; Villanueva, C.; Fernández-Aceñero, M.J.; Aragonés, J.; Huffman, J.W.; Jorcano, J.L.; Guzmán, M. Inhibition of tumor angiogenesis by cannabinoids. FASEB J. 2003, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Haustein, M.; Ramer, R.; Linnebacher, M.; Manda, K.; Hinz, B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem. Pharmacol. 2014, 92, 312–325. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, P.; Casari, I.; Falasca, M. Therapeutic potential of cannabinoids in combination cancer therapy. Adv. Biol. Regul. 2021, 79, 100774. [Google Scholar] [CrossRef] [PubMed]
- Torres, S.; Lorente, M.; Rodríguez-Fornés, F.; Hernández-Tiedra, S.; Salazar, M.; García-Taboada, E.; Barcia, J.; Guzmán, M.; Velasco, G. A Combined Preclinical Therapy of Cannabinoids and Temozolomide against Glioma. Mol. Cancer Ther. 2011, 10, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Alsherbiny, M.A.; Bhuyan, D.J.; Low, M.N.; Chang, D.; Li, C.G. Synergistic interactions of cannabidiol with chemotherapeutic drugs in mcf7 cells: Mode of interaction and proteomics analysis of mechanisms. Int. J. Mol. Sci. 2021, 22, 10103. [Google Scholar] [CrossRef] [PubMed]
- Punzo, F.; Tortora, C.; Di Pinto, D.; Pota, E.; Argenziano, M.; Di Paola, A.; Casale, F.; Rossi, F. Bortezomib and endocannabinoid/endovanilloid system: A synergism in osteosarcoma. Pharmacol. Res. 2018, 137, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, W.; Shan, W.; Luo, A.; Qu, G.; Zhang, J.; Luo, X.; Xia, J. The synergistic anticancer effect of CBD and DOX in osteosarcoma. Clin. Transl. Oncol. 2023, 25, 2408–2418. [Google Scholar] [CrossRef] [PubMed]
- Henry, J.G.; Shoemaker, G.; Prieto, J.M.; Hannon, M.B.; Wakshlag, J.J. The effect of cannabidiol on canine neoplastic cell proliferation and mitogen-activated protein kinase activation during autophagy and apoptosis. Vet. Comp. Oncol. 2021, 19, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Inkol, J.M.; Hocker, S.E.; Mutsaers, A.J. Combination therapy with cannabidiol and chemotherapeutics in canine urothelial carcinoma cells. PLoS ONE 2021, 16, e0255591. [Google Scholar] [CrossRef] [PubMed]
- Olivas-Aguirre, M.; Torres-López, L.; Villatoro-Gómez, K.; Perez-Tapia, S.M.; Pottosin, I.; Dobrovinskaya, O. Cannabidiol on the Path from the Lab to the Cancer Patient: Opportunities and Challenges. Pharmaceuticals 2022, 15, 366. [Google Scholar] [CrossRef] [PubMed]
- Cerretani, D.; Collodel, G.; Brizzi, A.; Fiaschi, A.I.; Menchiari, A.; Moretti, E.; Moltoni, L.; Micheli, L. Cytotoxic effects of cannabinoids on human ht-29 colorectal adenocarcinoma cells: Different mechanisms of THC, CBD, and CB83. Int. J. Mol. Sci. 2020, 21, 5533. [Google Scholar] [CrossRef] [PubMed]
- Anis, O.; Vinayaka, A.C.; Shalev, N.; Namdar, D.; Nadarajan, S.; Anil, S.M.; Cohen, O.; Belausov, E.; Ramon, J.; Gati, E.M.; et al. Cannabis-derived compounds cannabichromene and ∆9-tetrahydrocannabinol interact and exhibit cytotoxic activity against urothelial cell carcinoma correlated with inhibition of cell migration and cytoskeleton organization. Molecules 2021, 26, 465. [Google Scholar] [CrossRef] [PubMed]
- Blal, K.; Besser, E.; Procaccia, S.; Schwob, O.; Lerenthal, Y.; Abu Tair, J.; Meiri, D.; Benny, O. The Effect of Cannabis Plant Extracts on Head and Neck Squamous Cell Carcinoma and the Quest for Cannabis-Based Personalized Therapy. Cancers 2023, 15, 497. [Google Scholar] [CrossRef] [PubMed]
- Motadi, L.R.; Jantjies, Z.E.; Moleya, B. Cannabidiol and Cannabis Sativa as a potential treatment in vitro prostate cancer cells silenced with RBBp6 and PC3 xenograft. Mol. Biol. Rep. 2023, 50, 4039–4047. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, E.; Khalifa, K.; Cosgrave, J.; Azam, H.; Prencipe, M.; Simpson, J.C.; Gallagher, W.M.; Perry, A.S. Cannabidiol Inhibits the Proliferation and Invasiveness of Prostate Cancer Cells. J. Nat. Prod. 2023, 86, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Punzo, F.; Tortora, C.; Di Pinto, D.; Manzo, I.; Bellini, G.; Casale, F.; Rossi, F. Anti-proliferative, pro-apoptotic and anti-invasive effect of EC/EV system in human osteosarcoma. Oncotarget 2017, 8, 54459–54471. [Google Scholar] [CrossRef] [PubMed]
- Sakarin, S.; Meesiripan, N.; Sangrajrang, S.; Suwanpidokkul, N.; Prayakprom, P.; Bodhibukkana, C.; Khaowroongrueng, V.; Suriyachan, K.; Thanasittichai, S.; Srisubat, A.; et al. Antitumor Effects of Cannabinoids in Human Pancreatic Ductal Adenocarcinoma Cell Line (Capan-2)-Derived Xenograft Mouse Model. Front. Vet. Sci. 2022, 9, 867575. [Google Scholar] [CrossRef] [PubMed]
- Gross, C.; Ramirez, D.A.; McGrath, S.; Gustafson, D.L. Cannabidiol Induces Apoptosis and Perturbs Mitochondrial Function in Human and Canine Glioma Cells. Front. Pharmacol. 2021, 12, 725136. [Google Scholar] [CrossRef] [PubMed]
- Omer, S.; Pathak, S.; Mansour, M.; Nadar, R.; Bowen, D.; Dhanasekaran, M.; Pondugula, S.R.; Boothe, D. Effects of Cannabidiol, ∆9-Tetrahydrocannabinol, and WIN 55-212-22 on the Viability of Canine and Human Non-Hodgkin Lymphoma Cell Lines. Biomolecules 2024, 14, 495. [Google Scholar] [CrossRef] [PubMed]
- Calheiros, L.G.R.d.M.; Pedro, G.; Oliveira da Silva, T.; Amorim, R.M.; Alves, C.E.F.; Laufer-Amorim, R. In Vitro Antitumor Effect of Oils Rich in CBD and THC Cannabis Extract in Canine Prostate Carcinoma Cell Lines. Vet. Sci. 2024, 11, 501. [Google Scholar] [CrossRef] [PubMed]
- Ladin, D.A.; Soliman, E.; Griffin, L.T.; Van Dross, R. Preclinical and clinical assessment of cannabinoids as anti-cancer agents. Front. Pharmacol. 2016, 7, 361. [Google Scholar] [CrossRef] [PubMed]
- Nahler, G. Treatment of malignant diseases with phytocannabinoids: Promising observations in animal models and patients. Explor. Med. 2023, 4, 847–877. [Google Scholar] [CrossRef]
- Kenyon, J.; Liu, W.; Dalgleish, A. Report of objective clinical responses of cancer patients to pharmaceutical-grade synthetic cannabidiol. Anticancer. Res. 2018, 38, 5831–5835. [Google Scholar] [CrossRef] [PubMed]
- Braun, I.M.; Bohlke, K.; Abrams, D.I.; Anderson, H.; Balneaves, L.G.; Bar-Sela, G.; Bowles, D.W.; Chai, P.R.; Damani, A.; Gupta, A.; et al. Cannabis and Cannabinoids in Adults with Cancer: ASCO Guideline. J. Clin. Oncol. 2024, 42, 1575–1593. [Google Scholar] [CrossRef] [PubMed]
- della Rocca, G.; Di Salvo, A. Derivati della Cannabis e controllo del cancro. In Sistema Endocannabinoide e Cannabis Terapeutica: Nuove Prospettive in Medicina Umana e Veterinaria; della Rocca, G., Ed.; Poletto Editore: Vermezzo, Italy, 2019; pp. 118–123. [Google Scholar]
- Buranakarn, V. Sarcoma Cancer Treatment Using Extracted Cannabis Oil in Cat. Int. J. Sci. Innov. Technol. 2020, 3, 35–40. [Google Scholar]
- Hazzah, T. The Use of Medical Cannabis as Palliative Care in a Feline with Advanced Cancer. J. Am. Holist. Vet. Med. Assoc. 2024, 74, 26–34. [Google Scholar] [CrossRef]
- Silver, R.J. Veterinary Cannabis: Regulatory, Pharmacology, Safety, Applications (Pain & Cancer). Available online: https://www.isvma.org/wp-content/uploads/2019/10/SilverVeterinaryCannabis.pdf (accessed on 4 June 2025).
- Gamble, L.G.; Boesch, J.M.; Frye, C.W.; Schwark, W.S.; Mann, S.; Wolfe, L.; Brown, H.; Berthelsen, E.; Wakshlang, J.J. Pharmacokinetics, Safety, and Clinical Efficacy of Cannabidiol Treatment in Osteoarthritic Dogs. Front. Vet. Sci. 2018, 5, 165. [Google Scholar] [CrossRef] [PubMed]
- Brioschi, F.A.; Di Cesare, F.; Gioeni, D.; Rabbogliatti, V.; Ferrari, F.; D’Urso, E.S.; Amari, M.; Ravasio, G. Oral Transmucosal Cannabidiol Oil Formulation as Part of a Multimodal Analgesic Regimen: Effects on Pain Relief and Quality of Life Improvement in Dogs Affected by Spontaneous Osteoarthritis. Animals 2020, 10, 1505. [Google Scholar] [CrossRef] [PubMed]
- Verrico, C.D.; Wesson, S.; Konduri, V.; Hofferek, C.J.; Vazquez-Perez, J.; Blair, E.; Dunner, K.; Salimpour, P.; Decker, W.K.; Halpert, M.M. A randomized, double-blind, placebo-controlled study of daily cannabidiol for the treatment of canine osteoarthritis pain. Pain 2020, 161, 2191–2202. [Google Scholar] [CrossRef] [PubMed]
- Soontornvipart, K.; Wongsirichatchai, P.; Phongphuwanan, A.; Chatdarong, K.; Vimolmangkang, S. Cannabidiol plus krill oil supplementation improves chronic stifle osteoarthritis in dogs: A double-blind randomized controlled trial. Vet. J. 2024, 308, 106227. [Google Scholar] [CrossRef] [PubMed]
- Amato, R.; Pacifico, E.; Lotito, D.; Iervolino, V.; Pierantoni, L.; Cortese, L.; Musco, N.; Lombardi, P.; Mastellone, V.; Pero, M.E. Effects of a Cannabinoid-Based Phytocomplex (Pain ReliefTM) on Chronic Pain in Osteoarthritic Dogs. Animals 2025, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Talsma, B.; Elam, L.H.; McGrath, S.; Zhou, T.; Webb, C.B.; Duerr, F.M. Evaluation of the effect of cannabidiol administration with and without nonsteroidal anti-inflammatory drugs in dogs with mobility disorders: A prospective, double-blind, crossover, placebo-controlled study. Front. Vet. Sci. 2024, 11, 1449343. [Google Scholar] [CrossRef] [PubMed]
- Panda, C.; Rathinasabapathy, T.; Metzger, B.; Dodson, S.; Hanson, D.; Griffiths, J.; Komarnytsky, S. Efficacy and tolerability of full spectrum hemp oil in dogs living with pain in common household settings. Front. Vet. Sci. 2024, 11, 1384168. [Google Scholar] [CrossRef] [PubMed]
- Martello, E.; Bigliati, M.; Bisanzio, D.; Biasibetti, E.; Dosio, F.; Pastorino, D.; De Nardi, M.; Bruni, N. Effects on Pain and Mobility of a New Diet Supplement in Dogs with Osteoarthritis: A Pilot Study. Ann. Clin. Lab. Res. 2019, 7, 304. [Google Scholar]
- Shilo-Benjamini, Y.; Lavy, E.; Yair, N.; Milgram, J.; Zilbersheid, D.; Hod, A.; Barasch, D.; Abu Ahmad, W.; Cern, A.; Barenholz, Y. Therapeutic efficacy and pharmacokinetics of liposomal-cannabidiol injection: A pilot clinical study in dogs with naturally-occurring osteoarthritis. Front. Vet. Sci. 2023, 10, 1224452. [Google Scholar] [CrossRef] [PubMed]
- Kogan, L.; Hellyer, P.; Downing, R. The use of cannabidiol-rich hemp oil extract to treat canine osteoarthritis-related pain: A pilot study. AHVMA J. 2020, 58, 35–42. [Google Scholar]
- Coelho, R.C.M.P.; Leme, F.O.P.; Moreira, F.A.; Branco, E.M.T.S.; Melo, M.M.; De Melo, G.E. Current review of hemp-based medicines in dogs. J. Vet. Pharmacol. Ther. 2021, 44, 870–882. [Google Scholar] [CrossRef] [PubMed]
- Shilo-Benjamini, Y.; Cern, A.; Zilbersheid, D.; Hod, A.; Lavy, E.; Barasch, D.; Barenholz, Y. A Case Report of Subcutaneously Injected Liposomal Cannabidiol Formulation Used as a Compassion Therapy for Pain Management in a Dog. Front. Vet. Sci. 2022, 9, 892306. [Google Scholar] [CrossRef] [PubMed]
- Coelho, J.C.; Duarte, N.; Bento Da Silva, A.; Bronze, M.D.R.; Mestrinho, L.A. Placebo-Controlled Trial of Daily Oral Cannabidiol as Adjunctive Treatment for Cats with Chronic Gingivostomatitis. Animals 2023, 13, 2716. [Google Scholar] [CrossRef] [PubMed]
- Gutierre, E.; Crosignani, N.; García-Carnelli, C.; Di Mateo, A.; Recchi, L. A case report of CBD and THC as analgesic therapy in a cat with chronic osteoarthritic pain. Vet. Med. Sci. 2023, 9, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Corsato Alvarenga, I.; Wilson, K.M.; McGrath, S. Tolerability of long-term cannabidiol supplementation to healthy adult dogs. J. Vet. Intern. Med. 2024, 38, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Coltherd, J.C.; Bednall, R.; Bakke, A.M.; Ellerby, Z.; Newman, C.; Watson, P.; Logan, D.W.; Holcombe, L.J. Healthy cats tolerate long-term daily feeding of Cannabidiol. Front. Vet. Sci. 2024, 10, 1324622. [Google Scholar] [CrossRef] [PubMed]
Tumor Type | Results | Reference |
B-cell and T-cell multicentric lymphoma | Significantly higher levels of OEA, AEA, and PEA in both lymphomas | [9] |
Low-grade canine mast cell tumors High-grade canine mast cell tumors | High expression of CB1R and CB2R, at levels like those in healthy mast cells CB1R and CB2R scarcely present | [18] |
Low-grade cutaneous canine mast cell tumors (grades 1 and 2) | High CB2R immunoreactivity, and correlation between high CB2R immunoreactivity, absence or light expression of the p21 protein, and strong immunoreactivity of matrix metalloproteinase-1 (MMP-1) | [19] |
Preclinical Studies | ||
Cell Line and Treatment | Efficacy | Reference |
Canine glioma cell lines treated with CBD extracts and purified CBD to evaluate potential cytotoxicity | Purified CBD reduced proliferation and induced cell death via caspase activation | [69] |
Malignant canine B-cell lymphoma (1771 and CLB-L1) and T-cell lymphoma (CL-1) cell lines treated with CBD, THC, and WIN 55-212-22 to evaluate the viability of canine non-Hodgkin’s lymphoma cell lines | CBD was the most potent pCB in reducing lymphoma cell viability in 1771 and CL-1 cell lines (based on the IC50 values) | [70] |
Canine prostate carcinoma cell lines treated with cannabis extract oils rich in CBD and THC to evaluate the in vitro antitumor effect | CBD- or THC-rich extracts inhibited the proliferation of two canine prostatic carcinoma cell lines (PC1 and PC2) | [71] |
Clinical Studies | ||
Case Report | Efficacy | Reference |
Cat with a sarcoma located at the eye bulb that recurred after surgical excision, treated exclusively with oral cannabis oil to attempt to reduce the patient’s pain | The mass decreased in size following two weeks of treatment | [77] |
Cat with a large mass encompassing most of the cranial thorax and mid-thorax treated with a complex-spectrum cannabis product aimed to reduce cancer-related symptoms | Resolution of cancer-related clinical signs (dyspnea, coughing, and lethargy) for 6 months | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
della Rocca, G.; Di Salvo, A.; Salucci, E.; Amadori, M.; Re, G.; Vercelli, C. The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals. Animals 2025, 15, 2185. https://doi.org/10.3390/ani15152185
della Rocca G, Di Salvo A, Salucci E, Amadori M, Re G, Vercelli C. The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals. Animals. 2025; 15(15):2185. https://doi.org/10.3390/ani15152185
Chicago/Turabian Styledella Rocca, Giorgia, Alessandra Di Salvo, Erica Salucci, Michela Amadori, Giovanni Re, and Cristina Vercelli. 2025. "The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals" Animals 15, no. 15: 2185. https://doi.org/10.3390/ani15152185
APA Styledella Rocca, G., Di Salvo, A., Salucci, E., Amadori, M., Re, G., & Vercelli, C. (2025). The Role of the Endocannabinoid System in Oncology and the Potential Use of Cannabis Derivatives for Cancer Management in Companion Animals. Animals, 15(15), 2185. https://doi.org/10.3390/ani15152185