Grain-Free Diets for Dogs and Cats: An Updated Review Focusing on Nutritional Effects and Health Considerations
Simple Summary
Abstract
1. Introduction
2. Methods
3. Alternatives for Grains in the Grain-Free Diets and Nutrient Composition Analysis
3.1. Grain Alternatives and Carbohydrate
3.2. Protein and Fat
3.3. Amino Acids and Other Micronutrients
4. Implications of Grain-Free Diets on Pet Health and Welfare
4.1. Gastrointestinal Health
4.2. Cardiovascular Health
4.3. Allergy Response
4.4. Glycemic Management
4.5. Mycotoxin Security
4.6. Palatability Effects
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Crude protein |
DCM | Dilated cardiomyopathy |
EC | European Commission |
FDA | Food and Drug Administration |
FEDIAF | European Pet Food Industry Federation |
FSA | Food Standards Agency |
GI | Glycemic index |
SCFAs | Short-chain fatty acids |
References
- Shahbandeh. Number of Dogs and Cats Kept as Pets Worldwide in 2018. Available online: https://www.statista.com/statistics/1044386/dog-and-cat-pet-population-worldwide/ (accessed on 26 February 2025).
- TGM. TGM Global Pet Care Report 2024. Available online: https://tgmresearch.com/pet-care-insights-2024.html (accessed on 12 June 2025).
- FEDIAF. FEDIAF Annual Report 2024. Available online: https://europeanpetfood.org/about/annual-report/ (accessed on 12 June 2025).
- ATO. Pet Food Market Update 2024 (China). Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Pet%20Food%20Market%20Update%202024_Shanghai%20ATO_China%20-%20People%27s%20Republic%20of_CH2024-0162.pdf (accessed on 26 February 2025).
- Michel, K.E.; Willoughby, K.N.; Abood, S.K.; Fascetti, A.J.; Fleeman, L.M.; Freeman, L.M.; Laflamme, D.P.; Bauer, C.; Kemp, B.L.E.; Van Doren, J.R. Attitudes of pet owners toward pet foods and feeding management of cats and dogs. Javma-J. Am. Vet. Med. Assoc. 2008, 233, 1699–1703. [Google Scholar] [CrossRef]
- FDA. FDA Investigation into Potential Link Between Certain Diets and Canine Dilated Cardiomyopathy. Available online: https://www.fda.gov/animal-veterinary/news-events/fda-investigation-potential-link-between-certain-diets-and-canine-dilated-cardiomyopathy (accessed on 21 January 2024).
- Crane, S.W.; Cowell, C.S.; Stout, N.P. Commercial pet foods. In Small Animal Clinical Nutrition; Hand, M.S., Thatcher, C.D., Remillard, R.L., Roudebush, P., Bruce, J.N., Eds.; Mark Morris Institute: Topeka, KS, USA, 2010; pp. 157–190. [Google Scholar]
- Case, L.P.; Daristotle, L.; Hayek, M.G. Canine and Feline Nutrition, 3rd ed.; Mosby: St. Louis, MO, USA, 2011; pp. 121–129. [Google Scholar]
- Laflamme, D.; Izquierdo, O.; Eirmann, L.; Binder, S. Myths and Misperceptions About Ingredients Used in Commercial Pet Foods. Vet. Clin. North Am.-Small Anim. Pract. 2014, 44, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Corsato Alvarenga, I.; Dainton, A.N.; Aldrich, C.G. A review: Nutrition and process attributes of corn in pet foods. Crit. Rev. Food Sci. Nutr. 2022, 62, 8567–8576. [Google Scholar] [CrossRef] [PubMed]
- Woods-Lee, G. BSAVA Guide to Nutrition; British Small Animal Veterinary Association: Gloucester, UK, 2023; pp. 14–22. [Google Scholar]
- Pahlavan, A.; Sharma, G.M.; Pereira, M.; Williams, K.M. Effects of grain species and cultivar, thermal processing, and enzymatic hydrolysis on gluten quantitation. Food Chem. 2016, 208, 264–271. [Google Scholar] [CrossRef]
- Mamone, G.; Picariello, G.; Addeo, F.; Ferranti, P. Proteomic analysis in allergy and intolerance to wheat products. Expert Rev. Proteom. 2011, 8, 95–115. [Google Scholar] [CrossRef]
- Banton, S.; Baynham, A.; Pezzali, J.G.; von Massow, M.; Shoveller, A.K. Grains on the brain: A survey of dog owner purchasing habits related to grain-free dry dog foods. PLoS ONE 2021, 16, e0250806. [Google Scholar] [CrossRef]
- Schleicher, M.; Cash, S.B.; Freeman, L.M. Determinants of pet food purchasing decisions. Can. Vet. J.Rev. Vet. Can. 2019, 60, 644–650. [Google Scholar]
- Conway, D.M.P.; Saker, K.E. Consumer Attitude Toward the Environmental Sustainability of Grain-Free Pet Foods. Front. Vet. Sci. 2018, 5, 170. [Google Scholar] [CrossRef]
- Beloshapka, A.N.; Buff, P.R.; Fahey, G.C., Jr.; Swanson, K.S. Compositional Analysis of Whole Grains, Processed Grains, Grain Co-Products, and Other Carbohydrate Sources with Applicability to Pet Animal Nutrition. Foods 2016, 5, 23. [Google Scholar] [CrossRef]
- Rebello, C.J.; Greenway, F.L.; Finley, J.W. Whole Grains and Pulses: A Comparison of the Nutritional and Health Benefits. J. Agric. Food Chem. 2014, 62, 7029–7049. [Google Scholar] [CrossRef]
- Kahraman, O.; Inal, F. Comparison of digestibility parameters of commercial dry dog foods with different contents. Arq. Bras. De Med. Vet. E Zootec. 2021, 73, 469–476. [Google Scholar] [CrossRef]
- Prantil, L.R.; Heinze, C.R.; Freeman, L.M. Comparison of carbohydrate content between grain-containing and grain-free dry cat diets and between reported and calculated carbohydrate values. J. Feline Med. Surg. 2018, 20, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Kepinska-Pacelik, J.; Biel, W.; Witkowicz, R.; Fraczek, K.; Bulski, K. Assessment of the content of macronutrients and microbiological safety of dry dog foods. Res. Vet. Sci. 2023, 165, 105071. [Google Scholar] [CrossRef] [PubMed]
- Kazimierska, K.; Biel, W.; Witkowicz, R.; Karakulska, J.; Stachurska, X. Evaluation of nutritional value and microbiological safety in commercial dog food. Vet. Res. Commun. 2021, 45, 111–128. [Google Scholar] [CrossRef]
- Meineri, G.; Candellone, A.; Dal Bello, F.; Gastaldi, D.; Medana, C.; Peiretti, P.G. Gluten contamination of canned and dry grain-free commercial pet foods determined by HPLC-HRMS. Ital. J. Anim. Sci. 2020, 19, 253–261. [Google Scholar] [CrossRef]
- Kazimierska, K.; Biel, W.; Witkowicz, R. Mineral Composition of Cereal and Cereal-Free Dry Dog Foods versus Nutritional Guidelines. Molecules 2020, 25, 5173. [Google Scholar] [CrossRef]
- Forster, G.M.; Hill, D.; Gregory, G.; Weishaar, K.M.; Lana, S.; Bauer, J.E.; Ryan, E.P. Effects of cooked navy bean powder on apparent total tract nutrient digestibility and safety in healthy adult dogs. J. Anim. Sci. 2012, 90, 2631–2638. [Google Scholar] [CrossRef]
- Grant, G.; More, L.J.; McKenzie, N.H.; Stewart, J.C.; Pusztai, A. A Survey of the Nutritional and Hemagglutination Properties of Legume Seeds Generally Available in the Uk. Br. J. Nutr. 1983, 50, 207. [Google Scholar] [CrossRef]
- Zdunczyk, Z.; Godycka, I.; Amarowicz, R. Chemical composition and content of antinutritional factors in Polish cultivars of peas. Plant Foods Hum. Nutr. 1997, 50, 37–45. [Google Scholar] [CrossRef]
- El-Adawy, T.A. Nutritional composition and antinutritional factors of chickpeas (Cicer arietinum L.) undergoing different cooking methods and germination. Plant Foods Hum. Nutr. 2002, 57, 83–97. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Shah, W.H. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chem. 2005, 91, 327–331. [Google Scholar] [CrossRef]
- Sandri, M.; Sgorlon, S.; Conte, G.; Serra, A.; Dal Monego, S.; Stefanon, B. Substitution of a commercial diet with raw meat complemented with vegetable foods containing chickpeas or peas affects faecal microbiome in healthy dogs. Ital. J. Anim. Sci. 2019, 18, 1205–1214. [Google Scholar] [CrossRef]
- Domingues, L.; Murakami, F.; Zattoni, D.; Kaelle, G.; de Oliveira, S.; Félix, A. Effect of potato on kibble characteristics and diet digestibility and palatability to adult dogs and puppies. Ital. J. Anim. Sci. 2019, 18, 292–300. [Google Scholar] [CrossRef]
- Chiofalo, B.; Vita, G.D.; Presti, V.L.; Cucinotta, S.; Rosa, A.R.D. Grain free diets for utility dogs during training work: Evaluation of the nutrient digestibility and faecal characteristics. Anim. Nutr. 2019, 5, 297–306. [Google Scholar] [CrossRef]
- Sandri, M.; Sgorlon, S.; Scarsella, E.; Stefanon, B. Effect of different starch sources in a raw meat-based diet on fecal microbiome in dogs housed in a shelter. Anim. Nutr. 2020, 6, 353–361. [Google Scholar] [CrossRef]
- Stercova, E.; Strakova, E.; Tsponova, J.; Grmelova, M.; Janacova, K.; Muchova, K. Nutritional evaluation of commercial dry dog foods available on the Czech market. J. Anim. Physiol. Anim. Nutr. 2022, 106, 614–621. [Google Scholar] [CrossRef]
- Corsato Alvarenga, I.; Aldrich, C.G. Starch characterization of commercial extruded dry pet foods. Transl. Anim. Sci. 2020, 4, 1017–1022. [Google Scholar] [CrossRef]
- Beynen, A.C. Grain-free pet foods. Creat. Companion 2015, 10, 58–59. [Google Scholar] [CrossRef]
- NRC. Carbohydrates and fibre. In Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington DC, USA, 2006; pp. 49–80. [Google Scholar]
- FEDIAF. Nutritional Guidelines: For Complete and Complementary Pet Food for Cats and Dogs. Available online: https://europeanpetfood.org/_/news/fediaf-announces-updated-2024-nutritional-guidelines/ (accessed on 10 March 2025).
- Morris, J.G.; Trudell, J.; Pencovic, T. Carbohydrate Digestion by Domestic Cat (Felis-Catus). Br. J. Nutr. 1977, 37, 365–373. [Google Scholar] [CrossRef]
- Thiess, S.; Becskei, C.; Tomsa, K.; Lutz, T.A.; Wanner, M. Effects of high carbohydrate and high fat diet on plasma metabolite levels and on iv glucose tolerance test in intact and neutered mate cats. J. Feline Med. Surg. 2004, 6, 207–218. [Google Scholar] [CrossRef]
- Carciofi, A.C.; Takakura, F.S.; De-Oliveira, L.D.; Teshima, E.; Jeremias, J.T.; Brunetto, M.A.; Prada, F. Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response. J. Anim. Physiol. Anim. Nutr. 2008, 92, 326–336. [Google Scholar] [CrossRef]
- De-Oliveira, L.D.; Carciofi, A.C.; Oliveira, M.C.C.; Vasconcellos, R.S.; Bazolli, R.S.; Pereira, G.T.; Prada, F. Effects of six carbohydrate sources on diet digestibility and postprandial glucose and insulin responses in cats. J. Anim. Sci. 2008, 86, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Eisert, R. Hypercarnivory and the brain: Protein requirements of cats reconsidered. J. Comp. Physiol. B-Biochem. Syst. Environ. Physiol. 2011, 181, 1–17. [Google Scholar] [CrossRef]
- Hiskett, E.K.; Suwitheechon, O.U.; Lindbloom-Hawley, S.; Boyle, D.L.; Schermerhorn, T. Lack of glucokinase regulatory protein expression may contribute to low glucokinase activity in feline liver. Vet. Res. Commun. 2009, 33, 227–240. [Google Scholar] [CrossRef]
- Washizu, T.; Tanaka, A.; Sako, T.; Washizu, M.; Arai, T. Comparison of the activities of enzymes related to glycolysis and gluconeogenesis in the liver of dogs and cats. Res. Vet. Sci. 1999, 67, 205–206. [Google Scholar] [CrossRef]
- Tanaka, A.; Inoue, A.; Takeguchi, A.; Washizu, T.; Bonkobara, M.; Arai, T. Comparison of expression of glucokinase gene and activities of enzymes related to glucose metabolism in livers between dog and cat. Vet. Res. Commun. 2005, 29, 477–485. [Google Scholar] [CrossRef]
- Calabro, S.; Carciofi, A.C.; Musco, N.; Tudisco, R.; Gomes, M.O.S.; Cutrignelli, M.I. Fermentation characteristics of several carbohydrate sources for dog diets using the in vitro gas production technique. Ital. J. Anim. Sci. 2013, 12, e4. [Google Scholar] [CrossRef]
- De Godoy, M.R.C.; Kerr, K.R.; Fahey, G.C., Jr. Alternative Dietary Fiber Sources in Companion Animal Nutrition. Nutrients 2013, 5, 3099–3117. [Google Scholar] [CrossRef]
- Kanakupt, K.; Boler, B.M.V.; Dunsford, B.R.; Fahey, G.C. Effects of short-chain fructooligosaccharides and galactooligosaccharides, individually and in combination, on nutrient digestibility, fecal fermentative metabolite concentrations, and large bowel microbial ecology of healthy adults cats. J. Anim. Sci. 2011, 89, 1376–1384. [Google Scholar] [CrossRef]
- Ji, X.Y.; Zhou, F.Y.; Zhang, Y.Q.; Deng, R.Y.; Xu, W.; Bai, M.Y.; Liu, Y.; Shao, L.; Wang, X.; Zhou, L.B. Butyrate stimulates hepatic gluconeogenesis in mouse primary hepatocytes. Exp. Ther. Med. 2019, 17, 1677–1687. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Hesta, M.; Daminet, S.; Janssens, G.P.J. Nutritional Modulation of Insulin Resistance in the True Carnivorous Cat: A Review. Crit. Rev. Food Sci. Nutr. 2012, 52, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Dumon, H.; Biourge, V.; Pouteau, E. Glycemic and insulinemic responses after ingestion of commercial foods in healthy dogs: Influence of food composition. J. Nutr. 1998, 128, 2654–2658. [Google Scholar] [CrossRef]
- Backus, R.C.; Cave, N.J.; Keisler, D.H. Gonadectomy and high dietary fat but not high dietary carbohydrate induce gains in body weight and fat of domestic cats. Br. J. Nutr. 2007, 98, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Gooding, M.A.; Flickinger, E.A.; Atkinson, J.L.; Duncan, I.J.H.; Shoveller, A.K. Effects of high-fat and high-carbohydrate diets on fat and carbohydrate oxidation and plasma metabolites in healthy cats. J. Anim. Physiol. Anim. Nutr. 2014, 98, 596–607. [Google Scholar] [CrossRef]
- Finco, D.R.; Brown, S.A.; Crowell, W.A.; Brown, C.A.; Barsanti, J.A.; Carey, D.P.; Hirakawa, D.A. Effects of aging and dietary protein intake on uninephrectomized geriatric dogs. Am. J. Vet. Res. 1994, 55, 1282–1290. [Google Scholar]
- Robertson, J.L.; Goldschmidt, M.; Kronfeld, D.S.; Tomaszewski, J.E.; Hill, G.S.; Bovee, K.C. Long-term renal responses to high dietary protein in dogs with 75% nephrectomy. Kidney Int. 1986, 29, 511–519. [Google Scholar] [CrossRef]
- Bovee, K.C.; Kronfeld, D.S.; Ramberg, C.; Goldschmidt, M. Long-Term Measurement of Renal-Function in Partially Nephrectomized Dogs Fed 56-Percent, 27-Percent, Or 19-Percent Protein. Investig. Urol. 1979, 16, 378–384. [Google Scholar]
- Bovee, K.C. Influence of Dietary-Protein on Renal-Function in Dogs. J. Nutr. 1991, 121, 128–139. [Google Scholar] [CrossRef]
- Pinna, C.; Vecchiato, C.G.; Bolduan, C.; Grandi, M.; Stefanelli, C.; Windisch, W.; Zaghini, G.; Biagi, G. Influence of dietary protein and fructooligosaccharides on fecal fermentative end-products, fecal bacterial populations and apparent total tract digestibility in dogs. BMC Vet. Res. 2018, 14, 1–10. [Google Scholar] [CrossRef]
- Xu, J.; Verbrugghe, A.; Lourenco, M.; Cools, A.; Liu, D.J.X.; Van de Wiele, T.; Marzorati, M.; Eeckhaut, V.; Van Immerseel, F.; Vanhaecke, L.; et al. The response of canine faecal microbiota to increased dietary protein is influenced by body condition. BMC Vet. Res. 2017, 13, 1–11. [Google Scholar] [CrossRef]
- Tolbert, M.K.; Murphy, M.; Gaylord, L.; Witzel-Rollins, A. Dietary management of chronic enteropathy in dogs. J. Small Anim. Pract. 2022, 63, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Hsieh, F.; Heymann, H.; Huff, H.E. Effects of lipids and processing conditions on the sensory characteristics of extruded dry pet food. J. Food Qual. 1998, 21, 265–284. [Google Scholar] [CrossRef]
- Vester, B.M.; Fahey, G.C., Jr. The Importance of Nutrition in Coat Quality and Skin Health of Dogs and Cats; CABI: Wallingford, UK, 2006; pp. 261–267. [Google Scholar]
- NRC. Fats and fatty acids. In Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington DC, USA, 2006; pp. 81–110. [Google Scholar]
- Munoz-Prieto, A.; Nielsen, L.R.; Dabrowski, R.; Bjornvad, C.R.; Soder, J.; Lamy, E.; Monkeviciene, I.; Ljubic, B.B.; Vasiu, I.; Savic, S.; et al. European dog owner perceptions of obesity and factors associated with human and canine obesity. Sci. Rep. 2018, 8, 13353. [Google Scholar] [CrossRef]
- Debraekeleer, J.; Gross, K.L.; Zicker, S.C. Feeding growing puppies: Postweaning to adulthood. In Small Animal Clinical Nutrition, 5th ed.; Hand, M.S., Thatcher, C.D., Remillard, R.L., Roudebush, P., Bruce, J.N., Eds.; Mark Morris Institute: Topeka, KS, USA, 2010; pp. 311–319. [Google Scholar]
- Debraekeleer, J.; Gross, K.L.; Zicker, S.C. Feeding young adult dogs: Before middle age. In Small Animal Clinical Nutrition, 5 th ed.; Hand, M.S., Thatcher, C.D., Remillard, R.L., Roudebush, P., Bruce, J.N., Eds.; Mark Morris Institute: Topeka, KS, USA, 2010; pp. 257–272. [Google Scholar]
- Crane, S.W.; Griffin, R.W.; Messent, P.R. Introduction to commercial pet foods. In Small Animal Clinical Nutrition, 4 th ed.; Hand, M.S., Thatcher, C.D., Remillard, R.L., Roudebush, P., Bruce, J.N., Eds.; Mark Morris Institute: Topeka, KS, USA, 2000; pp. 111–126. [Google Scholar]
- Pezzali, J.G.; Aldrich, C.G. Effect of ancient grains and grain-free carbohydrate sources on extrusion parameters and nutrient utilization by dogs. J. Anim. Sci. 2019, 97, 3758–3767. [Google Scholar] [CrossRef]
- Clark, S.D.; Hsu, C.; McCauley, S.R.; de Godoy, M.R.C.; He, F.; Streeter, R.M.; Taylor, E.G.; Quest, B.W. The impact of protein source and grain inclusion on digestibility, fecal metabolites, and fecal microbiome in adult canines. J. Anim. Sci. 2023, 101, skad268. [Google Scholar] [CrossRef]
- Kahraman, O.; Inal, F.; Alatas, M.S.; Inal, S.; Uludag, M.; Tepeli, C. Comparison of Digestibility, Stool Quality, Preference and Manufacturing Cost of Grain-inclusive and Grain-free Dry Dog Foods. Kafkas Univ. Vet. Fak. Derg. 2022, 28, 515–522. [Google Scholar] [CrossRef]
- De-Oliveira, L.D.; Takakura, F.S.; Kienzle, E.; Brunetto, M.A.; Teshima, E.; Pereira, G.T.; Vasconcellos, R.S.; Carciofi, A.C. Fibre analysis and fibre digestibility in pet foods-a comparison of total dietary fibre, neutral and acid detergent fibre and crude fibre. J. Anim. Physiol. Anim. Nutr. 2012, 96, 895–906. [Google Scholar] [CrossRef]
- Valenzuela, B.A.; Maiz, G.A. El Rol de la Fibra Dietética en la Nutricion Enteral. Rev. Chil. De Nutr. 2006, 33, 342–351. [Google Scholar]
- Panasevich, M.R.; Kerr, K.R.; Dilger, R.N.; Fahey, G.C., Jr.; Guerin-Deremaux, L.; Lynch, G.L.; Wils, D.; Suchodolski, J.S.; Steiner, J.M.; Dowd, S.E.; et al. Modulation of the faecal microbiome of healthy adult dogs by inclusion of potato fibre in the diet. Br. J. Nutr. 2015, 113, 125–133. [Google Scholar] [CrossRef]
- Sivaprakasam, S.; Prasad, P.D.; Singh, N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 2016, 164, 144–151. [Google Scholar] [CrossRef]
- Binder, H.J. Role of Colonic Short-Chain Fatty Acid Transport in Diarrhea. Annu. Rev. Physiol. 2010, 72, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Clapper, G.M.; Grieshop, C.M.; Merchen, N.R.; Russett, J.C.; Brent, J.L.; Fahey, G.C. Ileal and total tract nutrient digestibilities and fecal characteristics of dogs as affected by soybean protein inclusion in dry, extruded diets. J. Anim. Sci. 2001, 79, 1523–1532. [Google Scholar] [PubMed]
- Gilani, G.S.; Cockell, K.A.; Sepehr, E. Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. Aoac Int. 2005, 88, 967–987. [Google Scholar] [PubMed]
- De-Oliveira, L.D.; De Carvalho Picinato, M.A.; Kawauchi, I.M.; Sakomura, N.K.; Carciofi, A.C. Digestibility for dogs and cats of meat and bone meal processed at two different temperature and pressure levels. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1136–1146. [Google Scholar] [CrossRef]
- Zentek, J.; Fricke, S.; Hewicker-Trautwein, M.; Ehinger, B.; Amtsberg, G.; Baums, C. Dietary protein source and manufacturing processes affect macronutrient digestibility, fecal consistency, and presence of fecal Clostridium perfringens in adult dogs. J. Nutr. 2004, 134, 2158–2161. [Google Scholar] [CrossRef]
- FDA. FDA Update on Dilated Cardiomyopathy: Fully and Partially Recovered Cases. Available online: www.ksvdl.org/resources/documents/dcm-forum/FDA_KSU-Science-Forum-slides_09-29-2020.pdf (accessed on 21 January 2024).
- Baek, M.-j.; Choi, M.; Chae, Y.; Yun, T.; Kang, B.-T.; Kim, H. Grain-free diet-induced dilated cardiomyopathy with atrial fibrillation in a Labrador Retriever: A case report. Korean J. Vet. Res. 2024, 64, 1–20. [Google Scholar] [CrossRef]
- Hand, M.S.; Thatcher, C.D.; Remillard, R.L.; Roudebush, P.; Bruce, J.N. Textbook of Veterinary Internal Medicine: Diseases of the Dog and Cat, 5th ed.; Saunders: Philadelphia, PA, USA, 2000. [Google Scholar]
- Bakke, A.M.; Wood, J.; Salt, C.; Allaway, D.; Gilham, M.; Kuhlman, G.; Bierer, T.; Butterwick, R.; O’Flynn, C. Responses in randomised groups of healthy, adult Labrador retrievers fed grain-free diets with high legume inclusion for 30 days display commonalities with dogs with suspected dilated cardiomyopathy. BMC Vet. Res. 2022, 18, 157. [Google Scholar] [CrossRef]
- Quilliam, C.; Reis, L.G.; Ren, Y.; Ai, Y.; Weber, L.P. Effects of a 28-day feeding trial of grain-containing versus pulse-based diets on cardiac function, taurine levels and digestibility in domestic dogs. PLoS ONE 2023, 18, e0285381. [Google Scholar] [CrossRef]
- Adin, D.; DeFrancesco, T.C.; Keene, B.; Tou, S.; Meurs, K.; Atkins, C.; Aona, B.; Kurtz, K.; Barron, L.; Saker, K. Echocardiographic phenotype of canine dilated cardiomyopathy differs based on diet type. J. Vet. Cardiol. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Ontiveros, E.S.; Whelchel, B.D.; Yu, J.; Kaplan, J.L.; Sharpe, A.N.; Fousse, S.L.; Crofton, A.E.; Fascetti, A.J.; Stern, J.A. Development of plasma and whole blood taurine reference ranges and identification of dietary features associated with taurine deficiency and dilated cardiomyopathy in golden retrievers: A prospective, observational study. PLoS ONE 2020, 15, e0233206. [Google Scholar] [CrossRef]
- Adin, D.; Freeman, L.; Stepien, R.; Rush, J.E.; Tjostheim, S.; Kellihan, H.; Aherne, M.; Vereb, M.; Goldberg, R. Effect of type of diet on blood and plasma taurine concentrations, cardiac biomarkers, and echocardiograms in 4 dog breeds. J. Vet. Intern. Med. 2021, 35, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, S.M.; Cavanaugh, R.P.; Gilbert, G.E.; Leavitt, E.L.; Ketzis, J.K.; Vieira, A.B. Short-term amino acid, clinicopathologic, and echocardiographic findings in healthy dogs fed a commercial plant-based diet. PLoS ONE 2021, 16, e0258044. [Google Scholar] [CrossRef]
- Haimovitz, D.; Vereb, M.; Freeman, L.; Goldberg, R.; Lessard, D.; Rush, J.; Adin, D. Effect of diet change in healthy dogs with subclinical cardiac biomarker or echocardiographic abnormalities. J. Vet. Intern. Med. 2022, 36, 1057–1065. [Google Scholar] [CrossRef] [PubMed]
- Adin, D.B.; Haimovitz, D.; Freeman, L.M.; Rush, J.E. Untargeted global metabolomic profiling of healthy dogs grouped on the basis of grain inclusivity of their diet and of dogs with subclinical cardiac abnormalities that underwent a diet change. Am. J. Vet. Res. 2022, 83, 1–9. [Google Scholar] [CrossRef]
- Owens, E.J.; LeBlanc, N.L.; Freeman, L.M.; Scollan, K.F. Comparison of echocardiographic measurements and cardiac biomarkers in healthy dogs eating nontraditional or traditional diets. J. Vet. Intern. Med. 2023, 37, 37–46. [Google Scholar] [CrossRef]
- Kaplan, J.L.; Stern, J.A.; Fascetti, A.J.; Larsen, J.A.; Skolnik, H.; Peddle, G.D.; Kienle, R.D.; Waxman, A.; Cocchiaro, M.; Gunther-Harrington, C.T.; et al. Taurine deficiency and dilated cardiomyopathy in golden retrievers fed commercial diets. PLoS ONE 2018, 13, e0209112. [Google Scholar] [CrossRef]
- Freeman, L.; Rush, J.; Adin, D.; Weeks, K.; Antoon, K.; Brethel, S.; Cunningham, S.; Dos Santos, L.; Girens, R.; Goldberg, R.; et al. Prospective study of dilated cardiomyopathy in dogs eating nontraditional or traditional diets and in dogs with subclinical cardiac abnormalities. J. Vet. Intern. Med. 2022, 36, 451–463. [Google Scholar] [CrossRef]
- Walker, A.L.; DeFrancesco, T.C.; Bonagura, J.D.; Keene, B.W.; Meurs, K.M.; Tou, S.P.; Kurtz, K.; Aona, B.; Barron, L.; McManamey, A.; et al. Association of diet with clinical outcomes in dogs with dilated cardiomyopathy and congestive heart failure. J. Vet. Cardiol. 2022, 40, 99–109. [Google Scholar] [CrossRef]
- Freid, K.J.; Freeman, L.M.; Rush, J.E.; Cunningham, S.M.; Davis, M.S.; Karlin, E.T.; Yang, V.K. Retrospective study of dilated cardiomyopathy in dogs. J. Vet. Intern. Med. 2021, 35, 58–67. [Google Scholar] [CrossRef]
- Saito, T.; Suzuki, R.; Yuchi, Y.; Yasumura, Y.; Teshima, T.; Matsumoto, H.; Koyama, H. A Case of a Small-Breed Dog with Diet-Related Dilated Cardiomyopathy Showing Marked Improvements in Cardiac Morphology and Function after Dietary Modification. Vet. Sci. 2022, 9, 593. [Google Scholar] [CrossRef]
- Leach, S.B.; Clark, S.D.; Baumwart, R.D.; McCauley, S.R.; Thomason, J.D.; Streeter, R.M.; Zumbaugh, C.A.; Lamb, K.; Quest, B.W. Prospective evaluation of echocardiographic parameters and cardiac biomarkers in healthy dogs eating four custom-formulated diets. Front. Anim. Sci. 2023, 4, 1271202. [Google Scholar] [CrossRef]
- Donadelli, R.A.; Pezzali, J.G.; Oba, P.M.; Swanson, K.S.; Craig, C.; Jessica, V.; Christine, P.; Shoveller, A.K. A commercial grain-free diet does not decrease plasma amino acids and taurine status but increases bile acid excretion when fed to Labrador Retrievers. Transl. Anim. Sci. 2020, 3, 3. [Google Scholar] [CrossRef]
- Quilliam, C.; Ren, Y.; Morris, T.; Ai, Y.; Weber, L.P. The Effects of 7 Days of Feeding Pulse-Based Diets on Digestibility, Glycemic Response and Taurine Levels in Domestic Dogs. Front. Vet. Sci. 2021, 8, 654223. [Google Scholar] [CrossRef]
- Reis, L.G.; Morris, T.; Quilliam, C.; Rodrigues, L.A.; Loewen, M.E.; Weber, L.P. The Effect of Fermentation of High- or Low-Tannin Fava Bean on Glucose Tolerance, Body Weight, Cardiovascular Function, and Blood Parameters in Dogs After 7 Days of Feeding: Comparison With Commercial Diets With Normal vs. High Protein. Front. Vet. Sci. 2021, 8, 653771. [Google Scholar] [CrossRef]
- Karp, S.I.; Freeman, L.M.; Rush, J.E.; Arsenault, W.G.; Cunningham, S.M.; DeFrancesco, T.C.; Karlin, E.T.; Laste, N.J.; Lefbom, B.K.; Plante, C.; et al. Dilated cardiomyopathy in cats: Survey of veterinary cardiologists and retrospective evaluation of a possible association with diet. J. Vet. Cardiol. 2022, 39, 22–34. [Google Scholar] [CrossRef]
- Karp, S.I.; Freeman, L.M.; Rush, J.E.; Karlin, E.T.; LaMastro, J.N.; Hicks, J.M. Comparison of echocardiography, biomarkers and taurine concentrations in cats eating high- or low-pulse diets. J. Feline Med. Surg. 2023, 25, 1098612X231154859. [Google Scholar] [CrossRef]
- Verlinden, A.; Hesta, M.; Millet, S.; Janssens, G.P.J. Food allergy in dogs and cats: A review. Crit. Rev. Food Sci. Nutr. 2006, 46, 259–273. [Google Scholar] [CrossRef]
- Guilford, W.G.; Markwell, P.J.; Jones, B.R.; Harte, J.G.; Wills, J.M. Prevalence and causes of food sensitivity in cats with chronic pruritus, vomiting or diarrhea. J. Nutr. 1998, 128, 2790–2791. [Google Scholar] [CrossRef]
- Mueller, R.S.; Olivry, T.; Prelaud, P. Critically appraised topic on adverse food reactions of companion animals (2): Common food allergen sources in dogs and cats. Bmc Vet. Res. 2016, 12, 1–4. [Google Scholar] [CrossRef]
- Roudebush, P. Ingredients and foods associated with adverse reactions in dogs and cats. Vet. Dermatol. 2013, 24, 293–294. [Google Scholar] [CrossRef]
- Guilford, W.G.; Jones, B.R.; Markwell, P.J.; Arthur, D.G.; Collett, M.G.; Harte, J.G. Food sensitivity in cats with chronic idiopathic gastrointestinal problems. J. Vet. Intern. Med. 2001, 15, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Guilford, W.G.; Strombeck, D.R.; Rogers, Q.; Frick, O.L.; Lawoko, C. Development of Gastroscopic Food Sensitivity Testing in Dogs. J. Vet. Intern. Med. 1994, 8, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Ishida, R.; Masuda, K.; Sakaguchi, M.; Kurata, K.; Ohno, K.; Tsujimoto, H. Antigen-specific histamine release in dogs with food hypersensitivity. J. Vet. Med. Sci. 2003, 65, 435–438. [Google Scholar] [PubMed]
- Jeffers, J.G.; Meyer, E.K.; Sosis, E.J. Responses of dogs with food allergies to single ingredient dietary provocation. J. Am. Vet. Med. Assoc. 1996, 209, 608–611. [Google Scholar]
- Jeffers, J.G.; Shanley, K.J.; Meyer, E.K. Diagnostic Testing of Dogs for Food Hypersensitivity. J. Am. Vet. Med. Assoc. 1991, 198, 245–250. [Google Scholar]
- Paterson, S. Food Hypersensitivity in 20 Dogs with Skin and Gastrointestinal Signs. J. Small Anim. Pract. 1995, 36, 529–534. [Google Scholar] [CrossRef]
- Vaden, S.L.; Hammerberg, B.; Davenport, D.J.; Orton, S.M.; Trogdon, M.M.; Melgarejo, L.T.; VanCamp, S.D.; Williams, D.A. Food hypersensitivity reactions in Soft Coated Wheaten Terriers with protein-losing enteropathy or protein-losing nephropathy or both: Gastroscopic food sensitivity testing, dietary provocation, and fecal immunoglobulin E. J. Vet. Intern. Med. 2000, 14, 60–67. [Google Scholar] [CrossRef]
- Walton, G.S. Skin Responses in Dog and Cat to Ingested Allergens. Vet. Rec. 1967, 81, 709–713. [Google Scholar] [CrossRef]
- Dodds, W.J. Diagnosis of canine food sensitivity and intolerance using saliva: Report of outcomes. J. Am. Holist. Vet. Med. Assoc. 2017, 49, 32–43. [Google Scholar]
- Dodds, W.J. Diagnosis of Feline Food Sensitivity and Intolerance Using Saliva: 1000 Cases. Animals 2019, 9, 534. [Google Scholar] [CrossRef]
- Adam, G.O.; Park, Y.-G.; Cho, J.-H.; Choi, J.; Oh, H.-G. Detecting common allergens in dogs with atopic dermatitis in South Korean Provinces using a serological immunoglobulin E-specific allergen test. Vet. World 2022, 15, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Alcala, C.O.R.; Possebom, J.; Ludwig, L.A.; Cerdeiro, A.P.; Gaertner, R.; Farias, M.R. Evaluation of skin prick test, exclusion diet and dietary challenge in the diagnosis of food allergy in dogs with chronic pruritus1. Pesqui. Vet. Bras. 2023, 43, e07196. [Google Scholar] [CrossRef]
- Vovk, L.U.; Watson, A.; Dodds, W.J.; Klinger, C.J.; Classen, J.; Mueller, R.S. Testing for food-specific antibodies in saliva and blood of food allergic and healthy dogs. Vet. J. 2019, 245, 1–6. [Google Scholar] [CrossRef]
- Mueller, R.S.; Unterer, S. Adverse food reactions: Pathogenesis, clinical signs, diagnosis and alternatives to elimination diets. Vet. J. 2018, 236, 89–95. [Google Scholar] [CrossRef]
- Kawarai, S.; Ishihara, J.; Masuda, K.; Yasuda, N.; Ohmori, K.; Sakaguchi, M.; Asami, Y.; Tsujimoto, H. Clinical Efficacy of a Novel Elimination Diet Composed of a Mixture of Amino Acids and Potatoes in Dogs with Non-Seasonal Pruritic Dermatitis. J. Vet. Med. Sci. 2010, 72, 1413–1421. [Google Scholar] [CrossRef]
- Hoeppner Rondelli, M.C.; de Camargo Oliveira, M.C.; da Silva, F.L.; Garrido Palacios Junior, R.J.; Peixoto, M.C.; Carciofi, A.C.; Tinucci-Costa, M. A retrospective study of canine cutaneous food allergy at a Veterinary Teaching Hospital from Jaboticabal, Sao Paulo, Brazil. Cienc. Rural 2015, 45, 1819–1825. [Google Scholar] [CrossRef]
- Noli, C.; Varina, A.; Barbieri, C.; Pirola, A.; Olivero, D. Analysis of Intestinal Microbiota and Metabolic Pathways before and after a 2-Month-Long Hydrolyzed Fish and Rice Starch Hypoallergenic Diet Trial in Pruritic Dogs. Vet. Sci. 2023, 10, 478. [Google Scholar] [CrossRef]
- Noli, C.; Beltrando, G. The usefulness of a hydrolysed fish and rice starch elimination diet for the diagnosis of adverse food reactions in cats: An open clinical trial. Vet. Dermatol. 2021, 32, 326-e90. [Google Scholar] [CrossRef]
- Eur-Areemitr, A.; Lekcharoensuk, C.; Chanchaloemporn, S.; Prajakesakul, W.; Vanprapar, K. Effectiveness of diet formulated with fish and rice, plant protein and rice, and lamb and rice on skin lesion and pruritus scores in dogs with food allergy. J. Mahanakorn Vet. Med. 2019, 14, 57–68. [Google Scholar]
- Szczepanik, M.P.; Golynski, M.; Wilkolek, P.; Kalisz, G. Evaluation of a hydrolysed salmon and pea hypoallergenic diet application in dogs and cats with cutaneous adverse food reaction. Pol. J. Vet. Sci. 2022, 25, 67–73. [Google Scholar] [CrossRef]
- Stassen, Q.E.M.; Koskinen, L.L.E.; Van Steenbeek, F.G.; Seppala, E.H.; Jokinen, T.S.; Prins, P.G.M.; Bok, H.G.J.; Zandvliet, M.M.J.M.; Vos-Loohuis, M.; Leegwater, P.A.J.; et al. Paroxysmal Dyskinesia in Border Terriers: Clinical, Epidemiological, and Genetic Investigations. J. Vet. Intern. Med. 2017, 31, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Lowrie, M.; Garden, O.A.; Hadjivassiliou, M.; Harvey, R.J.; Sanders, D.S.; Powell, R.; Garosi, L. The Clinical and Serological Effect of a Gluten-Free Diet in Border Terriers with Epileptoid Cramping Syndrome. J. Vet. Intern. Med. 2015, 29, 1564–1568. [Google Scholar] [CrossRef] [PubMed]
- Lowrie, M.; Hadjivassiliou, M.; Sanders, D.S.; Garden, O.A. A presumptive case of gluten sensitivity in a border terrier: A multisystem disorder? Vet. Rec. 2016, 179, 573. [Google Scholar] [CrossRef] [PubMed]
- Lowrie, M.; Garden, O.A.; Hadjivassiliou, M.; Sanders, D.S.; Powell, R.; Garosi, L. Characterization of Paroxysmal Gluten-Sensitive Dyskinesia in Border Terriers Using Serological Markers. J. Vet. Intern. Med. 2018, 32, 775–781. [Google Scholar] [CrossRef]
- Rogers, C.B.; Meyerhoff, N.; Volk, H.A. Gluten serological testing in various dog breeds with paroxysmal dyskinesia. Front. Vet. Sci. 2023, 10, 1119441. [Google Scholar] [CrossRef]
- Polidoro, D.; Ham Luc, V.; Santens, P.; Cornelis, I.; Charalambous, M.; Broeckx, B.J.G.; Bhatti, S.F.M. Phenotypic characterization of paroxysmal dyskinesia in Maltese dogs. J. Vet. Intern. Med. 2020, 34, 1541–1546. [Google Scholar] [CrossRef]
- Kim, M.; Cho, H.; Kim, U.; Choen, S.; Yun, Y.; Song, W.-J. Suspected paroxysmal dyskinesia in four small-breed dogs: Clinical presentation, diagnosis, management and prognosis. Vet. Med. Sci. 2024, 10, e70015. [Google Scholar] [CrossRef]
- De Risio, L.; Forman, O.P.; Mellersh, C.S.; Freeman, J. Paroxysmal Dyskinesia in Norwich Terrier Dogs. Mov. Disord. Clin. Pract. 2016, 3, 573–579. [Google Scholar] [CrossRef]
- Mott, J.; Morrison, J.A. Gluten-Sensitive Enteropathy in Irish Setters. In Blackwell’s Five-Minute Veterinary Consult Clinical Companion: Small Animal Gastrointestinal Diseases, 1st ed.; Mott, J., Morrison, J.A., Eds.; Wiley-Blackwell: Hoboken, NJ, USA, 2019; pp. 441–443. [Google Scholar]
- Biagi, F.; Maimaris, S.; Vecchiato, C.G.; Costetti, M.; Biagi, G. Gluten-sensitive enteropathy of the Irish Setter and similarities with human celiac disease. Minerva Gastroenterol. E Dietol. 2020, 66, 151–156. [Google Scholar] [CrossRef]
- Hall, E.J.; Carter, S.D.; Barnes, A.; Batt, R.M. Immune-Responses to Dietary Antigens in Gluten-Sensitive Enteropathy of Irish-Setters. Res. Vet. Sci. 1992, 53, 293–299. [Google Scholar] [CrossRef]
- Hall, E.J.; Batt, R.M. Dietary Modulation of Gluten Sensitivity in a Naturally-Occurring Enteropathy of Irish-Setter Dogs. Gut 1992, 33, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Daminet, S.C. Gluten-sensitive enteropathy in a family of Irish setters. Can. Vet. J. Rev. Vet. Can. 1996, 37, 745–746. [Google Scholar]
- Adolphe, J.L.; Drew, M.D.; Huang, Q.; Silver, T.I.; Weber, L.P. Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs. Nutr. Res. 2012, 32, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.; Dumon, H.; Buttin, P.; Martin, L.; Gouro, A.S. Composition of meal influences changes in postprandial incremental glucose and insulin in healthy dogs. J. Nutr. 1994, 124, 2707–2711. [Google Scholar] [CrossRef]
- Appleton, D.J.; Rand, J.S.; Priest, J.; Sunvold, G.D.; Vickers, J.R. Dietary carbohydrate source affects glucose concentrations, insulin secretion, and food intake in overweight cats. Nutr. Res. 2004, 24, 447–467. [Google Scholar] [CrossRef]
- Mori, A.; Sako, T.; Lee, P.; Nishimaki, Y.; Fukuta, H.; Mizutani, H.; Honjo, T.; Arai, T. Comparison of three commercially available prescription diet regimens on short-term post-prandial serum glucose and insulin concentrations in healthy cats. Vet. Res. Commun. 2009, 33, 669–680. [Google Scholar] [CrossRef]
- Coradini, M.; Rand, J.S.; Morton, J.M.; Rawlings, J.M. Effects of two commercially available feline diets on glucose and insulin concentrations, insulin sensitivity and energetic efficiency of weight gain. Br. J. Nutr. 2011, 106, 64–77. [Google Scholar] [CrossRef]
- Hewson-Hughes, A.K.; Gilham, M.S.; Upton, S.; Colyer, A.; Butterwick, R.; Miller, A.T. The effect of dietary starch level on postprandial glucose and insulin concentrations in cats and dogs. Br. J. Nutr. 2011, 106, 105–109. [Google Scholar] [CrossRef]
- Rankovic, A.; Adolphe, J.L.; Ramdath, D.D.; Shoveller, A.K.; Verbrugghe, A. Glycemic response in nonracing sled dogs fed single starch ingredients and commercial extruded dog foods with different carbohydrate sources. J. Anim. Sci. 2020, 98, skaa241. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Huang, Y.; Wang, Y.; Dang, H.; Shan, T. Effects of five carbohydrate sources on cat diet digestibility, postprandial glucose, insulin response, and gut microbiomes. J. Anim. Sci. 2023, 101, skad049. [Google Scholar] [CrossRef]
- Asaro, N.J.; Berendt, K.D.; Zijlstra, R.T.; Brewer, J.; Shoveller, A.K. Carbohydrate level and source have minimal effects on feline energy and macronutrient metabolism. J. Anim. Sci. 2018, 96, 5052–5063. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Setia, R.; Warkentin, T.D.; Ai, Y. Functionality and starch digestibility of wrinkled and round pea flours of two different particle sizes. Food Chem. 2021, 336, 127711. [Google Scholar] [CrossRef] [PubMed]
- Mudryj, A.N.; Yu, N.; Aukema, H.M. Nutritional and health benefits of pulses. Appl. Physiol. Nutr. Metab. 2014, 39, 1197–1204. [Google Scholar] [CrossRef]
- Vastolo, A.; Gizzarelli, M.; Ruggiero, A.; Alterisio, M.C.; Calabro, S.; Ferrara, M.; Cutrignelli, M.I. Effect of diet on postprandial glycemic and insulin responses in healthy dogs. Front. Vet. Sci. 2023, 10, 1201611. [Google Scholar] [CrossRef]
- Kienzle, E. Carbohydrate-Metabolism of the Cat.2. Digestion of Starch. J. Anim. Physiol. Anim. Nutr. Z. Fur Tierphysiol. Tierernahr. Und Futtermittelkunde 1993, 69, 102–114. [Google Scholar] [CrossRef]
- McGeachin, R.L.; Akin, J.R. Amylase Levels in the Tissues and Body-Fluids of the Domestic Cat (Felis-Catus). Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 1979, 63, 437–439. [Google Scholar] [CrossRef]
- Kahn, S.E.; Prigeon, R.L.; Schwartz, R.S.; Fujimoto, W.Y.; Knopp, R.H.; Brunzell, J.D.; Porte, D. Obesity, body fat distribution, insulin sensitivity and islet ß-cell function as explanations for metabolic diversity. J. Nutr. 2001, 131, 354–360. [Google Scholar] [CrossRef]
- Roomp, K.; Rand, J. Evaluation of detemir in diabetic cats managed with a protocol for intensive blood glucose control. J. Feline Med. Surg. 2012, 14, 566–572. [Google Scholar] [CrossRef]
- Bennett, N.; Greco, D.S.; Peterson, M.E.; Kirk, C.; Mathes, M.; Fettman, M.J. Comparison of a low carbohydrate-low fiber diet and a moderate carbohydrate-high fiber diet in the management of feline diabetes mellitus. J. Feline Med. Surg. 2006, 8, 73–84. [Google Scholar] [CrossRef]
- Aljada, A.; Friedman, J.; Ghanim, H.; Mohanty, P.; Hofmeyer, D.; Chaudhuri, A.; Dandona, P. Glucose ingestion induces an increase in intranuclear nuclear factor κB, a fall in cellular inhibitor κB, and an increase in tumor necrosis factor α messenger RNA by mononuclear cells in healthy human subjects. Metab. Clin. Exp. 2006, 55, 1177–1185. [Google Scholar] [CrossRef]
- Crandall, J.P.; Shamoon, H.; Cohen, H.W.; Reid, M.; Gajavelli, S.; Trandafirescu, G.; Tabatabaie, V.; Barzilai, N. Post-Challenge Hyperglycemia in Older Adults Is Associated with Increased Cardiovascular Risk Profile. J. Clin. Endocrinol. Metab. 2009, 94, 1595–1601. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, S.; Brand-Miller, J. Glycemic index, postprandial glycemia and cardiovascular disease. Curr. Opin. Lipidol. 2005, 16, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Dhindsa, S.; Tripathy, D.; Mohanty, P.; Ghanim, H.; Syed, T.; Aljada, A.; Dandona, P. Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-κB in mononuclear cells. Metab. Clin. Exp. 2004, 53, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.E.; Elliott, E.J.; Baur, L. Low glycaemic index or low glycaemic load diets for overweight and obesity. Cochrane Database Syst. Rev. 2007, 3, CD005105. [Google Scholar] [CrossRef]
- Von Blbra, H.; Siegmund, T.; Ceriello, A.; Volozhyna, M.; Schumm-Draeger, P.M. Optimized Postprandial Glucose Control is Associated with Improved Cardiac/Vascular Function-Comparison of Three Insulin Regimens in Well-controlled Type 2 Diabetes. Horm. Metab. Res. 2009, 41, 109–115. [Google Scholar] [CrossRef]
- Brand-Miller, J.; Dickinson, S.; Barclay, A.; Celermajer, D. The glycemic index and cardiovascular disease risk. Curr. Atheroscler. Rep. 2007, 9, 479–485. [Google Scholar] [CrossRef]
- Ceriello, A. Impaired glucose tolerance and cardiovascular disease: The possible role of post-prandial hyperglycemia. Am. Heart J. 2004, 147, 803–807. [Google Scholar] [CrossRef]
- Levitan, E.B.; Song, Y.Q.; Ford, E.S.; Liu, S.M. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch. Intern. Med. 2004, 164, 2147–2155. [Google Scholar] [CrossRef]
- Lavi, T.; Karasik, A.; Koren-Morag, N.; Kanety, H.; Feinberg, M.S.; Shechter, M. The acute effect of various glycemic index dietary carbohydrates on endothelial function in nondiabetic overweight and obese subjects. J. Am. Coll. Cardiol. 2009, 53, 2283–2287. [Google Scholar] [CrossRef]
- Mo, R.; Zhang, M.; Wang, H.; Liu, T.; Zhang, G.; Wu, Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J. Anim. Sci. 2023, 101, skad276. [Google Scholar] [CrossRef]
- Singh, S.D.; Abdul, N.S.; Phulukdaree, A.; Tiloke, C.; Nagiah, S.; Baijnath, S.; Chuturgoon, A.A. Toxicity assessment of mycotoxins extracted from contaminated commercial dog pelleted feed on canine blood mononuclear cells. Food Chem. Toxicol. 2018, 114, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.C. Veterinary Toxicology, 3rd ed.; Elsevier: New York, NY, USA, 2018. [Google Scholar]
- Plumlee, K. Clinical Veterinary Toxicology, 1st ed.; Mosby: St. Louis, MO, USA, 2003. [Google Scholar]
- FSA. Explains the Dangers Surrounding Mycotoxins and the Food Safety Regulations in Place in the UK Concerning Them. Available online: https://www.food.gov.uk/business-guidance/mycotoxins (accessed on 16 June 2025).
- EC. Commission Recommendation of 17 August 2006 on the Presence of Deoxynivalenol, Zearalenone, Ochratoxin A, T-2 and HT-2 and Fumonisins in Products Intended for Animal Feeding. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:229:0007:0009:EN:PDF (accessed on 16 June 2025).
- Bohm, J.; Koinig, L.; Razzazi-Fazeli, E.; Blajet-Kosicka, A.; Twaruzek, M.; Grajewski, J.; Lang, C. Survey and Risk Assessment of the Mycotoxins Deoxynivalenol, Zearalenone, Fumonisins, Ochratoxin A, and Aflatoxins in Commercial Dry Dog Food. Mycotoxin Res. 2010, 26, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Bissoqui, L.Y.; Frehse, M.S.; Freire, R.L.; Ono, M.A.; Bordini, J.G.; Hirozawa, M.T.; de Oliveira, A.J.; Ono, E.Y.S. Exposure assessment of dogs to mycotoxins through consumption of dry feed. J. Sci. Food Agric. 2016, 96, 4135–4142. [Google Scholar] [CrossRef]
- Kara, K. Comparison of some mycotoxin concentration and prevalence in premium and economic class of adult dog foods. Ital. J. Anim. Sci. 2022, 21, 1380–1389. [Google Scholar] [CrossRef]
- Watson, P.E.; Thomas, D.G.; Bermingham, E.N.; Schreurs, N.M.; Parker, M.E. Drivers of Palatability for Cats and Dogs-What It Means for Pet Food Development. Animals 2023, 13, 1134. [Google Scholar] [CrossRef]
- Jansky, S.H. Handbook of fruit and vegetable flavors. In Potato flavor; Hui, Y.H., Chen, F., Nollet, L.M.L., Guine, R.P.F., Martin-Belloso, O., Minguez-Mosquera, M.I., Paliyath, G., Pessoa, F.L.P., Quere, J.L.L., et al., Eds.; Wiley: Hoboken, NJ, USA, 2010; pp. 935–946. [Google Scholar]
- Koppel, K.; Adhikari, K.; Di Donfrancesco, B. Volatile Compounds in Dry Dog Foods and Their Influence on Sensory Aromatic Profile. Molecules 2013, 18, 2646–2662. [Google Scholar] [CrossRef]
Country | Percentage of Respondents in Each Country Who Seek “Grain-Free” Options in Pet Food | Reference |
---|---|---|
Germany | 30.0% | [14] |
UK | 19.6% | |
Canada | 21.8% | |
America | 27.4% | |
France | 8.0% |
Multinomial Logistic Regression | Variable | p-Value | Odds Ratio | Reference | |
---|---|---|---|---|---|
Allergy Model | Do you feed your dog a specific diet because you believe your dog has a food allergy? | Yes | <0.0001 | 4.01 | [14] |
No | - | - | |||
Allergy Symptoms | One | 0.422 | 1.094 | ||
Two or more | 0.047 | 1.321 | |||
None | - | - | |||
Do you feed your dog a specific diet because your dog has been diagnosed by a veterinarian with a food allergy? | Yes | 0.041 | 0.633 | ||
No | - | - | |||
When choosing a pet food, I look for… | Sensitive skin/stomach | <0.0001 | 1.692 | ||
Limited ingredient diet | <0.0001 | 3.019 | |||
Exotic protein | <0.0001 | 1.904 | |||
Diet Model | I try to eat grains as part of a healthy diet | 0–4 (Disagree) | 0.003 | 1.646 | |
5 (Neutral) | 0.003 | 1.439 | |||
6–10 (Agree) | - | - | |||
When choosing a pet food, I look for (poultry, beef, fish, pork, exotic protein, organic/natural, vegetarian/vegan, limited ingredient diet) | 1–3 options selected | 0.019 | 1.625 | ||
4 or more options selected | 0.01 | 1.759 | |||
No options selected | - | - | |||
When choosing a pet food, I look for… | No fillers 1 | <0.0001 | 2.621 | ||
No by-products | <0.0001 | 1.553 | |||
Other food items (dog treats, table scraps, fruits/veggies, other) given on a daily basis | One option selected | 0.619 | 1.056 | ||
Two or more options selected | 0.006 | 1.439 | |||
No options selected | - | - | |||
Purchasing Habits Model | I purposely rotate my dog’s dry food to provide variety | True | 0.021 | 0.799 | |
False | - | - | |||
Where do you get your information about dog food from? | Veterinarian | 0.232 | 0.891 | ||
Online | <0.0001 | 1.571 | |||
Pet store staff | 0.006 | 1.337 | |||
Where do you purchase your pet food from? | Vet clinic | 0.002 | 2.197 | ||
Pet specialty store | <0.0001 | 1.572 | |||
Online | <0.0001 | 2.371 | |||
Other | 0.156 | 1.355 | |||
Grocery store | - | - |
Food Group | n | CP | EE | CF | TDF | CA | NFE | Starch | ME | Reference | |
---|---|---|---|---|---|---|---|---|---|---|---|
Dog food | Grain-Inclusive | 12 | 30.85 | 14.25 | 6.80 | - | 7.63 | 40.47 | - | 379.28 | [21] |
Grain-Free | 23 | 31.78 | 14.91 | 7.12 | - | 8.89 | 37.31 | - | 375.93 | ||
Dog food | Grain-Inclusive | 19 | 25.53 | 10.75 | 6.12 | - | 6.63 | 44.68 | - | 369.50 | [22] |
Grain-Free | 17 | 31.14 | 15.13 | 8.57 | - | 7.39 | 31.50 | - | 369.40 | ||
Dog food | Grain-Inclusive | 13 | 25.75 | 11.31 | 6.31 | 6.71 | 43.68 | 379.60 | [24] | ||
Grain-Free | 17 | 30.69 | 14.71 | 8.40 | 7.45 | 33.20 | 387.93 | ||||
Adult and senior dog food | Low price 1, Grain-Inclusive | 10 | 23.75 | 14.42 | 2.20 | - | 6.64 | 53.56 | - | 384.74 | [34] |
Medium price, Grain-Inclusive | 10 | 27.02 | 13.02 | 1.44 | - | 6.69 | 51.83 | - | 413.09 | ||
High price 1, Grain-Free | 10 | 32.50 | 14.99 | 2.30 | - | 8.60 | 41.83 | - | 412.34 | ||
Puppy food | Low price 1, Grain-Inclusive | 10 | 30.14 | 17.83 | 1.64 | - | 7.05 | 43.35 | - | 403.66 | |
Medium price, Grain-Inclusive | 10 | 31.42 | 16.26 | 1.47 | - | 7.73 | 43.13 | - | 426.18 | ||
High price 1, Grain-Free | 10 | 38.54 | 16.50 | 1.71 | - | 8.44 | 34.80 | - | 425.75 | ||
Dog food | Grain-Inclusive | 14 | 29.08 | 11.25 | 5.72 | - | 7.70 | - | 37.93 | 359.80 | [19] |
Grain-Free | 7 | 37.00 | 14.08 | 4.12 | - | 8.32 | - | 28.95 | 377.39 | ||
Dog food | Grain-Inclusive | 5 | 28.24 | 14.48 | - | 8.38 | 7.65 | 35.06 | 28.36 | - | [35] |
Grain-Free | 5 | 26.62 | 14.94 | - | 10.27 | 7.67 | 34.26 | 27.52 | - | ||
Cat food | Grain-Inclusive | 5 | 34.96 | 13.62 | - | 10.36 | 7.05 | 28.68 | 23.26 | - | |
Grain-Free | 5 | 37.96 | 14.44 | - | 9.12 | 7.62 | 25.66 | 20.50 | - | ||
FEDIAF recommended minimum level | [37,38] | ||||||||||
Dog food | Adult | - | 18.00 | 5.50 | - | - | - | - | - | - | |
Early Growth (<14 weeks) | - | 25.00 | 8.50 | ||||||||
Late Growth (≥14 weeks) | - | 20.00 | 8.50 | - | - | - | - | - | - | ||
Cat food | Adult | - | 25.00 | 9.90 | - | - | - | - | - | - | |
Growth | - | 28.00 | 9.00 | - | - | - | - | - | - |
Breed of Dog | Food Group | DMD (%) | OMD (%) | CPD (%) | EED (%) | CFD (%) | TDFD (%) | Reference |
---|---|---|---|---|---|---|---|---|
Golden retriever | Grain-Inclusive | 80.56 | 83.91 | 80.90 | 95.14 b | 42.70 a | - | [20] |
Grain-Free | 77.41 | 81.29 | 80.22 | 96.96 a | 23.83 b | - | ||
Golden retriever | Grain-Inclusive | 80.93 | 84.43 | 78.03 | 97.35 | 61.70 a | - | [72] |
Grain-Free | 80.65 | 80.65 | 78.77 | 96.74 | 53.23 b | - | ||
Beagles | Grain-Inclusive | 85.80 | 87.70 | 88.10 | 93.10 | - | 39.30 b | [70] |
Grain-Free | 85.80 | 87.00 | 87.20 | 93.60 | - | 51.80 a | ||
Labrador retrievers | Grain-Inclusive | 79.83 | 84.94 | 77.20 b | 90.67 b | - | - | [33] |
Grain-Free | 79.57 | 87.29 | 85.30 a | 96.62 a | - | - | ||
Beagles | LP-Grain-Inclusive | 81.80 c | 85.70 c | 82.50 b | 90.70 c | - | 48.00 c | [71] |
LP-Grain-Free | 85.60 abc | 88.00 bc | 86.70 ab | 95.20 b | - | 55.40 bc | ||
HP-Grain-Inclusive | 85.30 bc | 88.20 ab | 86.10 ab | 93.60 b | - | 54.90 c | ||
HP-Grain-Free | 89.40 ab | 91.10 ab | 88.20 a | 96.10 ab | - | 70.00 a | ||
Mixed-breed hounds | LP-Grain-Inclusive | 89.10 ab | 91.70 ab | 89.70 a | 94.60 b | - | 70.60 a | |
LP-Grain-Free | 86.70 abc | 89.10 ab | 87.20 ab | 95.80 ab | - | 61.30 abc | ||
HP-Grain-Inclusive | 89.40 ab | 91.60 ab | 90.50 a | 95.50 b | - | 69.40 ab | ||
HP-Grain-Free | 90.40 a | 92.00 a | 90.30 a | 96.30 a | - | 73.50 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Ji, Y.; Yang, Y.; Wu, Z. Grain-Free Diets for Dogs and Cats: An Updated Review Focusing on Nutritional Effects and Health Considerations. Animals 2025, 15, 2020. https://doi.org/10.3390/ani15142020
Zhang J, Ji Y, Yang Y, Wu Z. Grain-Free Diets for Dogs and Cats: An Updated Review Focusing on Nutritional Effects and Health Considerations. Animals. 2025; 15(14):2020. https://doi.org/10.3390/ani15142020
Chicago/Turabian StyleZhang, Jing, Yun Ji, Ying Yang, and Zhenlong Wu. 2025. "Grain-Free Diets for Dogs and Cats: An Updated Review Focusing on Nutritional Effects and Health Considerations" Animals 15, no. 14: 2020. https://doi.org/10.3390/ani15142020
APA StyleZhang, J., Ji, Y., Yang, Y., & Wu, Z. (2025). Grain-Free Diets for Dogs and Cats: An Updated Review Focusing on Nutritional Effects and Health Considerations. Animals, 15(14), 2020. https://doi.org/10.3390/ani15142020