Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Housing of Animals
2.3. Apparatus
2.4. Initial Training
2.5. Long-Term Memory Test for Spatial Orientation
2.6. Behavioural Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burgess, N.; Maguire, E.A.; O’Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 2002, 35, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Ortega, Z.; Mencía, A.; Pérez-Mellado, V. Antipredatory behaviour of a mountain lizard towards the chemical cues of its predatory snakes. Behaviour 2018, 155, 817–840. [Google Scholar] [CrossRef]
- Mueller, T.; O’Hara, R.B.; Converse, S.J.; Urbanek, R.P.; Fagan, W.F. Social learning of migratory performance. Science 2013, 341, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Ko, Y.-W.; Liao, C.-P.; Clark, R.W.; Hsu, J.-Y.; Tseng, H.-Y.; Huang, W.-S. Aposematic coloration of prey enhances memory retention in an agamid lizard. Anim. Behav. 2020, 161, 1–13. [Google Scholar] [CrossRef]
- Hoerner, F.; Rendle-Worthington, J.; Lawrenz, A.; Oerke, A.K.; Damerau, K.; Borragan Santos, S.; Hard, T.; Preisfeld, G. Differences in Mother-Infant Bond and Social Behavior of African Elephant Calves Living In Situ and Ex Situ. Animals 2023, 13, 3051. [Google Scholar] [CrossRef]
- Moss, C.; Harvey, C.; Phyllis, C.L. The Amboseli Elephants: A Long-Term Perspective on a Long-Lived Mammal; University of Chicago Press: Chicago, IL, USA, 2011. [Google Scholar]
- Schutz, G.M.; Trimper, S. Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2004, 70, 045101. [Google Scholar] [CrossRef]
- Gagliardo, A.; Ioale, P.; Savini, M.; Wild, J.M. Having the nerve to home: Trigeminal magnetoreceptor versus olfactory mediation of homing in pigeons. J. Exp. Biol. 2006, 209, 2888–2892. [Google Scholar] [CrossRef]
- Bingman, V.P.; Gagliardo, A.; Hough, G.E., II; Ioale, P.; Kahn, M.C.; Siegel, J.J. The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integr. Comp. Biol. 2005, 45, 555–564. [Google Scholar] [CrossRef]
- Bednekoff, P.; Balda, R.; Kamil, A.; Hile, A. Long-term spatial memory in four seed-caching corvid species. Anim. Behav. 1997, 53, 335–341. [Google Scholar]
- Roth, T.C.; LaDage, L.D.; Pravosudov, V.V. Learning capabilities enhanced in harsh environments: A common garden approach. Proc. Biol. Sci. 2010, 277, 3187–3193. [Google Scholar] [CrossRef]
- Funahashi, S. Working Memory in the Prefrontal Cortex. Brain Sci. 2017, 7, 49. [Google Scholar] [CrossRef]
- Shimizu, T.; Karten, H.J. Multiple Origins of Neocortex: Contributions of the Dorsal Ventricular Ridge. In The Neocortex: Ontogeny and Phylogeny; Finlay, B.L., Innocenti, G., Scheich, H., Eds.; Springer: Boston, MA, USA, 1991; pp. 75–86. [Google Scholar]
- Zucker, R.S.; Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 2002, 64, 355–405. [Google Scholar] [CrossRef] [PubMed]
- Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: Long-term potentiation in the hippocampus. Nature 1993, 361, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, I.; Medina, J.H.; Vianna, M.R.; Izquierdo, L.A.; Barros, D.M. Separate mechanisms for short- and long-term memory. Behav. Brain Res. 1999, 103, 1–11. [Google Scholar] [CrossRef]
- Gibbons, J. Why do turtles live so long. BioScience 1987, 37, 262–269. [Google Scholar] [CrossRef]
- Mendyk, R.W. Life expectancy and longevity of varanid lizards (Reptilia: Squamata: Varanidae) in North American zoos. Zoo Biol. 2015, 34, 139–152. [Google Scholar] [CrossRef]
- Frydlova, P.; Mrzilkova, J.; Seremeta, M.; Kremen, J.; Dudak, J.; Zemlicka, J.; Minnich, B.; Kverkova, K.; Nemec, P.; Zach, P.; et al. Determinate growth is predominant and likely ancestral in squamate reptiles. Proc. Biol. Sci. 2020, 287, 20202737. [Google Scholar] [CrossRef]
- Powers, A. Relevance of medial and dorsal cortex function to the dorsalization hypothesis. Behav. Brain Sci. 2003, 26, 566–567. [Google Scholar] [CrossRef]
- Reiter, S.; Liaw, H.; Yamawaki, T.; Naumann, R.; Laurent, G. On the Value of Reptilian Brains to Map the Evolution of the Hippocampal Formation. Brain Behav. Evol. 2017, 90, 41–52. [Google Scholar] [CrossRef]
- Matsubara, S.; Deeming, D.; Wilkinson, A. Cold-blooded cognition: New directions in reptile cognition. Curr. Opin. Behav. Sci. 2017, 16, 126–130. [Google Scholar] [CrossRef]
- Roth, T.C., II; Krochmal, A.R.; LaDage, L.D. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. BioEssays 2019, 41, e1900033. [Google Scholar] [CrossRef]
- Szabo, B.; Noble, D.W.A.; Whiting, M.J. Learning in non-avian reptiles 40 years on: Advances and promising new directions. Biol. Rev. Camb. Philos. Soc. 2021, 96, 331–356. [Google Scholar] [CrossRef] [PubMed]
- Font, E. Rapid learning of a spatial memory task in a lacertid lizard (Podarcis liolepis). Behav. Process. 2019, 169, 103963. [Google Scholar] [CrossRef]
- Noble, D.W.; Carazo, P.; Whiting, M.J. Learning outdoors: Male lizards show flexible spatial learning under semi-natural conditions. Biol. Lett. 2012, 8, 946–948. [Google Scholar] [CrossRef]
- LaDage, L.D.; Cobb Irvin, T.E.; Gould, V.A. Assessing Spatial Learning and Memory in Small Squamate Reptiles. J. Vis. Exp. 2017, 119, 55103. [Google Scholar] [CrossRef]
- Holtzman, D.A.; Harris, T.W.; Aranguren, G.; Bostock, E. Spatial learning of an escape task by young corn snakes, Elaphe guttata guttata. Anim. Behav. 1999, 57, 51–60. [Google Scholar] [CrossRef]
- Stone, A.; Ford, N.; Holtzman, D. Spatial learning and shelter selection by juvenile spotted pythons, Anteresia maculosus. J. Herpetol. 2000, 34, 575–587. [Google Scholar]
- Foa, A.; Basaglia, F.; Beltrami, G.; Carnacina, M.; Moretto, E.; Bertolucci, C. Orientation of lizards in a Morris water-maze: Roles of the sun compass and the parietal eye. J. Exp. Biol. 2009, 212, 2918–2924. [Google Scholar] [CrossRef]
- Landová, E.; Chomik, A.; Vobrubová, B.; Hruška-Hášová, T.; Voňavková, M.; Frynta, D.; Frýdlová, P. Spatial orientation of Eublepharis macularius (Reptilia: Squamata) in a Morris Water Maze task. Acta Soc. Zool. Bohem. 2023, 86, 97–117. [Google Scholar]
- Kundey, S.M.A. Use of features and geometry in leopard geckos (Eublepharis macularius). Behav. Process. 2021, 188, 104412. [Google Scholar] [CrossRef]
- Wilkinson, A.; Kuenstner, K.; Mueller, J.; Huber, L. Social learning in a non-social reptile (Geochelone carbonaria). Biol. Lett. 2010, 6, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.; Mueller-Paul, J.; Huber, L. Picture-object recognition in the tortoise Chelonoidis carbonaria. Anim. Cogn. 2013, 16, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, A.; Glass, E. Testudines Cognition. In Encyclopedia of Animal Cognition and Behavior; Vonk, J., Shackelford, T.K., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 6927–6931. [Google Scholar]
- López, J.; Rodríguez, F.; Gómez, Y.; Vargas, J.; Broglio, C.; Salas, C. Place and cue learning in turtles. Anim. Learn. Behav. 2000, 28, 360–372. [Google Scholar]
- Davis, K.M.; Burghardt, G.M. Training and long-term memory of a novel food acquisition task in a turtle (Pseudemys nelsoni). Behav. Process. 2007, 75, 225–230. [Google Scholar] [CrossRef]
- Davis, K.M.; Burghardt, G.M. Long-term retention of visual tasks by two species of emydid turtles, Pseudemys nelsoni and Trachemys scripta. J. Comp. Psychol. 2012, 126, 213–223. [Google Scholar] [CrossRef]
- da Silva, R.; Conde, D.A.; Baudisch, A.; Colchero, F. Slow and negligible senescence among testudines challenges evolutionary theories of senescence. Science 2022, 376, 1466–1470. [Google Scholar] [CrossRef]
- Warner, D.A.; Miller, D.A.; Bronikowski, A.M.; Janzen, F.J. Decades of field data reveal that turtles senesce in the wild. Proc. Natl. Acad. Sci. USA 2016, 113, 6502–6507. [Google Scholar] [CrossRef]
- Soldati, F.; Burman, O.H.; John, E.A.; Pike, T.W.; Wilkinson, A. Long-term memory of relative reward values. Biol. Lett. 2017, 13, 20160853. [Google Scholar] [CrossRef]
- Gutnick, T.; Weissenbacher, A.; Kuba, M.J. The underestimated giants: Operant conditioning, visual discrimination and long-term memory in giant tortoises. Anim. Cogn. 2020, 23, 159–167. [Google Scholar] [CrossRef]
- Davidson, R.S., Jr. Laboratory maintenance and learning of Alligator mississippiensis. Psychol. Rep. 1966, 19, 595–601. [Google Scholar] [CrossRef]
- Gossette, R.L.; Hombach, A. Successive discrimination reversal (SDR) performances of American alligators and American crocodiles on a spatial task. Percept. Mot. Ski. 1969, 28, 63–67. [Google Scholar] [CrossRef]
- Day, L.B.; Crews, D.; Wilczynski, W. Spatial and reversal learning in congeneric lizards with different foraging strategies. Anim. Behav. 1999, 57, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Day, L.B.; Crews, D.; Wilczynski, W. Effects of medial and dorsal cortex lesions on spatial memory in lizards. Behav. Brain Res. 2001, 118, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Day, L.B.; Ismail, N.; Wilczynski, W. Use of position and feature cues in discrimination learning by the whiptail lizard (Cnemidophorus inornatus). J. Comp. Psychol. 2003, 117, 440–448. [Google Scholar] [CrossRef]
- Holtzman, D.A. From slither to hither: Orientation and spatial learning in snakes. Integr. Biol. 1998, 1, 81–89. [Google Scholar] [CrossRef]
- Loop, M.S. The Effect of Relative Prey Size on the Ingestion Behavior of the Bengal Monitor, Varanus bengalensis (Sauria: Varanidae). Herpetologica 1974, 30, 123–127. [Google Scholar]
- Cooper, T.; Liew, A.; Andrle, G.; Cafritz, E.; Dallas, H.; Niesen, T.; Slaters, E.; Stockert, J.; Vold, T.; Young, M.; et al. Latency in Problem Solving as Evidence for Learning in Varanid and Helodermatid Lizards, with Comments on Foraging Techniques. Copeia 2019, 107, 78–84. [Google Scholar] [CrossRef]
- Pettit, L.; Ward-Fear, G.; Shine, R. Invasion of cane toads (Rhinella marina) affects the problem-solving performance of vulnerable predators (monitor lizards, Varanus varius). Behav. Ecol. Sociobiol. 2021, 75, 39. [Google Scholar] [CrossRef]
- McLean, K.E.; Vickaryous, M.K. A novel amniote model of epimorphic regeneration: The leopard gecko, Eublepharis macularius. BMC Dev. Biol. 2011, 11, 50. [Google Scholar] [CrossRef]
- Agarwal, I.; Bauer, A.M.; Gamble, T.; Giri, V.B.; Jablonski, D.; Khandekar, A.; Mohapatra, P.P.; Masroor, R.; Mishra, A.; Ramakrishnan, U. The evolutionary history of an accidental model organism, the leopard gecko Eublepharis macularius (Squamata: Eublepharidae). Mol. Phylogenet. Evol. 2022, 168, 107414. [Google Scholar] [CrossRef]
- Frynta, D.; Jancuchova-Laskova, J.; Frydlova, P.; Landova, E. A comparative study of growth: Different body weight trajectories in three species of the genus Eublepharis and their hybrids. Sci. Rep. 2018, 8, 2658. [Google Scholar] [CrossRef]
- Jancuchova-Laskova, J.; Landova, E.; Frynta, D. Experimental Crossing of Two Distinct Species of Leopard Geckos, Eublepharis angramainyu and E. macularius: Viability, Fertility and Phenotypic Variation of the Hybrids. PLoS ONE 2015, 10, e0143630. [Google Scholar] [CrossRef]
- Crews, D.; Coomber, P.; Gonzalez-Lima, F. Effects of age and sociosexual experience on the morphology and metabolic capacity of brain nuclei in the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination. Brain Res. 1997, 758, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Sakata, J.T.; Coomber, P.; Gonzalez-Lima, F.; Crews, D. Functional connectivity among limbic brain areas: Differential effects of incubation temperature and gonadal sex in the leopard gecko, Eublepharis macularius. Brain Behav. Evol. 2000, 55, 139–151. [Google Scholar] [CrossRef]
- Kutilek, P.; Socha, V.; Schlenker, J.; Skoda, D.; Hybl, J.; Frynta, D.; Landova, E.; Haskova, T.; Cerny, R.; Kurali, A. System for measuring movement response of small animals to changes in their orientation. In Proceedings of the International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 8–9 September 2015; pp. 139–144. [Google Scholar]
- Seufer, H.; Kaverkin, Y.; Kirschner, A. The Eyelash Geckos: Care, Breeding and Natural History; Kirschner & Seufer Verlag: Karlsruhe, Germany, 2005; p. 238. [Google Scholar]
- Bauer, A.M.; Masroor, R.; Titus-McQuillan, J.; Heinicke, M.P.; Daza, J.D.; Jackman, T.R. A preliminary phylogeny of the Palearctic naked-toed geckos (Reptilia: Squamata: Gekkonidae) with taxonomic implications. Zootaxa 2013, 3599, 301–324. [Google Scholar] [CrossRef]
- de Magalhaes, J.; Abidi, Z.; dos Santos, G.; Avelar, R.; Barardo, D.; Chatsirisupachai, K.; Clark, P.; De-Souza, E.; Johnson, E.; Lopes, I.; et al. Human Ageing Genomic Resources: Updates on key databases in ageing research. Nucleic Acids Res. 2023, 52, D900–D908. [Google Scholar] [CrossRef]
- Landová, E.; Hnidová, P.; Chomik, A.; Jančúchová-Lásková, J.; Frýdlová, P.; Frynta, D. Specific Antipredator Response of Leopard Geckos (Eublepharis macularius) to the Smell of Snake Exuvia. In Chemical Signals in Vertebrates; Schaal, B., Rekow, D., Keller, M., Damon, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 15, pp. 399–418. [Google Scholar]
- Szabo, B.; Ringler, E. Geckos differentiate self from other using both skin and faecal chemicals: Evidence towards self-recognition? Anim. Cogn. 2023, 26, 1011–1019. [Google Scholar] [CrossRef]
- Krochmal, A.; Roth, T.; Simmons, N. My way is the highway: The role of plasticity in learning complex migration routes. Anim. Behav. 2021, 174, 161–167. [Google Scholar] [CrossRef]
- Roth, T.; Krochmal, A. Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation. Proc. R. Soc. B Biol. Sci. 2016, 283, 20152548. [Google Scholar] [CrossRef]
- Krochmal, A.; Roth, T.I.; Simmons, N. Cue relevance during navigation is a function of scale and experience. Anim. Behav. 2025, 225, 123225. [Google Scholar] [CrossRef]
- Viets, B.E.; Tousignant, A.; Ewert, M.A.; Nelson, C.E.; Crews, D. Temperature-dependent sex determination in the leopard gecko, Eublepharis macularius. J. Exp. Zool. 1993, 265, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.; Tousignant, A.; Crews, D. Incubation temperature affects the behavior of adult leopard geckos (Eublepharis macularius). Physiol. Behav. 1994, 55, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Sakata, J.; Crews, D. Embryonic temperature shapes behavioural change following social experience in male leopard geckos, Eublepharis macularius. Anim. Behav. 2003, 66, 839–846. [Google Scholar] [CrossRef]
- Bull, J. Temperature-dependent sex determination in reptiles-validity of sex diagnosis in hatchling lizards. Can. J. Zool. 1987, 65, 1421–1424. [Google Scholar] [CrossRef]
- Bragg, W.; Fawcett, J.; Bragg, T.; Viets, B. Nest-site selection in two eublepharid gecko species with temperature-dependent sex determination and one with genotypic sex determination. Biol. J. Linn. Soc. 2000, 69, 319–332. [Google Scholar] [CrossRef]
- Bonine, K.; Garland, T. Sprint performance of phrynosomatid lizards, measured on a high-speed treadmill, correlates with hindlimb length. J. Zool. 1999, 248, 255–265. [Google Scholar]
- Paulissen, M. Spatial learning in the little brown skink, Scincella lateralis: The importance of experience. Anim. Behav. 2008, 76, 135–141. [Google Scholar] [CrossRef]
- Landová, E.; Jancúchová-Lásková, J.; Musilová, V.; Kadochová, S.; Frynta, D. Ontogenetic switch between alternative antipredatory strategies in the leopard gecko (Eublepharis macularius): Defensive threat versus escape. Behav. Ecol. Sociobiol. 2013, 67, 1113–1122. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Vorhees, C.; Williams, M. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. Nat. Protoc. 2006, 1, 848–858. [Google Scholar] [CrossRef]
- Technology, N.I. EthoVision XT, version XT 11.5; Noldus Information Technology: Wageningen, The Netherlands, 2011.
- Pinheiro, J.; Bates, D.; Debroy, S.; Sarkar, D.; R Core Team. R Package, version 3.1-121. nlme: Linear and Nonlinear Mixed Effects Models. R Foundation for Statistical Computing: Vienna, Austria, 2015. Available online: https://cran.r-project.org/web/packages/nlme/index.html (accessed on 11 November 2024).
- Lenth, R. R Package, version 1.10.3. emmeans: Estimated Marginal Means, aka Least-Squares Means. R Foundation for Statistical Computing: Vienna, Austria, 2024. Available online: https://rvlenth.github.io/emmeans/ (accessed on 11 November 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.r-project.org/ (accessed on 11 November 2024).
- Bezzina, C.N.; Amiel, J.J.; Shine, R. Does invasion success reflect superior cognitive ability? A case study of two congeneric lizard species (Lampropholis, Scincidae). PLoS ONE 2014, 9, e86271. [Google Scholar] [CrossRef]
- Lensink, J.; Veissier, I.; Boissy, A. Enhancement of performances in a learning task in suckler calves after weaning and relocation: Motivational versus cognitive control? A pilot. Appl. Anim. Behav. Sci. 2006, 100, 171–181. [Google Scholar] [CrossRef]
- Khan, M.S. Natural History and Biology of Hobbyist Choice Leopard Gecko Eublepharis macularius; Talim ul Islam College: Rabwa, Pakistan, 2009; pp. 1–19. [Google Scholar]
- Hussain, M.S.; Lee, S.H. A classification of rainfall regions in Pakistan. J. Korean Geogr. Soc. 2009, 44, 605–623. [Google Scholar]
- Cooper, T.L.; Zabinski, C.L.; Adams, E.J.; Berry, S.M.; Pardo-Sanchez, J.; Reinhardt, E.M.; Roberts, K.M.; Watzek, J.; Brosnan, S.F.; Hill, R.L.; et al. Long-term Memory of a Complex Foraging Task in Monitor Lizards (Reptilia: Squamata: Varanidae). J. Herpetol. 2020, 54, 378–383. [Google Scholar] [CrossRef]
- Kverkova, K.; Marhounova, L.; Polonyiova, A.; Kocourek, M.; Zhang, Y.; Olkowicz, S.; Strakova, B.; Pavelkova, Z.; Vodicka, R.; Frynta, D.; et al. The evolution of brain neuron numbers in amniotes. Proc. Natl. Acad. Sci. USA 2022, 119, e2121624119. [Google Scholar] [CrossRef]
- Castanet, J. Age estimation and longevity in reptiles. Gerontology 1994, 40, 174–192. [Google Scholar] [CrossRef]
- Bowen, B.; Avise, J.; Richardson, J.; Meylan, A.; Margaritoulis, D.; Hopkinsmurphy, S. Population structure of the loggerhead turtle Caretta caretta in the northwest Atlantic Ocean and Mediterranean Sea. Conserv. Biol. 1993, 7, 834–844. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Lohmann, C.M.F. Orientation and Open-Sea Navigation in Sea Turtles. J. Exp. Biol. 1996, 199, 73–81. [Google Scholar] [CrossRef]
- Goff, M.; Salmon, M.; Lohmann, K. Hatchling sea turtles use surface waves to establish a magnetic compass direction. Anim. Behav. 1998, 55, 69–77. [Google Scholar] [CrossRef]
- Lohmann, K.J.; Lohmann, C.M.F.; Brothers, J.R.; Putman, N.F. Natal Homing and Imprinting in Sea Turtles. In The Biology of Sea Turtles; Wyneken, K., Lohmann, K.J., Musick, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; Volume III, pp. 59–78. [Google Scholar]
- Booth, D.T. Influence of incubation temperature on hatchling phenotype in reptiles. Physiol. Biochem. Zool. 2006, 79, 274–281. [Google Scholar] [CrossRef]
- Abayarathna, T.; Webb, J.K. Effects of incubation temperatures on learning abilities of hatchling velvet geckos. Anim. Cogn. 2020, 23, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Trnik, M.; Albrechtova, J.; Kratochvil, L. Persistent effect of incubation temperature on stress-induced behavior in the Yucatan banded gecko (Coleonyx elegans). J. Comp. Psychol. 2011, 125, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Dayananda, B.; Penfold, S.; Webb, J. The effects of incubation temperature on locomotor performance, growth and survival in hatchling velvet geckos. J. Zool. 2017, 303, 46–53. [Google Scholar] [CrossRef]
- Amiel, J.J.; Shine, R. Hotter nests produce smarter young lizards. Biol. Lett. 2012, 8, 372–374. [Google Scholar] [CrossRef]
- Amiel, J.J.; Lindstrom, T.; Shine, R. Egg incubation effects generate positive correlations between size, speed and learning ability in young lizards. Anim. Cogn. 2014, 17, 337–347. [Google Scholar] [CrossRef]
- Amiel, J.J.; Bao, S.; Shine, R. The effects of incubation temperature on the development of the cortical forebrain in a lizard. Anim. Cogn. 2017, 20, 117–125. [Google Scholar] [CrossRef]
- Ladage, L.D.; Roth, T.C.; Cerjanic, A.M.; Sinervo, B.; Pravosudov, V.V. Spatial memory: Are lizards really deficient? Biol. Lett. 2012, 8, 939–941. [Google Scholar] [CrossRef]
Contrast | Estimate | S.E. | DF | t-Ratio | p-Value |
---|---|---|---|---|---|
S-Training—F-Memory test 2 | 0.962 | 0.111 | 538 | 8.7 | <0.0001 |
S-Training—F-Training | 0.4015 | 0.099 | 538 | 4.07 | 0.0005 |
S-Training—Memory test 1 | 0.275 | 0.101 | 538 | 2.71 | 0.0535 |
S-Training—S-Memory test 2 | 0.0136 | 0.098 | 538 | 0.14 | 0.9999 |
F-Memory test 2—F-Training | −0.5606 | 0.112 | 538 | −5 | <0.0001 |
F-Memory test 2—Memory test 1 | −0.687 | 0.115 | 538 | −5.98 | <0.0001 |
F-Memory test 2—S-Memory test 2 | −0.9484 | 0.111 | 538 | −8.54 | <0.0001 |
F-Training—Memory test 1 | −0.1264 | 0.098 | 538 | −1.28 | 0.7011 |
F-Training—S-Memory test 2 | −0.3879 | 0.099 | 538 | −3.91 | 0.001 |
Memory test 1—S-Memory test 2 | −0.2614 | 0.102 | 538 | −2.57 | 0.0769 |
Value | 95% CI (LL, UL) | S.E. | DF | t-Value | p-Value | |
---|---|---|---|---|---|---|
Intercept | 6.1418 | 5.970, 6.313 | 0.087 | 538 | 70.38 | <0.0001 |
touches | 0.0867 | 0.076, 0.097 | 0.005 | 538 | 15.85 | <0.0001 |
F-Memory test 2 | −0.962 | −1.179, −0.745 | 0.111 | 538 | −8.7 | <0.0001 |
F-Training | −0.4015 | −0.595, −0.208 | 0.099 | 538 | −4.07 | 0.0001 |
Memory test 1 | −0.275 | −0.474, −0.076 | 0.101 | 538 | −2.71 | 0.0069 |
S-Memory test 2 | −0.0136 | −0.207, 0.179 | 0.098 | 538 | −0.14 | 0.8903 |
Contrast | Estimate | S.E. | DF | t-Ratio | p-Value |
---|---|---|---|---|---|
S-Training—F-Memory test 2 | 0.1198 | 0.13 | 536 | 0.92 | 0.8888 |
S-Training—F-Training | 0.1885 | 0.11 | 536 | 1.71 | 0.4285 |
S-Training—Memory test 1 | 0.1166 | 0.11 | 536 | 1.05 | 0.8297 |
S-Training—S-Memory test 2 | −0.3688 | 0.11 | 536 | −3.31 | 0.0087 |
F-Memory test 2—F-Training | 0.0687 | 0.12 | 536 | 0.59 | 0.977 |
F-Memory test 2—Memory test 1 | −0.0033 | 0.12 | 536 | −0.03 | 1 |
F-Memory test 2—S-Memory test 2 | −0.4886 | 0.12 | 536 | −4.22 | 0.0003 |
F-Training—Memory test 1 | −0.072 | 0.1 | 536 | −0.71 | 0.9537 |
F-Training—S-Memory test 2 | −0.5573 | 0.1 | 536 | −5.49 | <0.0001 |
Memory test 1—S-Memory test 2 | −0.4853 | 0.11 | 536 | −4.63 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landová, E.; Chomik, A.; Vobrubová, B.; Hruška Hášová, T.; Voňavková, M.; Frynta, D.; Frýdlová, P. Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task. Animals 2025, 15, 2014. https://doi.org/10.3390/ani15142014
Landová E, Chomik A, Vobrubová B, Hruška Hášová T, Voňavková M, Frynta D, Frýdlová P. Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task. Animals. 2025; 15(14):2014. https://doi.org/10.3390/ani15142014
Chicago/Turabian StyleLandová, Eva, Aleksandra Chomik, Barbora Vobrubová, Tereza Hruška Hášová, Monika Voňavková, Daniel Frynta, and Petra Frýdlová. 2025. "Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task" Animals 15, no. 14: 2014. https://doi.org/10.3390/ani15142014
APA StyleLandová, E., Chomik, A., Vobrubová, B., Hruška Hášová, T., Voňavková, M., Frynta, D., & Frýdlová, P. (2025). Memory in Leopard Geckos (Eublepharis macularius) in a Morris Water Maze Task. Animals, 15(14), 2014. https://doi.org/10.3390/ani15142014