Visual Discrimination Task in Guppies Using a Simultaneous Matching-to-Sample Procedure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Apparatus and Stimuli
2.3. Procedure
2.4. Data Collection and Statistical Analysis
3. Results
3.1. Experiment 1
3.2. Experiment 2
3.3. Experiment 3
3.4. Comparison Among Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laland, K.; Seed, A. Understanding Human Cognitive Uniqueness. Annu. Rev. Psychol. 2021, 72, 689–716. [Google Scholar] [CrossRef]
- Zentall, T.R. Comparative Cognition Research Demonstrates the Similarity between Humans and Other Animals. Animals 2023, 13, 1165. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O.; Pusch, R.; Rose, J. Why Birds Are Smart. Trends Cogn. Sci. 2024, 28, 197–209. [Google Scholar] [CrossRef]
- Subias, L.; Katsu, N.; Yamada, K. Metacognition in Nonhuman Primates: A Review of Current Knowledge. Primates 2025, 66, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Wang, K.; Yang, L.; Pan, H.; Jiang, H.; Wei, Q.; Fang, M.; Yu, H.; Zhu, C.; Cai, Y.; et al. Tracing the Genetic Footprints of Vertebrate Landing in Non-Teleost Ray-Finned Fishes. Cell 2021, 184, 1377–1391.e14. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, H. Stupid as a Fish?: The Surprising Intelligence Under Water; Springer Nature: Berlin, Germany, 2024; ISBN 3-662-68376-8. [Google Scholar]
- Potrich, D.; Montel, L.; Stancher, G.; Baratti, G.; Vallortigara, G.; Sovrano, V.A. Proto-Arithmetic Abilities in Zebrafish (Danio rerio). Heliyon 2024, 10, e40585. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Kohda, M.; Awata, S.; Bshary, R.; Sogawa, S. Cleaner Fish with Mirror Self-Recognition Capacity Precisely Realize Their Body Size Based on Their Mental Image. Sci. Rep. 2024, 14, 20202. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Brennan, C.H. Application of an Abstract Concept across Magnitude Dimensions by Fish. Sci. Rep. 2020, 10, 16935. [Google Scholar] [CrossRef]
- Lee, T.J.; Briggman, K.L. Visually Guided and Context-Dependent Spatial Navigation in the Translucent Fish Danionella Cerebrum. Curr. Biol. 2023, 33, 5467–5477.e4. [Google Scholar] [CrossRef]
- Burgess, H.A.; Burton, E.A. A Critical Review of Zebrafish Neurological Disease Models−1. The Premise: Neuroanatomical, Cellular and Genetic Homology and Experimental Tractability. Oxf. Open Neurosci. 2023, 2, kvac018. [Google Scholar] [CrossRef]
- Hegarty, B.E.; Gruenhagen, G.W.; Johnson, Z.V.; Baker, C.M.; Streelman, J.T. Spatially Resolved Cell Atlas of the Teleost Telencephalon and Deep Homology of the Vertebrate Forebrain. Commun. Biol. 2024, 7, 612. [Google Scholar] [CrossRef]
- Messina, A.; Potrich, D.; Schiona, I.; Sovrano, V.A.; Fraser, S.E.; Brennan, C.H.; Vallortigara, G. Response to Change in the Number of Visual Stimuli in Zebrafish:A Behavioural and Molecular Study. Sci. Rep. 2020, 10, 5769. [Google Scholar] [CrossRef] [PubMed]
- Kobylkov, D.; Mayer, U.; Zanon, M.; Vallortigara, G. Number Neurons in the Nidopallium of Young Domestic Chicks. Proc. Natl. Acad. Sci. USA 2022, 119, e2201039119. [Google Scholar] [CrossRef] [PubMed]
- Kobylkov, D.; Zanon, M.; Perrino, M.; Vallortigara, G. Neural Coding of Numerousness. Biosystems 2023, 232, 104999. [Google Scholar] [CrossRef]
- Doszyn, O.; Dulski, T.; Zmorzynska, J. Diving into the Zebrafish Brain: Exploring Neuroscience Frontiers with Genetic Tools, Imaging Techniques, and Behavioral Insights. Front. Mol. Neurosci. 2024, 17, 1358844. [Google Scholar] [CrossRef] [PubMed]
- Calvo, R.; Schluessel, V. Neural Substrates Involved in the Cognitive Information Processing in Teleost Fish. Anim. Cogn. 2021, 24, 923–946. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Bisazza, A. Complex Maze Learning by Fish. Anim. Behav. 2017, 125, 69–75. [Google Scholar] [CrossRef]
- Guigueno, M.F.; Foster, A.C.K.; Reader, S.M. Current Predation Risk Has Opposing Effects on Social Learning of Foraging Locations across Two Guppy Populations. Anim. Cogn. 2025, 28, 4. [Google Scholar] [CrossRef]
- Mair, A.; Lucon-Xiccato, T.; Bisazza, A. Guppies in the Puzzle Box: Innovative Problem-Solving by a Teleost Fish. Behav. Ecol. Sociobiol. 2021, 75, 17. [Google Scholar] [CrossRef]
- Fuss, T.; Witte, K. Sex Differences in Color Discrimination and Serial Reversal Learning in Mollies and Guppies. Curr. Zool. 2019, 65, 323–332. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Bisazza, A. Male and Female Guppies Differ in Speed but Not in Accuracy in Visual Discrimination Learning. Anim. Cogn. 2016, 19, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Miletto Petrazzini, M.E.; Bisazza, A.; Agrillo, C.; Lucon-Xiccato, T. Sex Differences in Discrimination Reversal Learning in the Guppy. Anim. Cogn. 2017, 20, 1081–1091. [Google Scholar] [CrossRef]
- Gatto, E.; Agrillo, C.; Brown, C.; Dadda, M. Individual Differences in Numerical Skills Are Influenced by Brain Lateralization in Guppies (Poecilia reticulata). Intelligence 2019, 74, 12–17. [Google Scholar] [CrossRef]
- Zentall, T.R.; Wasserman, E.A.; Lazareva, O.F.; Thompson, R.K.; Rattermann, M.J. Concept Learning in Animals. Comp. Cogn. Behav. Rev. 2008, 3, 13–45. [Google Scholar] [CrossRef]
- Cook, R.G. Same-Different Concept Formation in Pigeons. In The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition; MIT Press: Cambridge, MA, USA, 2002; pp. 229–237. [Google Scholar]
- Katz, J.S.; Wright, A.A. Issues in the Comparative Cognition of Same/Different Abstract-Concept Learning. Curr. Opin. Behav. Sci. 2021, 37, 29–34. [Google Scholar] [CrossRef]
- Wright, A.A.; Cook, R.G.; Rivera, J.J.; Sands, S.F.; Delius, J.D. Concept Learning by Pigeons: Matching-to-Sample with Trial-Unique Video Picture Stimuli. Anim. Learn. Behav. 1988, 16, 436–444. [Google Scholar] [CrossRef]
- Truppa, V.; Garofoli, D.; Castorina, G.; Piano Mortari, E.; Natale, F.; Visalberghi, E. Identity Concept Learning in Matching-to-Sample Tasks by Tufted Capuchin Monkeys (Cebus apella). Anim. Cogn. 2010, 13, 835–848. [Google Scholar] [CrossRef] [PubMed]
- Lazarowski, L.; Davila, A.; Krichbaum, S.; Cox, E.; Smith, J.G.; Waggoner, L.P.; Katz, J.S. Matching-to-Sample Abstract-Concept Learning by Dogs (Canis familiaris). J. Exp. Psychol. Anim. Learn. Cogn. 2021, 47, 393–400. [Google Scholar] [CrossRef]
- Wright, A.A.; Kelly, D.M.; Katz, J.S. Comparing Cognition by Integrating Concept Learning, Proactive Interference, and List Memory. Learn. Behav. 2018, 46, 107–123. [Google Scholar] [CrossRef]
- Katz, J.S.; Bodily, K.D.; Wright, A.A. Learning Strategies in Matching to Sample: If-Then and Configural Learning by Pigeons. Behav. Process. 2008, 77, 223–230. [Google Scholar] [CrossRef]
- Goldman, M.; Shapiro, S. Matching-to-Sample and Oddity-from-Sample in Goldfish. J. Exp. Anal. Behav. 1979, 31, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Zerbolio, D.J.; Royalty, J.L. Matching and Oddity Conditional Discrimination in the Goldfish as Avoidance Responses: Evidence for Conceptual Avoidance Learning. Anim. Learn. Behav. 1983, 11, 341–348. [Google Scholar] [CrossRef]
- Bloch, S.; Froc, C.; Pontiggia, A.; Yamamoto, K. Existence of Working Memory in Teleosts: Establishment of the Delayed Matching-to-Sample Task in Adult Zebrafish. Behav. Brain Res. 2019, 370, 111924. [Google Scholar] [CrossRef] [PubMed]
- Gierszewski, S.; Bleckmann, H.; Schluessel, V. Cognitive Abilities in Malawi Cichlids (Pseudotropheus Sp.): Matching-to-Sample and Image/Mirror-Image Discriminations. PLoS ONE 2013, 8, e57363. [Google Scholar] [CrossRef] [PubMed]
- Newport, C.; Wallis, G.; Siebeck, U.E. Concept Learning and the Use of Three Common Psychophysical Paradigms in the Archerfish (Toxotes chatareus). Front. Neural Circuits 2014, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Aellen, M.; Siebeck, U.E.; Bshary, R. Cleaner Wrasse Labroides Dimidiatus Perform above Chance in a “Matching-to-Sample” Experiment. PLoS ONE 2022, 17, e0262351. [Google Scholar] [CrossRef]
- Bodily, K.D.; Katz, J.S.; Wright, A.A. Matching-to-Sample Abstract-Concept Learning by Pigeons. J. Exp. Psychol. Anim. Behav. Process. 2008, 34, 178–184. [Google Scholar] [CrossRef]
- Zentall, T.R.; Peng, D.N.; Mueller, P.M. Pigeons Learn Two Matching Tasks, Two Nonmatching Tasks, or One of Each. Learn. Behav. 2023, 51, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Lucon-Xiccato, T.; Dadda, M. Individual Guppies Differ in Quantity Discrimination Performance across Antipredator and Foraging Contexts. Behav. Ecol. Sociobiol. 2016, 71, 13. [Google Scholar] [CrossRef]
- Lucon-Xiccato, T.; Santacà, M.; Miletto Petrazzini, M.E.; Agrillo, C.; Dadda, M. Guppies, Poecilia reticulata, Perceive a Reversed Delboeuf Illusion. Anim. Cogn. 2019, 22, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Lucon-Xiccato, T.; Manabe, K.; Bisazza, A. Guppies Learn Faster to Discriminate between Red and Yellow than between Two Shapes. Ethology 2019, 125, 82–91. [Google Scholar] [CrossRef]
- Santacà, M.; Dadda, M.; Miletto Petrazzini, M.E.; Bisazza, A. Stimulus Characteristics, Learning Bias and Visual Discrimination in Zebrafish (Danio rerio). Behav. Process. 2021, 192, 104499. [Google Scholar] [CrossRef] [PubMed]
- Gatto, E.; Santacà, M.; Verza, I.; Dadda, M.; Bisazza, A. Automated Operant Conditioning Devices for Fish. Do They Work? Animals 2021, 11, 1397. [Google Scholar] [CrossRef] [PubMed]
- Agrillo, C.; Dadda, M. Discrimination of the Larger Shoal in the Poeciliid Fish Girardinus Falcatus. Ethol. Ecol. Evol. 2007, 19, 145–157. [Google Scholar] [CrossRef]
- Agrillo, C.; Miletto Petrazzini, M.E.; Bisazza, A. At the Root of Math: Numerical Abilities in Fish. In Mathematical Cognition and Learning; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Bisazza, A.; Agrillo, C.; Lucon-Xiccato, T. Extensive Training Extends Numerical Abilities of Guppies. Anim. Cogn. 2014, 17, 1413–1419. [Google Scholar] [CrossRef]
- Rodd, F.H.; Hughes, K.A.; Grether, G.F.; Baril, C.T. A Possible Non-Sexual Origin of Mate Preference: Are Male Guppies Mimicking Fruit? Proc. R. Soc. Lond. B Biol. Sci. 2002, 269, 475–481. [Google Scholar] [CrossRef]
- Griffiths, S.W.; Magurran, A.E. Schooling Preferences for Familiar Fish Vary with Group Size in a Wild Guppy Population. Proc. R. Soc. Lond. B Biol. Sci. 1997, 264, 547–551. [Google Scholar] [CrossRef]
- Mariette, M.M.; Zajitschek, S.R.K.; Garcia, C.M.; Brooks, R.C. The Effects of Familiarity and Group Size on Mating Preferences in the Guppy, Poecilia reticulata. J. Evol. Biol. 2010, 23, 1772–1782. [Google Scholar] [CrossRef]
- Croft, D.P.; Krause, J.; James, R. Social Networks in the Guppy (Poecilia reticulata). Proc. R. Soc. Lond. B Biol. Sci. 2004, 271, S516–S519. [Google Scholar] [CrossRef]
- Wright, A.A. Learning Strategies in Matching to Sample. Avian Vis. Cogn. 2001, 77, 223–230. [Google Scholar]
- Halberda, J.; Mazzocco, M.M.M.; Feigenson, L. Individual Differences in Non-Verbal Number Acuity Correlate with Maths Achievement. Nature 2008, 455, 665–668. [Google Scholar] [CrossRef]
- Miletto Petrazzini, M.E.; Agrillo, C. Turning to the Larger Shoal: Are There Individual Differences in Small- and Large-Quantity Discrimination of Guppies? Ethol. Ecol. Evol. 2016, 28, 211–220. [Google Scholar] [CrossRef]
- Thornton, A.; Lukas, D. Individual Variation in Cognitive Performance: Developmental and Evolutionary Perspectives. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 2773–2783. [Google Scholar] [CrossRef] [PubMed]
- Sauce, B.; Matzel, L.D. The Causes of Variation in Learning and Behavior: Why Individual Differences Matter. Front. Psychol. 2013, 4, 395. [Google Scholar] [CrossRef]
- Sherry, D.F. Neuroecology. Annu. Rev. Psychol. 2006, 57, 167–197. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.L.; Matthews, L.J.; Hare, B.A.; Nunn, C.L.; Anderson, R.C.; Aureli, F.; Brannon, E.M.; Call, J.; Drea, C.M.; Emery, N.J.; et al. How Does Cognition Evolve? Phylogenetic Comparative Psychology. Anim. Cogn. 2012, 15, 223–238. [Google Scholar] [CrossRef]
- Macario, A.; Darden, S.K.; Verbruggen, F.; Croft, D.P. Intraspecific Variation in Inhibitory Motor Control in Guppies, Poecilia reticulata. J. Fish Biol. 2021, 98, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Lucon-Xiccato, T.; Montalbano, G.; Bertolucci, C. Adaptive Phenotypic Plasticity Induces Individual Variability along a Cognitive Trade-Off. Proc. R. Soc. B Biol. Sci. 2023, 290, 20230350. [Google Scholar] [CrossRef]
- Triki, Z.; Granell-Ruiz, M.; Fong, S.; Amcoff, M.; Kolm, N. Brain Morphology Correlates of Learning and Cognitive Flexibility in a Fish Species (Poecilia reticulata). Proc. R. Soc. B Biol. Sci. 2022, 289, 20220844. [Google Scholar] [CrossRef]
- Triki, Z.; Fong, S.; Amcoff, M.; Vàsquez-Nilsson, S.; Kolm, N. Experimental Expansion of Relative Telencephalon Size Improves the Main Executive Function Abilities in Guppy. PNAS Nexus 2023, 2, pgad129. [Google Scholar] [CrossRef]
- Beran, M.J.; Perdue, B.M.; Bramlett, J.L.; Menzel, C.R.; Evans, T.A. Prospective Memory in a Language-Trained Chimpanzee (Pan troglodytes). Learn. Motiv. 2012, 43, 192–199. [Google Scholar] [CrossRef]
- Plotnik, J.M.; de Waal, F.B.M.; Reiss, D. Self-Recognition in an Asian Elephant. Proc. Natl. Acad. Sci. USA 2006, 103, 17053–17057. [Google Scholar] [CrossRef] [PubMed]
- Abramson, J.Z.; Hernández-Lloreda, V.; Call, J.; Colmenares, F. Relative Quantity Judgments in South American Sea Lions (Otaria flavescens). Anim. Cogn. 2011, 14, 695–706. [Google Scholar] [CrossRef] [PubMed]
- Pepperberg, I.M. Cognition and Communication in an African Grey Parrot (Psittacus erithacus): Studies on a Nonhuman Nonprimate, Nonmammalian Subject. In Language and Communication; Psychology Press: London, UK, 2013; pp. 221–248. [Google Scholar]
- Wright, A.A.; Katz, J.S. Mechanisms of Same/Different Concept Learning in Primates and Avians. Behav. Process. 2006, 72, 234–254. [Google Scholar] [CrossRef] [PubMed]
- Lind, J.; Enquist, M.; Ghirlanda, S. Animal Memory: A Review of Delayed Matching-to-Sample Data. Behav. Process. 2015, 117, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Zentall, T.R.; Smith, A.P. Delayed Matching-to-Sample: A Tool to Assess Memory and Other Cognitive Processes in Pigeons. Behav. Process. 2016, 123, 26–42. [Google Scholar] [CrossRef]
- Meester, G.D.; Baeckens, S. Reinstating Reptiles: From Clueless Creatures to Esteemed Models of Cognitive Biology. Behaviour 2021, 158, 1057–1076. [Google Scholar] [CrossRef]
- Burmeister, S.S. Chapter Three—Brain-Behavior Relationships of Cognition in Vertebrates: Lessons from Amphibians. In Advances in the Study of Behavior; Healy, S., Podos, J., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 54, pp. 109–127. ISBN 0065-3454. [Google Scholar]
- Font, E.; Burghardt, G.M.; Leal, M. Brains, Behaviour, and Cognition: Multiple Misconceptions. In Health and Welfare of Captive Reptiles; Warwick, C., Arena, P.C., Burghardt, G.M., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 211–238. ISBN 978-3-030-86012-7. [Google Scholar]
- Kundey, S.M. Advancing Our Understanding of Cognition by Including Amphibians and Reptiles in Comparative Cognition Research. Comp. Cogn. Behav. Rev. 2024, 19, 29–32. [Google Scholar] [CrossRef]
Experiment | Subject | % Correct Choice | p.Value |
---|---|---|---|
Experiment 1 | 1 | 57.5% | 0.024 |
2 | 51.3% | 0.747 | |
3 | 56.7% | 0.045 | |
4 | 63.8% | <0.001 | |
5 | 56.3% | 0.061 | |
6 | 48.8% | 0.747 | |
7 | 59.2% | 0.005 | |
8 | 58.3% | 0.012 | |
9 | 58.3% | 0.012 | |
10 | 57.5% | 0.024 | |
Experiment 2 | 1 | 53.9% | 0.264 |
2 | 56.1% | 0.081 | |
3 | 60.4% | 0.002 | |
4 | 64.6% | <0.001 | |
5 | 55% | 0.137 | |
6 | 58.3% | 0.012 | |
7 | 56.3% | 0.061 | |
8 | 52.1% | 0.561 | |
9 | 63.3% | <0.001 | |
10 | 61.3% | 0.001 | |
Experiment 3 | 1 | 65.4% | <0.001 |
2 | 62.9% | <0.001 | |
3 | 61.3% | 0.001 | |
4 | 61.3% | 0.001 | |
5 | 53.3% | 0.333 | |
6 | 59.2% | 0.005 | |
7 | 62.9% | <0.001 | |
8 | 65% | <0.001 | |
9 | 55.4% | 0.106 | |
10 | 69.6% | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gjinaj, G.; Dadda, M.; Miletto Petrazzini, M.E. Visual Discrimination Task in Guppies Using a Simultaneous Matching-to-Sample Procedure. Animals 2025, 15, 1936. https://doi.org/10.3390/ani15131936
Gjinaj G, Dadda M, Miletto Petrazzini ME. Visual Discrimination Task in Guppies Using a Simultaneous Matching-to-Sample Procedure. Animals. 2025; 15(13):1936. https://doi.org/10.3390/ani15131936
Chicago/Turabian StyleGjinaj, Gabriela, Marco Dadda, and Maria Elena Miletto Petrazzini. 2025. "Visual Discrimination Task in Guppies Using a Simultaneous Matching-to-Sample Procedure" Animals 15, no. 13: 1936. https://doi.org/10.3390/ani15131936
APA StyleGjinaj, G., Dadda, M., & Miletto Petrazzini, M. E. (2025). Visual Discrimination Task in Guppies Using a Simultaneous Matching-to-Sample Procedure. Animals, 15(13), 1936. https://doi.org/10.3390/ani15131936