Advancements in the Research and Application of Whole-Plant Maize Silage for Feeding Purposes
Simple Summary
Abstract
1. Basis of Cultivation of Forage Whole-Plant Maize Silage
1.1. Growing Environment and Variety Selection of Maize Silage
1.2. Planting Technology and Management of Whole-Plant Maize Silage
1.3. Timing and Method of Harvesting Maize Silage
2. Nutritional Value of Whole-Plant Maize Silage and Its Impact on Animal Health
3. Pathological Mechanisms and Fermentation Technology of Whole-Plant Maize Silage for Feeding Purposes
3.1. Fermentation Principles and Microbiological Action of Maize Silage
3.2. Control and Prevention of Pathogens in the Silage Process
3.3. Effect of Fermentation Technology on Maize Silage Quality
4. Strategies and Technological Progress in the Utilization of Whole-Plant Maize Silage for Feeding Purposes
4.1. Application of Maize Silage in Feed Formulation
4.2. Processing and Preservation Techniques for Maize Silage
4.3. Research and Application of Novel Silage Technologies
5. Historical Evolution and Current Analysis of Whole-Plant Maize Silage for Feeding Purposes
5.1. Historical Development of Maize Silage Cultivation and Utilization
5.2. The Role of Maize Silage in the Global Market
5.3. Current Challenges and Opportunities in the Maize Silage Industry
6. Future Prospects and Points of Contention for Forage Whole-Plant Maize Silage
6.1. Sustainable Development Strategies for Maize Silage Cultivation
6.2. Adaptation Studies of Maize Silage in a Changing Climate
6.3. Economic Controversies in the Utilization of Maize Silage
6.4. The Environmental Benefits of Maize Silage Production
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, M.; Kim, J.; Jo, M.-H.; Sung, K.; Han, K.-J. Assessment of planting soil temperature and growing degree day impacts on silage corn (Zea mays L.) biomass. J. Anim. Sci. Technol. 2024, 66, 949. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.; Pham, T.; Thomas, R.; Galagedara, L.; Kavanagh, V.; Zhu, X.; Ali, W.; Cheema, M. Potential role of root membrane phosphatidic acid in superior agronomic performance of silage-corn cultivated in cool climate cropping systems. Physiol. Plant. 2019, 167, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Souza, V.; Pagliarini, M.; Scapim, C.; Rodovalho, M.; Faria, M. Meiotic behavior as a selection tool in silage corn breeding. Genet. Mol. Res. 2010, 9, 2096–2103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, G.; Wu, H.; Meng, Q.; Khan, M.Z.; Zhou, Z. Effect of hybrid type on fermentation and nutritional parameters of whole plant corn silage. Animals 2021, 11, 1587. [Google Scholar] [CrossRef]
- Li, C.; Tong, B.; Jia, M.; Xu, H.; Wang, J.; Sun, Z. Integrated management strategies increased silage maize yield and quality with lower nitrogen losses in cold regions. Front. Plant Sci. 2024, 15, 1434926. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z.; Li, J.; Wang, R. Optimum planting density improves resource use efficiency and yield stability of rainfed maize in semiarid climate. Front. Plant Sci. 2021, 12, 752606. [Google Scholar] [CrossRef]
- Yan, Y.; Duan, F.; Li, X.; Zhao, R.; Hou, P.; Zhao, M.; Li, S.; Wang, Y.; Dai, T.; Zhou, W. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density. Plant Physiol. 2024, 195, 2652–2667. [Google Scholar] [CrossRef]
- Xu, C.; Huang, S.; Tian, B.; Ren, J.; Meng, Q.; Wang, P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front. Plant Sci. 2017, 8, 1234. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, C.; Sun, P.; Jiang, X.; Xu, G.; Yang, J. Optimizing planting density and nitrogen application to enhance profit and nitrogen use of summer maize in Huanghuaihai region of China. Sci. Rep. 2022, 12, 2704. [Google Scholar] [CrossRef]
- Ruiz, A.; Listello, A.; Trifunovic, S.; Archontoulis, S.V. Maize breeding enhances lodging resistance through vertical allocation changes of stem dry matter and nitrogen. Front. Plant Sci. 2025, 16, 1514045. [Google Scholar] [CrossRef]
- Liu, G.; Liu, W.; Yang, Y.; Guo, X.; Zhang, G.; Li, J.; Xie, R.; Ming, B.; Wang, K.; Hou, P.; et al. Marginal superiority of maize: An indicator for density tolerance under high plant density. Sci. Rep. 2020, 10, 15378. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Fan, J.; Zhang, F.; Yan, S.; Zheng, J.; Wu, Y.; Li, J.; Wang, Y.; Sun, X.; Liu, X. Blending urea and slow-release nitrogen fertilizer increases dryland maize yield and nitrogen use efficiency while mitigating ammonia volatilization. Sci. Total Environ. 2021, 790, 148058. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Guo, Y.; Liu, P.; Zhao, B.; Zhang, J. Effects of urea-ammonium nitrate solution on yield, N2O emission, and nitrogen efficiency of summer maize under integration of water and fertilizer. Front. Plant Sci. 2021, 12, 700331. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, H.; Fei, C. Substituting partial chemical nitrogen fertilizers with organic fertilizers maintains grain yield and increases nitrogen use efficiency in maize. Front. Plant Sci. 2024, 15, 1442123. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, X.-Y.; Ren, H.; Zhang, J.-W.; Zhao, B.; Ren, B.-Z.; Liu, P. Deep nitrogen fertilizer placement improves the yield of summer maize (Zea mays L.) by enhancing its photosynthetic performance after silking. BMC Plant Biol. 2025, 25, 172. [Google Scholar] [CrossRef]
- Tang, Y.; Nian, L.; Zhao, X.; Li, J.; Wang, Z.; Dong, L. Bio-Organic Fertilizer Application Enhances Silage Maize Yield by Regulating Soil Physicochemical and Microbial Properties. Microorganisms 2025, 13, 959. [Google Scholar] [CrossRef]
- Diepersloot, E.C.; Heinzen, C., Jr.; Saylor, B.A.; Ferraretto, L.F. Effect of cutting height, microbial inoculation, and storage length on fermentation profile and nutrient composition of whole-plant corn silage. Transl. Anim. Sci. 2022, 6, txac037. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Moulder, B.; Mulrooney, C.; Teller, R.; Schmidt, R. The effect of silage cutting height on the nutritive value of a normal corn silage hybrid compared with brown midrib corn silage fed to lactating cows. J. Dairy Sci. 2008, 91, 1451–1457. [Google Scholar] [CrossRef]
- Lynch, J.; Baah, J.; Beauchemin, K. Conservation, fiber digestibility, and nutritive value of corn harvested at 2 cutting heights and ensiled with fibrolytic enzymes, either alone or with a ferulic acid esterase-producing inoculant. J. Dairy Sci. 2015, 98, 1214–1224. [Google Scholar] [CrossRef]
- Der Bedrosian, M.; Nestor, K., Jr.; Kung, L., Jr. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. J. Dairy Sci. 2012, 95, 5115–5126. [Google Scholar] [CrossRef]
- Ferraretto, L.; Shaver, R.; Luck, B. Silage review: Recent advances and future technologies for whole-plant and fractionated corn silage harvesting. J. Dairy Sci. 2018, 101, 3937–3951. [Google Scholar] [CrossRef] [PubMed]
- Ferraretto, L.; Fonseca, A.; Sniffen, C.; Formigoni, A.; Shaver, R. Effect of corn silage hybrids differing in starch and neutral detergent fiber digestibility on lactation performance and total-tract nutrient digestibility by dairy cows. J. Dairy Sci. 2015, 98, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, F.; Piano, S.; Tabacco, E.; Borreani, G. Effects of conservation period and Lactobacillus hilgardii inoculum on the fermentation profile and aerobic stability of whole corn and sorghum silages. J. Sci. Food Agric. 2019, 99, 2530–2540. [Google Scholar] [CrossRef]
- Drouin, P.; Tremblay, J.; Chaucheyras-Durand, F. Dynamic succession of microbiota during ensiling of whole plant corn following inoculation with Lactobacillus buchneri and Lactobacillus hilgardii alone or in combination. Microorganisms 2019, 7, 595. [Google Scholar] [CrossRef] [PubMed]
- Tabacco, E.; Piano, S.; Revello-Chion, A.; Borreani, G. Effect of Lactobacillus buchneri LN4637 and Lactobacillus buchneri LN40177 on the aerobic stability, fermentation products, and microbial populations of corn silage under farm conditions. J. Dairy Sci. 2011, 94, 5589–5598. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Sun, L.; Xue, Y.; Xiao, Y.; Te, R.; Wu, X.; Na, N.; Wu, N.; Qili, M.; Zhao, Y.; Cai, Y. Community synergy of lactic acid bacteria and cleaner fermentation of oat silage prepared with a multispecies microbial inoculant. Microbiol. Spectr. 2023, 11, e00705–e00723. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, Z.; Du, S.; Sun, L.; Bao, J.; Hao, J.; Ge, G. Lactobacillus plantarum and propionic acid improve the fermentation quality of high-moisture amaranth silage by altering the microbial community composition. Front. Microbiol. 2022, 13, 1066641. [Google Scholar] [CrossRef]
- Hatew, B.; Bannink, A.; Van Laar, H.; De Jonge, L.; Dijkstra, J. Increasing harvest maturity of whole-plant corn silage reduces methane emission of lactating dairy cows. J. Dairy. Sci. 2016, 99, 354–368. [Google Scholar] [CrossRef]
- Guo, L.; Lu, Y.; Li, P.; Chen, L.; Gou, W.; Zhang, C.M. Effects of delayed harvest and additives on fermentation quality and bacterial community of corn stalk silage. Front. Microbiol. 2021, 12, 687481. [Google Scholar] [CrossRef]
- Sutaryono, Y.A.; Putra, R.A.; Mardiansyah, M.; Yuliani, E.; Harjono, H.; Mastur, M.; Sukarne, S.; Enawati, L.S.; Dahlanuddin, D. Mixed Leucaena and molasses can increase the nutritional quality and rumen degradation of corn stover silage. J. Adv. Vet. Anim. Res. 2023, 10, 118. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, N.; Tang, S.; Tan, Z. Optimizing corn silage quality during hot summer conditions of the tropics: Investigating the effect of additives on in-silo fermentation characteristics, nutrient profiles, digestibility and post-ensiling stability. Front. Plant Sci. 2023, 14, 1305999. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, N.; Rinne, M.; Ke, W.; Weinberg, Z.G.; Da, M.; Bai, J.; Zhang, Y.; Li, F.; Guo, X. The bacterial community and metabolome dynamics and their interactions modulate fermentation process of whole crop corn silage prepared with or without inoculants. Microb. Biotechnol. 2021, 14, 561–576. [Google Scholar] [CrossRef]
- Xu, D.; Ding, W.; Ke, W.; Li, F.; Zhang, P.; Guo, X. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front. Microbiol. 2019, 9, 3299. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, H.; Gao, Z.; Xu, J.; Liu, B.; Guo, M.; Yang, X.; Niu, J.; Zhu, X.; Ma, S. Whole-plant corn silage improves rumen fermentation and growth performance of beef cattle by altering rumen microbiota. Appl. Microbiol. Biotechnol. 2022, 106, 4187–4198. [Google Scholar] [CrossRef]
- Guo, W.; Guo, X.; Xu, L.; Shao, L.; Zhu, B.; Liu, H.; Wang, Y.; Gao, K. Effect of whole-plant corn silage treated with lignocellulose-degrading bacteria on growth performance, rumen fermentation, and rumen microflora in sheep. Animal 2022, 16, 100576. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Na, R.; Bai, X.; Ma, Y.; Yang, Y.; Ma, Y.; Wang, X. The effect of replacing whole-plant corn silage with daylily on the growth performance, slaughtering performance, muscle amino acid composition, and blood composition of tan sheep. Animals 2023, 13, 3493. [Google Scholar] [CrossRef]
- Wang, L.; Wang, P.; Yan, Z.; Zhang, P.; Yin, X.; Jia, R.; Li, Y.; Yang, J.; Gun, S.; Yang, Q. Whole-plant silage maize to improve fiber digestive characteristics and intestinal microbiota of Hezuo pigs. Front. Microbiol. 2024, 15, 1360505. [Google Scholar] [CrossRef] [PubMed]
- Ran, T.; Luo, G.; Yue, Y.; Xu, Z.; Shi, Z.; Lei, Z.; Yang, W.; Wu, D. Partially substituting alfalfa hay with hemp forage promotes the health and well-being of goats via altering ruminal and plasma metabolites and metabolic pathways. Anim. Res. One Health 2025, 3, 82–101. [Google Scholar] [CrossRef]
- Yin, X.; Wang, P.; Yan, Z.; Yang, Q.; Huang, X.; Gun, S. Effects of whole-plant corn silage on growth performance, serum biochemical indices, and fecal microorganisms in Hezuo pigs. Animals 2024, 14, 662. [Google Scholar] [CrossRef]
- Mason, F.; Pascotto, E.; Zanfi, C.; Spanghero, M. Effect of dietary inclusion of whole ear corn silage on stomach development and gastric mucosa integrity of heavy pigs at slaughter. Vet. J. 2013, 198, 717–719. [Google Scholar] [CrossRef]
- Karnatam, K.S.; Mythri, B.; Un Nisa, W.; Sharma, H.; Meena, T.K.; Rana, P.; Vikal, Y.; Gowda, M.; Dhillon, B.S.; Sandhu, S. Silage maize as a potent candidate for sustainable animal husbandry development—Perspectives and strategies for genetic enhancement. Front. Genet. 2023, 14, 1150132. [Google Scholar] [CrossRef]
- Eslamizad, M.; Schmicke, M.; Sauerwein, H.; Kuhla, B. Partial replacement of high-fiber forages with corn silage across the lactation cycle: Effects on methane emission, rumen fermentation and efficiency in dairy cows. Animal 2025, 19, 101494. [Google Scholar] [CrossRef]
- Cueva, S.; Stefenoni, H.; Melgar, A.; Räisänen, S.; Lage, C.; Wasson, D.; Fetter, M.; Pelaez, A.; Roth, G.; Hristov, A. Lactational performance, rumen fermentation, and enteric methane emission of dairy cows fed an amylase-enabled corn silage. J. Dairy Sci. 2021, 104, 9827–9841. [Google Scholar] [CrossRef]
- Witzig, M.; Lengowski, M.B.; Zuber, K.H.; Möhring, J.; Rodehutscord, M. Effects of supplementing corn silage with different nitrogen sources on ruminal fermentation and microbial populations in vitro. Anaerobe 2018, 51, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Hassanat, F.; Benchaar, C. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. J. Dairy Sci. 2021, 104, 5375–5390. [Google Scholar] [CrossRef] [PubMed]
- Van Gastelen, S.; Antunes-Fernandes, E.; Hettinga, K.; Klop, G.; Alferink, S.; Hendriks, W.; Dijkstra, J. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage-or corn silage-based diets. J. Dairy Sci. 2015, 98, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.; Xu, S.; Smiley, B.; Yang, H.-E.; McAllister, T.A.; Wang, Y. Effects of inoculation of corn silage with Lactobacillus spp. or Saccharomyces cerevisiae alone or in combination on silage fermentation characteristics, nutrient digestibility, and growth performance of growing beef cattle. J. Anim. Sci. 2019, 97, 4974–4986. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, P.; Li, F.; Yu, M.; Du, J.; Zhao, T.; Yi, Q.; Tang, H.; Yuan, B. The Effects of Lactobacillus plantarum and Lactobacillus buchneri on the Fermentation Quality, In Vitro Digestibility, and Aerobic Stability of Silphium perfoliatum L. Silage. Animals 2024, 14, 2279. [Google Scholar] [CrossRef]
- Sun, L.; Bai, C.; Xu, H.; Na, N.; Jiang, Y.; Yin, G.; Liu, S.; Xue, Y. Succession of bacterial community during the initial aerobic, intense fermentation, and stable phases of whole-plant corn silages treated with lactic acid bacteria suspensions prepared from other silages. Front. Microbiol. 2021, 12, 655095. [Google Scholar] [CrossRef]
- Queiroz, O.; Ogunade, I.; Weinberg, Z.; Adesogan, A. Silage review: Foodborne pathogens in silage and their mitigation by silage additives. J. Dairy Sci. 2018, 101, 4132–4142. [Google Scholar] [CrossRef]
- Amado, I.R.; Fuciños, C.; Fajardo, P.; Pastrana, L. Pediocin SA-1: A selective bacteriocin for controlling Listeria monocytogenes in maize silages. J. Dairy Sci. 2016, 99, 8070–8080. [Google Scholar] [CrossRef]
- Ogunade, I.; Kim, D.; Jiang, Y.; Weinberg, Z.; Jeong, K.; Adesogan, A. Control of Escherichia coli O157:H7 in contaminated alfalfa silage: Effects of silage additives. J. Dairy Sci. 2016, 99, 4427–4436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xu, D.; Usman, S.; Li, Y.; Liang, Y.; Bai, J.; Guo, X. Heterofermentative Lentilactobacillus buchneri and low dry matter reduce high-risk antibiotic resistance genes in corn silage by regulating pathogens and mobile genetic element. J. Hazard. Mater. 2024, 479, 135700. [Google Scholar] [CrossRef] [PubMed]
- Jiao, T.; Lei, Z.; Wu, J.; Li, F.; Casper, D.P.; Wang, J.; Jiao, J. Effect of additives and filling methods on whole plant corn silage quality, fermentation characteristics and in situ digestibility. Anim. Biosci. 2021, 34, 1776. [Google Scholar] [CrossRef] [PubMed]
- Arriola, K.; Kim, S.; Adesogan, A. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. J. Dairy Sci. 2011, 94, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Xie, X.; Zhao, G.; He, J.; Zhang, Y. The effects of applying cellulase and laccase on fermentation quality and microbial community in mixed silage containing corn stover and wet brewer’s grains. Front. Plant Sci. 2024, 15, 1441873. [Google Scholar] [CrossRef]
- Burken, D.; Nuttelman, B.; Gramkow, J.; McGee, A.; Sudbeck, K.; Gardine, S.; Hoegemeyer, T.; Klopfenstein, T.; Erickson, G. Effects of agronomic factors on yield and quality of whole corn plants and the impact of feeding high concentrations of corn silage in diets containing distillers grains to finishing cattle. Transl. Anim. Sci. 2017, 1, 367–381. [Google Scholar] [CrossRef]
- Aleixo, J.A.; Daza, J.; Keim, J.P.; Castillo, I.; Pulido, R.G. Effects of sugar beet silage, high-moisture corn, and corn silage feed supplementation on the performance of dairy cows with restricted daily access to pasture. Animals 2022, 12, 2672. [Google Scholar] [CrossRef]
- Toledo, A.F.; Dondé, S.C.; Silva, A.P.; Cezar, A.M.; Coelho, M.G.; Tomaluski, C.R.; Virgínio, G., Jr.; Costa, J.; Bittar, C.M.M. Whole-plant flint corn silage inclusion in total mixed rations for pre-and postweaning dairy calves. J. Dairy Sci. 2023, 106, 6185–6197. [Google Scholar] [CrossRef]
- Hara, S.; Tanigawa, T. Effects of length of cut and mechanical processing on utilization of corn silage harvested at the black line stage of maturity by lactating dairy cows. Anim. Sci. J. 2010, 81, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Wendt, L.M.; Murphy, J.A.; Smith, W.A.; Robb, T.; Reed, D.W.; Ray, A.E.; Liang, L.; He, Q.; Sun, N.; Hoover, A.N.; et al. Compatibility of high-moisture storage for biochemical conversion of corn stover: Storage performance at laboratory and field scales. Front. Bioeng. Biotechnol. 2018, 6, 30. [Google Scholar] [CrossRef]
- Sun, Y.; Gong, X.; Wang, Z.; Huang, C.; Ma, X.; Wang, M. Two-step pretreatment of corn stover silage using non-ionic surfactant and ferric nitrate for enhancing sugar recovery and enzymatic digestibility of cellulose. Appl. Biochem. Biotechnol. 2019, 189, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Paradhipta, D.H.V.; Lee, S.S.; Kang, B.; Joo, Y.H.; Lee, H.J.; Lee, Y.; Kim, J.; Kim, S.C. Dual-purpose inoculants and their effects on corn silage. Microorganisms 2020, 8, 765. [Google Scholar] [CrossRef]
- Tišma, M.; Planinić, M.; Bucić-Kojić, A.; Panjičko, M.; Zupančič, G.D.; Zelić, B. Corn silage fungal-based solid-state pretreatment for enhanced biogas production in anaerobic co-digestion with cow manure. Bioresour. Technol. 2018, 253, 220–226. [Google Scholar] [CrossRef]
- Gruber, L.; Terler, G.; Knaus, W. Nutrient composition, ruminal degradability and whole tract digestibility of whole crop maize silage from nine current varieties. Arch. Anim. Nutr. 2018, 72, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, N.; Jiang, C.; Wang, Y. Effects of irrigation type and fertilizer application rate on growth, yield, and water and fertilizer use efficiency of silage corn in the North China Plain. PeerJ 2024, 12, e18315. [Google Scholar] [CrossRef]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendriks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Srour, A.Y.; Ammar, H.A.; Subedi, A.; Pimentel, M.; Cook, R.L.; Bond, J.; Fakhoury, A.M. Microbial communities associated with long-term tillage and fertility treatments in a corn-soybean cropping system. Front. Microbiol. 2020, 11, 1363. [Google Scholar] [CrossRef]
- Guan, H.; Shuai, Y.; Yan, Y.; Ran, Q.; Wang, X.; Li, D.; Cai, Y.; Zhang, X. Microbial community and fermentation dynamics of corn silage prepared with heat-resistant lactic acid bacteria in a hot environment. Microorganisms 2020, 8, 719. [Google Scholar] [CrossRef]
- Queiroz, O.; Adesogan, A.; Arriola, K.; Queiroz, M. Effect of a dual-purpose inoculant on the quality and nutrient losses from corn silage produced in farm-scale silos. J. Dairy Sci. 2012, 95, 3354–3362. [Google Scholar] [CrossRef] [PubMed]
- Ashiq, W.; Nadeem, M.; Ali, W.; Zaeem, M.; Wu, J.; Galagedara, L.; Thomas, R.; Kavanagh, V.; Cheema, M. Biochar amendment mitigates greenhouse gases emission and global warming potential in dairy manure based silage corn in boreal climate. Environ. Pollut. 2020, 265, 114869. [Google Scholar] [CrossRef] [PubMed]
- Aguirre, J.L.; Martín, M.T.; González, S.; Peinado, M. Effects and Economic Sustainability of Biochar Application on Corn Production in a Mediterranean Climate. Molecules 2021, 31, 3313. [Google Scholar] [CrossRef]
- Nartey, O.D.; Liu, D.; Uwamungu, J.Y.; Luo, J.; Lindsey, S.; Di, H.J.; Chen, Z.; Yuan, J.; Ding, W. Corn cobs efficiently reduced ammonia volatilization and improved nutrient value of stored dairy effluents. Sci. Total Env. 2021, 15, 144712. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Dong, T.; Bao, Y.; Xu, B.; Shen, Y.; Yuan, X. Sustainable use of agricultural residues to improve corn silage quality: Co-ensiling with oregano oil residues. J. Env. Manag. 2024, 371, 123172. [Google Scholar] [CrossRef]
- Ali, W.; Nadeem, M.; Ashiq, W.; Zaeem, M.; Gilani, S.S.M.; Rajabi-Khamseh, S.; Pham, T.H.; Kavanagh, V.; Thomas, R.; Cheema, M. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Sci. Rep. 2019, 21, 17297. [Google Scholar] [CrossRef]
- Mirzaei, M.; Gorji Anari, M.; Saronjic, N.; Sarkar, S.; Kral, I.; Gronauer, A.; Mohammed, S.; Caballero-Calvo, A. Environmental impacts of corn silage production: Influence of wheat residues under contrasting tillage management types. Env. Monit. Assess. 2022, 2, 171. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Liang, X.; Zhang, Y. Advancements in the Research and Application of Whole-Plant Maize Silage for Feeding Purposes. Animals 2025, 15, 1922. https://doi.org/10.3390/ani15131922
Zhang X, Liang X, Zhang Y. Advancements in the Research and Application of Whole-Plant Maize Silage for Feeding Purposes. Animals. 2025; 15(13):1922. https://doi.org/10.3390/ani15131922
Chicago/Turabian StyleZhang, Xuelei, Xiaoxiao Liang, and Yong Zhang. 2025. "Advancements in the Research and Application of Whole-Plant Maize Silage for Feeding Purposes" Animals 15, no. 13: 1922. https://doi.org/10.3390/ani15131922
APA StyleZhang, X., Liang, X., & Zhang, Y. (2025). Advancements in the Research and Application of Whole-Plant Maize Silage for Feeding Purposes. Animals, 15(13), 1922. https://doi.org/10.3390/ani15131922