Dietary Addition of Tributyrin Improved the Production Performance, Antioxidant Ability and Intestinal Health in Weaned Rabbits
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol and Sample Collection
2.2. Methods
2.2.1. Growth Performance
2.2.2. Analysis of Slaughter Performance
2.2.3. Analysis of Meat Quality
2.2.4. Histological Examination
2.2.5. Antioxidant Parameters, Diamine Oxidase (DAO) and D-Lactic Acid Levels
2.2.6. Analysis of Serum Indexes
2.2.7. Statistical Analysis
3. Results
3.1. Effects of Dietary Tributyrin Addition on the Production Performance and Slaughter Performance of Rabbits
3.2. Effects of Dietary Tributyrin Addition on Meat Quality and Serum Indexes of Rabbits
3.3. Effects of Dietary Tributyrin Addition on Antioxidant Capacity of Rabbits
3.4. Effects of Dietary Tributyrin Addition on the Intestinal Morphology and Intestinal Permeability of Rabbits
4. Discussion
4.1. Dietary Tributyrin Addition Improved Production Performance of Rabbits
4.2. Dietary Tributyrin Addition Improved Meat Quality of Rabbits
4.3. Dietary Tributyrin Addition Improved the Antioxidant Ability of Rabbits
4.4. Dietary Tributyrin Addition Improved Intestinal Health of Rabbits
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Ni, X.; Wen, B.; Duan, L.; Sun, H.; Yang, M.; Zou, F.; Lin, Y.; Liu, Q.; Zeng, Y.; et al. Appropriate dose of Lactobacillus buchneri supplement improves intestinal microbiota and prevents diarrhoea in weaning Rex rabbits. Benef. Microbes 2018, 9, 401–416. [Google Scholar] [CrossRef]
- El-Sabrout, K.; Sherasiya, A.; Ahmad, S.; Aggag, S.; Nannoni, E.; Cavallini, D.; Buonaiuto, G. Environmental Enrichment in Rabbit Husbandry: Comparative Impacts on Performance and Welfare. Animals 2024, 16, 2367. [Google Scholar] [CrossRef]
- Abd El-Aziz, A.; Elfadadny, A.; Abo Ghanima, M.; Cavallini, D.; Fusaro, I.; Giammarco, M.; Buonaiuto, G.; El-Sabrout, K. Nutritional Value of Oregano-Based Products and Its Effect on Rabbit Performance and Health. Animals 2024, 20, 3021. [Google Scholar] [CrossRef] [PubMed]
- Alpino, G.C.A.; Pereira-Sol, G.A.; Dias, M.M.E.; Aguiar, A.S.; Peluzio, M.D. Beneficial effects of butyrate on brain functions: A view of epigenetic. Crit. Rev. Food Sci. Nutr. 2024, 64, 3961–3970. [Google Scholar] [CrossRef]
- Mathew, O.P.; Ranganna, K.; Milton, S.G. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation. Pharmaceuticals 2014, 7, 1008–1027. [Google Scholar] [CrossRef] [PubMed]
- Connolly, K.R.; Sweeney, T.; O’Doherty, J.V. Sustainable Nutritional Strategies for Gut Health in Weaned Pigs: The Role of Reduced Dietary Crude Protein, Organic Acids and Butyrate Production. Animals 2024, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Wachtershäuser, A.; Stein, J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur. J. Nutr. 2000, 39, 164–171. [Google Scholar] [CrossRef]
- Conley, B.A.; Egorin, M.J.; Tait, N.; Rosen, D.M.; Sausville, E.A.; Dover, G.; Fram, R.J.; Van Echo, D.A. Phase I study of the orally administered butyrate prodrug, tributyrin, in patients with solid tumors. Clin. Cancer Res. 1998, 4, 629–634. [Google Scholar]
- Heidor, R.; Ortega, J.F.; de Conti, A.; Ong, T.P.; Moreno, F.S. Anticarcinogenic actions of tributyrin, a butyric acid prodrug. Curr. Drug Targets 2012, 13, 1720–1729. [Google Scholar] [CrossRef]
- Guo, W.; Liu, J.; Yang, Y.; Ma, H.; Gong, Q.; Kan, X.; Ran, X.; Cao, Y.; Wang, J.; Fu, S.; et al. Rumen-bypassed tributyrin alleviates heat stress by reducing the inflammatory responses of immune cells. Poult. Sci. 2021, 100, 348–356. [Google Scholar] [CrossRef]
- Wang, C.; Cao, S.; Zhang, Q.; Shen, Z.; Feng, J.; Hong, Q.; Lu, J.; Xie, F.; Peng, Y.; Hu, C. Dietary tributyrin attenuates intestinal inflammation, enhances mitochondrial function, and induces mitophagy in piglets challenged with diquat. J. Agric. Food Chem. 2019, 67, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Miragoli, F.; Patrone, V.; Prandini, A.; Sigolo, S.; Dell’Anno, M.; Rossi, L.; Senizza, A.; Morelli, L.; Callegari, M.L. Implications of tributyrin on gut microbiota shifts related to performances of weaning piglets. Microorganisms 2021, 9, 584. [Google Scholar] [CrossRef]
- Hu, Q.; Yin, F.; Yang, L.; Li, B.; Lei, G.; Wang, C.; Yin, Y.; Liu, D. Dietary tributyrin intervention improves the carcass traits, organ indices, and blood biomarker profiles in broilers under the isocaloric diets administration. Poult. Sci. 2022, 101, 102061. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Chen, B.; Zhou, W.; Zhang, N.; Tu, Y.; Diao, Q.; Ma, T.; Chen, H.; Chen, K.; et al. Effects of protein grass hay as alternative feed resource on lamb’s fattening performance and meat quality. Meat Sci. 2024, 218, 109644. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, W.; Li, F. Dietary addition of Artemisia argyi reduces diarrhea and modulates the gut immune function without affecting growth performances of rabbits after weaning1. J. Anim. Sci. 2019, 97, 1693–1700. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhao, X.; Liu, Y.; Zhao, H.; Li, F. Dietary addition of garlic straw improved the intestinal barrier in rabbits1. J. Anim. Sci. 2019, 97, 4248–4255. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, W.; An, R.; Wang, Y.; Ren, Q.; Xuan, J. Benefits of tributyrin on growth performance, gastrointestinal tract development, ruminal bacteria and volatile fatty acid formation of weaned Small-Tailed Han lambs. Anim. Nutr. 2023, 15, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Janda-Ulfig, K.; Ulfig, K.; Cano, J.; Guarro, J. A study of the growth of Pseudallescheria boydii isolates from sewage sludge and clinical sources on tributyrin, rapeseed oil, biodiesel oil and diesel oil. Ann. Agric. Environ. Med. 2008, 15, 45–49. [Google Scholar]
- Murayama, K.; Fukui, T.; Kushibiki, S.; Sakamoto, K.; Inouchi, K.; Sugino, T. Effects of medium-chain fatty acids and tributyrin supplementation in milk replacers on growth performance, blood metabolites, and hormone concentrations in Holstein dairy calves. J. Dairy. Sci. 2023, 106, 4599–4607. [Google Scholar] [CrossRef]
- Chen, G.; Zhuo, R.; Ding, H.; Yang, K.; Xue, J.; Zhang, S.; Chen, L.; Yin, Y.; Fang, R. Effects of dietary tributyrin and physterol ester supplementation on growth performance, intestinal morphology, microbiota and metabolites in weaned piglets. J. Appl. Microbiol. 2022, 132, 2293–2305. [Google Scholar] [CrossRef]
- Chen, C.; Qu, M.; Li, G.; Wan, G.; Liu, P.; Omar, S.M.; Mei, W.; Hu, Z.; Zhou, Q.; Xu, L. Dietary tributyrin improves growth performance, meat quality, muscle oxidative status, and gut microbiota in taihe silky fowls under cyclic heat stress. Animals 2024, 14, 3041. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.E.; Li, Z.W.; Liu, L.L.; Ren, Q.C. Effects of supplementing tributyrin on meat quality characteristics of foreshank muscle of weaned small-tailed han. Animals 2024, 23, 1235. [Google Scholar] [CrossRef] [PubMed]
- Metwally, D.M.; Alajmi, R.A.; El-Khadragy, M.F.; Al-Quraishy, S. Silver nanoparticles biosynthesized with salvia officinalis leaf exert protective effect on hepatic tissue injury induced by Plasmodium chabaudi. Front. Vet. Sci. 2021, 7, 620–665. [Google Scholar] [CrossRef]
- Zhu, L.H.; Zhao, K.L.; Chen, X.L.; Xu, J.X. Impact of weaning and an antioxidant blend on intestinal barrier function and antioxidant status in pigs. J. Anim. Sci. 2012, 90, 2581–2589. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Shi, B.; Sun, D.; Chen, H.; Tong, M.; Zhang, P.; Guo, X.; Yan, S. Effects of dietary supplementation of Artemisia argyi aqueous extract on antioxidant indexes of small intestine in broilers. Anim. Nutr. 2016, 2, 198–203. [Google Scholar] [CrossRef]
- Peng, H.; Jin, M.; Zhu, T.; Xie, S.; Zhan, W.; Deng, Y.; Yang, Y.; Cui, Y.; Li, X.; Zhou, Q. Dietary tributyrin supplementation promotes the growth by improving intestinal digestive and antioxidant capacity and the abundance of intestinal beneficial bacteria for swimming crab (Portunus trituberculatus). Aquaculture 2024, 583, 7406–7407. [Google Scholar] [CrossRef]
- Hou, J.; Lian, L.; Lu, L.; Gu, T.; Zeng, T.; Chen, L.; Xu, W.; Li, G.; Wu, H.; Tian, Y. Effects of dietary bacillus coagulans and tributyrin on growth performance, serum antioxidants, intestinal morphology, and cecal microbiota of growing yellow-feathered broilers. Animals 2023, 13, 3534. [Google Scholar] [CrossRef]
- Koh, A.; Vadder, F.D.; Kovatcheva-Datchary, P.; Bäckhed, F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell 2016, 165, 1332–1345. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef]
- Wang, C.; Cao, S.; Shen, Z.; Hong, Q.; Feng, J.; Peng, Y.; Hu, C. Effects of dietary tributyrin on intestinal mucosa development, mitochondrial function and AMPK-mTOR pathway in weaned pigs. J. Anim. Sci. Biotechnol. 2019, 10, 93. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, X.; Azad, M.A.K.; Ma, C.; Gao, Q.; He, J.; Kong, X. Dietary supplementation with Bacillus subtilis and xylo-oligosaccharides improves growth performance and intestinal morphology and alters intestinal microbiota and metabolites in weaned piglets. Food Funct. 2021, 12, 5837–5849. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Yin, F.; Li, B.; Guo, Y.; Yin, Y. Dietary tributyrin administration improves intestinal morphology and selected bacterial and short-chain fatty acid profiles in broilers under an isocaloric feeding regime. Front. Microbiol. 2021, 12, 715712. [Google Scholar] [CrossRef]
- Zhang, W.-X.; Zhang, Y.; Zhang, X.-W.; Deng, Z.-X.; Liu, J.-X.; He, M.-L.; Wang, H.-F. Effects of Dietary Supplementation with Combination of Tributyrin and Essential Oil on Gut Health and Microbiota of Weaned Piglets. Animals 2020, 10, 180. [Google Scholar] [CrossRef]
- Wang, J.; Fu, S.; Zou, X.; Luo, C.; Shu, D.; Qu, H. The Impact of Tributyrin on Performance and Intestinal Health of Broiler Chickens Post Coccidiosis Vaccination. Avian Dis. 2021, 3, 493–499. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, L.; Jia, W.; Xiao, J.; Huang, G.; Tian, G.; Li, J.; Xiao, Y. Serum diamine oxidase as a hemorrhagic shock biomarker in a rabbit model. PLoS ONE 2014, 8, e102285. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ren, Y.; Gao, C.; Zhang, K.; Zheng, F.; Kang, J. Evaluation of fecal calprotectin, d-lactic acid and bedside gastrointestinal ultrasound image data for the prediction of acute gastrointestinal injury in sepsis patients. Front. Med. Technol. 2021, 3, 7339–73340. [Google Scholar] [CrossRef]
- Cakmaz, R.; Büyükaşık, O.; Kahramansoy, N.; Erkol, H.; Cöl, C.; Boran, C.; Buğdaycı, G. A combination of plasma DAO and citrulline levels as a potential marker for acute mesenteric ischemia. Libyan J. Med. 2013, 8, 20596. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.J.; Gonze, M.D.; Nowak, L.R.; Cobb, C.F. Serum D(-)-lactate levels as an aid to diagnosing acute intestinal ischemia. Am. J. Surg. 1994, 167, 575–578. [Google Scholar] [CrossRef]
- Chen, J.; Song, Z.; Ji, R.; Liu, Y.; Zhao, H.; Liu, L.; Li, F. Chlorogenic acid improves growth performance of weaned rabbits via modulating the intestinal epithelium functions and intestinal microbiota. Front. Microbiol. 2022, 13, 1027101. [Google Scholar] [CrossRef]
Items | Content |
---|---|
Ingredients | |
Corn | 10.00 |
Soybean meal | 7.00 |
Corn germ meal | 8.00 |
Wheat bran | 29.00 |
Husk powder | 10.00 |
Sunflower meal | 7.00 |
Alfalfa | 8.20 |
Peanut shell | 10.00 |
Middling | 5.00 |
Soybean oil | 0.80 |
Premix (1) | 5.00 |
Total | 100.00 |
Measured chemical composition | |
Digestive energy (MJ/kg) | 10.21 |
Dry matter (%) | 88.31 |
Crude protein (%) | 15.97 |
Ash (%) | 5.73 |
Ether extract (%) | 3.43 |
Crude fiber (%) | 16.49 |
Calcium (%) | 0.31 |
Phosphorus (%) | 0.53 |
Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
Full-bore weight, kg | 1.19 b | 1.31 a | 1.32 a | 1.22 b | 0.10 | 0.0280 |
Half-bore weight, kg | 1.28 c | 1.39 a,b | 1.41 a | 1.30 b,c | 0.11 | 0.0272 |
Full-bore rate, % | 55.37 | 56.85 | 56.26 | 56.32 | 2.75 | 0.7030 |
Half-bore rate, % | 59.56 | 60.74 | 60.32 | 60.20 | 2.80 | 0.8317 |
Spleen weight, g | 2.00 | 1.93 | 2.36 | 1.93 | 0.70 | 0.4638 |
Spleen index, g/kg | 0.94 | 0.84 | 1.00 | 0.90 | 0.28 | 0.6570 |
Liver weight, g | 67.88 | 72.88 | 65.76 | 65.19 | 12.14 | 0.4900 |
Liver index, g/kg | 31.85 | 31.78 | 28.37 | 30.09 | 5.39 | 0.4251 |
Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
L*45 min | 32.09 | 32.91 | 32.65 | 31.14 | 2.05 | 0.2365 |
a*45 min | 33.34 | 32.07 | 32.43 | 32.58 | 1.79 | 0.4789 |
b*45 min | −3.07 | −2.94 | −3.06 | −3.06 | 0.44 | 0.9071 |
pH 45 min | 6.76 a | 6.65 b | 6.72 a | 6.69 a,b | 0.07 | 0.0175 |
L*24 h | 42.77 | 42.78 | 41.74 | 43.57 | 3.12 | 0.6377 |
a*24 h | 40.52 | 40.77 | 39.22 | 41.07 | 2.83 | 0.4834 |
b*24 h | 1.13 | 1.72 | 1.370 | 1.72 | 2.10 | 0.9100 |
pH 24 h | 5.80 | 5.77 | 5.79 | 5.77 | 0.06 | 0.6677 |
Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
TP (g/L) | 62.18 | 69.11 | 68.78 | 62.83 | 1.03 | 0.5441 |
ALB (g/dL) | 35.12 | 40.20 | 38.42 | 36.25 | 4.40 | 0.1400 |
Glucose (mmol/L) | 7.40 b | 7.79 a,b | 8.187 a | 7.70 a,b | 0.58 | 0.0206 |
UREA (mmo/L) | 7.76 | 7.96 | 8.64 | 7.91 | 0.94 | 0.4219 |
TCHO (g/L) | 1.63 | 1.40 | 1.77 | 1.59 | 0.46 | 0.3930 |
TG (mmol/L) | 0.964 a,b | 1.259 a | 0.884 b | 0.788 b | 0.32 | 0.0094 |
HDL (mmol/L) | 0.63 | 0.65 | 0.67 | 0.58 | 0.15 | 0.6396 |
LDL (mmol/L) | 0.43 | 0.46 | 0.53 | 0.45 | 0.17 | 0.6420 |
Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
MDA (nM/mL) | 2.74 | 0.88 | 2.47 | 2.14 | 1.50 | 0.2690 |
CAT (U/mL) | 2.06 | 2.91 | 2.70 | 2.43 | 0.93 | 0.8455 |
T-AOC (mM/mL) | 0.99 | 0.79 | 0.88 | 0.87 | 1.37 | 0.2577 |
GSH-PX (U/mL) | 126.78 b | 151.06 a | 155.03 a | 131.65 a,b | 20.03 | 0.0043 |
T-SOD (U/mL) | 31.00 c | 35.88 b | 40.02 a | 34.10 b | 1.90 | 0.0021 |
Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
MDA (nmol/mgprot) | 1.00 | 1.54 | 2.26 | 1.81 | 1.46 | 0.5294 |
CAT (U/mgprot) | 52.70 | 50.19 | 50.96 | 53.72 | 7.09 | 0.8364 |
T-AOC (U/mgprot) | 0.47 | 0.71 | 0.74 | 0.51 | 0.312 | 0.4488 |
GSH-PX (U/mgprot) | 40.36 b | 53.21 a | 59.90 a | 40.72 b | 10.35 | 0.0027 |
T-SOD (U/mgprot) | 0.09 b | 0.10 a,b | 0.11 a | 0.09 b | 0.01 | 0.0346 |
Seat | Item | Tributyrin Level (%) | SEM | p Value | |||
---|---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | ||||
Duodenum | Villus height (μm) | 739.50 b | 818.00 a,b | 873.33 a | 787.60 b | 61.81 | 0.0012 |
Crypt depth (μm) | 457.25 a | 321.75 b | 222.50 c | 399.00 a,b | 92.22 | 0.0011 | |
V/C | 1.95 b | 2.60 b | 3.44 a | 2.22 b | 0.73 | 0.0051 | |
Jejunum | Villus height (μm) | 634.00 | 680.40 | 791.25 | 702.33 | 121.90 | 0.3657 |
Crypt depth (μm) | 485.33 a | 264.4 b | 182.25 b | 268.33 b | 107.25 | 0.0007 | |
V/C | 1.33 c | 2.69 b | 4.57 a | 2.63 b | 1.26 | 0.0081 | |
Ileum | Villus height (μm) | 599.25 | 684.75 | 728.25 | 617.50 | 91.78 | 0.2055 |
Crypt depth (μm) | 303.00 a | 220.50 b | 197.50 b | 233.50 b | 45.74 | 0.0201 | |
V/C | 2.06 c | 3.13 a,b | 3.81 a | 2.60 b,c | 0.62 | 0.0017 |
Item | Tributyrin Level (%) | MSE | p Value | |||
---|---|---|---|---|---|---|
0 | 0.1 | 0.2 | 0.4 | |||
DAO (μg/mL) | 220.55 a | 175.42 b | 159.10 b | 187.39 a,b | 33.46 | 0.0228 |
D-lactic acid (μg/mL) | 959.90 a | 768.24 b | 709.41 b | 721.66 b | 137.08 | 0.0046 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Li, X.; Xu, H.; Li, F.; Liu, L. Dietary Addition of Tributyrin Improved the Production Performance, Antioxidant Ability and Intestinal Health in Weaned Rabbits. Animals 2025, 15, 1923. https://doi.org/10.3390/ani15131923
Zhang N, Li X, Xu H, Li F, Liu L. Dietary Addition of Tributyrin Improved the Production Performance, Antioxidant Ability and Intestinal Health in Weaned Rabbits. Animals. 2025; 15(13):1923. https://doi.org/10.3390/ani15131923
Chicago/Turabian StyleZhang, Nanbin, Xianghui Li, Huijie Xu, Fuchang Li, and Lei Liu. 2025. "Dietary Addition of Tributyrin Improved the Production Performance, Antioxidant Ability and Intestinal Health in Weaned Rabbits" Animals 15, no. 13: 1923. https://doi.org/10.3390/ani15131923
APA StyleZhang, N., Li, X., Xu, H., Li, F., & Liu, L. (2025). Dietary Addition of Tributyrin Improved the Production Performance, Antioxidant Ability and Intestinal Health in Weaned Rabbits. Animals, 15(13), 1923. https://doi.org/10.3390/ani15131923