LncRNA RWDD3 Facilitates Leydig Cell Steroidogenesis by Regulating the miR-1388-5p/NPY1R/cAMP Pathway in Yanshan Cashmere Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experiments
2.2. RNA Sequencing (RNA-Seq) and Bioinformatics Analyses
2.3. Construction of the lncRNA–miRNA–mRNA Interaction Network
2.4. Isolation and Culture of Leydig Cells
2.5. Leydig Cells Cultured with Different Prolactin Concentrations
2.6. Plasmid Construction and Cell Transfection
2.7. Dual-Luciferase Reporter Assay
2.8. Fluorescence In Situ Hybridization Assay and Immunofluorescence
2.9. Cell Counting Kit-8 (CCK-8) Assay
2.10. 5-Ethynyl-2′-Deoxyuridine (EdU) Assay
2.11. Hormone Analysis of Testosterone and cAMP
2.12. qRT-PCR
2.13. Western Blotting
2.14. Statistical Analysis
3. Results
3.1. Effects of Prolactin on lncRNA Expression Profiles and Functional Enrichment Analysis of lncRNA-Target Genes
3.2. LncRNA–miRNA–mRNA Interaction Network
3.3. Identification of the Testicular Leydig Cells and Fluorescence In Situ Hybridization (FISH) of lncRWDD3 and NPY1R
3.4. The Testosterone Secretion Levels of Leydig Cells at Different Prolactin Concentrations
3.5. LncRWDD3 Promotes Testosterone Synthesis by Leydig Cells
3.6. LncRWDD3 Acts as a Molecular Sponge by Binding to miR-1388-5p
3.7. MiR-1388-5p Suppresses the Steroidogenesis of Leydig Cells
3.8. NPY1R Is Related to Testosterone Synthesis and Gene Expression
3.9. LncRWDD3 Overexpression Rescues the Inhibitory Effects of miR-1388-5p on Testosterone Synthesis and NPY1R Expression in Leydig Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernard, V.; Young, J.; Binart, N. Prolactin–A pleiotropic factor in health and disease. Nat. Rev. Endocrinol. 2019, 15, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Grattan, D.R. 60 years of neuroendocrinology: The hypothalamo-prolactin axis. J. Endocrinol. 2015, 226, T101–T122. [Google Scholar] [CrossRef]
- Gill-Sharma, M.K.; Aleem, M.; Sethi, G.; Choudhary, J.; Padwal, V.; D’Souza, S.; Balasinor, N.; Parte, P.; Juneja, H.S. Antifertility effects of fluphenazine in adult male rats. J. Endocrinol. Investig. 2003, 26, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Mannucci, E.; Fisher, A.D.; Lotti, F.; Ricca, V.; Balercia, G.; Petrone, L.; Forti, G.; Maggi, M. Effect of hyperprolactinemia in male patients consulting for sexual dysfunction. J. Sex. Med. 2007, 4, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Duan, C.; Yin, X.; Li, X.; Liu, X.; Zhang, L.; Yue, S.; Zhang, Y.; Liu, Y. Prolactin inhibitor changes testosterone production, testicular morphology, and related genes expression in cashmere goats. Front. Vet. Sci. 2023, 10, 1249189. [Google Scholar] [CrossRef]
- Guttman, M.; Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature 2012, 482, 339–346. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- Bo, D.; Jiang, X.; Liu, G.; Hu, R.; Chong, Y. RNA-Seq Implies Divergent Regulation Patterns of LincRNA on Spermatogenesis and Testis Growth in Goats. Animals 2021, 11, 625. [Google Scholar] [CrossRef]
- Sahlu, B.W.; Zhao, S.; Wang, X.; Umer, S.; Zou, H.; Huang, J.; Zhu, H. Long noncoding RNAs: New insights in modulating mammalian spermatogenesis. J. Anim. Sci. Biotechnol. 2020, 11, 16. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Liu, Y.L.; Huang, F.J.; Du, P.J.; Wang, J.; Guo, F.; Shao, M.W.; Song, Y.; Liu, Y.X.; Qin, G.J. Long noncoding RNA MIR22HG promotes Leydig cell apoptosis by acting as a competing endogenous RNA for microRNA-125a-5p that targets N-Myc downstream-regulated gene 2 in late-onset hypogonadism. Lab. Investig. 2021, 101, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Zhu, M.; An, S.; Liang, Y.; Yang, H.; Pang, J.; Liu, Z.; Zhang, G.; Wang, F. Long non-coding RNA LOC105611671 modulates fibroblast growth factor 9 (FGF9) expression by targeting oar-miR-26a to promote testosterone biosynthesis in Hu sheep. Reprod. Fertil. Dev. 2020, 32, 373–382. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Zhang, Y.; Ye, Z.Q.; Liu, X.Q.; Zhao, S.Q.; Wei, L.; Gao, G. CPC: Assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res. 2007, 35, W345–W349. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Luo, H.; Bu, D.; Zhao, G.; Yu, K.; Zhang, C.; Liu, Y.; Chen, R.; Zhao, Y. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013, 41, e166. [Google Scholar] [CrossRef]
- Madeira, F.; Park, Y.M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A.R.N.; Potter, S.C.; Finn, R.D.; et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Kruger, J.; Rehmsmeier, M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006, 34, W451–W454. [Google Scholar] [CrossRef]
- John, B.; Enright, A.J.; Aravin, A.; Tuschl, T.; Sander, C.; Marks, D.S. Human MicroRNA targets. PLoS Biol. 2004, 2, e363. [Google Scholar] [CrossRef]
- Hofer, D.; Munzker, J.; Schwetz, V.; Ulbing, M.; Hutz, K.; Stiegler, P.; Zigeuner, R.; Pieber, T.R.; Muller, H.; Obermayer-Pietsch, B. Testicular synthesis and vitamin D action. J. Clin. Endocrinol. Metab. 2014, 99, 3766–3773. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Xue, K.; Gu, G.; Fan, W.; Xu, Y.; Ding, Z. Diet-induced obesity in male C57BL/6 mice decreases fertility as a consequence of disrupted blood-testis barrier. PLoS ONE 2015, 10, e0120775. [Google Scholar] [CrossRef] [PubMed]
- Sofikitis, N.; Giotitsas, N.; Tsounapi, P.; Baltogiannis, D.; Giannakis, D.; Pardalidis, N. Hormonal regulation of spermatogenesis and spermiogenesis. J. Steroid Biochem. Mol. Biol. 2008, 109, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.H.; Cooke, P.S. Functions of Steroid Hormones in the Male Reproductive Tract as Revealed by Mouse Models. Int. J. Mol. Sci. 2023, 24, 2748. [Google Scholar] [CrossRef]
- Makela, J.A.; Koskenniemi, J.J.; Virtanen, H.E.; Toppari, J. Testis Development. Endocr. Rev. 2019, 40, 857–905. [Google Scholar] [CrossRef] [PubMed]
- Flynn, R.A.; Chang, H.Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 2014, 14, 752–761. [Google Scholar] [CrossRef]
- Washietl, S.; Kellis, M.; Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res. 2014, 24, 616–628. [Google Scholar] [CrossRef]
- Hosono, Y.; Niknafs, Y.S.; Prensner, J.R.; Iyer, M.K.; Dhanasekaran, S.M.; Mehra, R.; Pitchiaya, S.; Tien, J.; Escara-Wilke, J.; Poliakov, A.; et al. Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA. Cell 2023, 186, 4254–4255. [Google Scholar] [CrossRef]
- Yang, H.; Wang, F.; Li, F.; Ren, C.; Pang, J.; Wan, Y.; Wang, Z.; Feng, X.; Zhang, Y. Comprehensive analysis of long noncoding RNA and mRNA expression patterns in sheep testicular maturation. Biol. Reprod. 2018, 99, 650–661. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. J. Integr. Bioinform. 2019, 16, 20190027. [Google Scholar] [CrossRef]
- Zhu, H.X.; Liu, X.Q.; Cai, L.P.; Lei, M.M.; Chen, R.; Yan, J.S.; Yu, J.N.; Shi, Z.D. Cellular and molecular mechanisms of low dose prolactin potentiation of testicular development in cockerels. Domest. Anim. Endocrinol. 2019, 69, 51–61. [Google Scholar] [CrossRef]
- Manna, P.R.; El-Hefnawy, T.; Kero, J.; Huhtaniemi, I.T. Biphasic action of prolactin in the regulation of murine Leydig tumor cell functions. Endocrinology 2001, 142, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Korner, M.; Waser, B.; Thalmann, G.N.; Reubii, J.C. High expression of NPY receptors in the human testis. Mol. Cell Endocrinol. 2011, 337, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Kempna, P.; Korner, M.; Waser, B.; Hofer, G.; Nuoffer, J.M.; Reubi, J.C.; Fluck, C.E. Neuropeptide Y modulates steroid production of human adrenal H295R cells through Y1 receptors. Mol. Cell Endocrinol. 2010, 314, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Singh Nee Priyadarshini, P.; Lal, B. Seasonal variations in cellular expression of neuropeptide Y (NPY) in testis of the catfish, Clarias batrachus and its potential role in regulation of steroidogenesis. Peptides 2018, 103, 19–25. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, J.; Liu, B.; Jiang, Y.; Chen, W.; Li, J.; He, Q.; He, Z. The roles and mechanisms of Leydig cells and myoid cells in regulating spermatogenesis. Cell Mol. Life Sci. 2019, 76, 2681–2695. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, K.; Zhang, J.; Zhang, P.; He, W.; Tang, Y.; Yang, W.; Huang, X.; Liu, R.; Liang, X.; et al. Comparative transcriptome analysis reveals potential testosterone function-related regulatory genes/pathways of Leydig cells in immature and mature buffalo (Bubalus bubalis) testes. Gene 2021, 802, 145870. [Google Scholar] [CrossRef]
- Allen, C.D.; Waser, B.; Korner, M.; Reubi, J.C.; Lee, S.; Rivier, C. Neuropeptide Y acts within the rat testis to inhibit testosterone secretion. Neuropeptides 2011, 45, 55–61. [Google Scholar] [CrossRef]
- Manna, P.R.; Dyson, M.T.; Stocco, D.M. Regulation of the steroidogenic acute regulatory protein gene expression: Present and future perspectives. Mol. Hum. Reprod. 2009, 15, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Men, Y.; Fan, Y.; Shen, Y.; Lu, L.; Kallen, A.N. The Steroidogenic Acute Regulatory Protein (StAR) Is Regulated by the H19/let-7 Axis. Endocrinology 2017, 158, 402–409. [Google Scholar] [CrossRef]
- Jonas, S.; Izaurralde, E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015, 16, 421–433. [Google Scholar] [CrossRef] [PubMed]
- McIver, S.C.; Roman, S.D.; Nixon, B.; McLaughlin, E.A. miRNA and mammalian male germ cells. Hum. Reprod. Update 2012, 18, 44–59. [Google Scholar] [CrossRef] [PubMed]
- An, S.Y.; Zhang, G.M.; Liu, Z.F.; Zhou, C.; Yang, P.C.; Wang, F. MiR-1197-3p regulates testosterone secretion in goat Leydig cells via targeting PPARGC1A. Gene 2019, 710, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Smorag, L.; Zheng, Y.; Nolte, J.; Zechner, U.; Engel, W.; Pantakani, D.V. MicroRNA signature in various cell types of mouse spermatogenesis: Evidence for stage-specifically expressed miRNA-221, -203 and -34b-5p mediated spermatogenesis regulation. Biol. Cell 2012, 104, 677–692. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Yin, X.; Duan, C.; Xie, Y.; Ji, C.; Wang, Y.; Liu, Y.; Zhang, Y. LncRNA RWDD3 Facilitates Leydig Cell Steroidogenesis by Regulating the miR-1388-5p/NPY1R/cAMP Pathway in Yanshan Cashmere Goats. Animals 2025, 15, 1884. https://doi.org/10.3390/ani15131884
Chen M, Yin X, Duan C, Xie Y, Ji C, Wang Y, Liu Y, Zhang Y. LncRNA RWDD3 Facilitates Leydig Cell Steroidogenesis by Regulating the miR-1388-5p/NPY1R/cAMP Pathway in Yanshan Cashmere Goats. Animals. 2025; 15(13):1884. https://doi.org/10.3390/ani15131884
Chicago/Turabian StyleChen, Meijing, Xuejiao Yin, Chunhui Duan, Yuchun Xie, Chenghao Ji, Yong Wang, Yueqin Liu, and Yingjie Zhang. 2025. "LncRNA RWDD3 Facilitates Leydig Cell Steroidogenesis by Regulating the miR-1388-5p/NPY1R/cAMP Pathway in Yanshan Cashmere Goats" Animals 15, no. 13: 1884. https://doi.org/10.3390/ani15131884
APA StyleChen, M., Yin, X., Duan, C., Xie, Y., Ji, C., Wang, Y., Liu, Y., & Zhang, Y. (2025). LncRNA RWDD3 Facilitates Leydig Cell Steroidogenesis by Regulating the miR-1388-5p/NPY1R/cAMP Pathway in Yanshan Cashmere Goats. Animals, 15(13), 1884. https://doi.org/10.3390/ani15131884