Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Traits
2.2. Genotyping and Genotype Quality Control
2.3. Estimation of Genetic Parameters and Prediction Accuracy of GS
2.4. ssGWAS
- (1)
- First, let D = I.
- (2)
- Calculate G.
- (3)
- The GEBV was calculated via ssGBLUP.
- (4)
- The GEBV is converted to calculate the SNP effects () as follows:
- (5)
- The SNP weights are calculated as follows:
- (6)
- The SNP weights are normalized to keep the total genetic variance constant.
- (7)
- Loop to 2.
2.5. Identification of Candidate Genes and Analysis of Functional Enrichment
3. Results
3.1. Descriptive Statistics for the Litter Size Traits
3.2. Heritabilities and Repeatabilities of the Litter Size Traits
3.3. Genetic Correlations and Phenotypic Correlations Between the Litter Size Traits
3.4. Prediction Accuracies of (G) EBV with BLUP and ssGBLUP in Litter Size Traits
3.5. Summary of the ssGWAS Results for Litter Size Traits
3.6. Functional Enrichment Analysis
4. Discussion
4.1. Genetic Parameter Statistics
4.2. Genomic Prediction Accuracy
4.3. Candidate Regions and Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanenberg, E.H.A.T.; Knol, E.F.; Merks, J.W.M. Estimates of Genetic Parameters for Reproduction Traits at Different Parities in Dutch Landrace Pigs. Livest. Prod. Sci. 2001, 69, 179–186. [Google Scholar] [CrossRef]
- Ogawa, S.; Konta, A.; Kimata, M.; Ishii, K.; Uemoto, Y.; Satoh, M. Estimation of Genetic Parameters for Farrowing Traits in Purebred Landrace and Large White Pigs. Anim. Sci. J. 2019, 90, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Tan, C.; Hu, X.; Wang, A.; Wu, Z. Genetic Parameters for Reproductive Traits at Different Parities in Large White Pigs. J. Anim. Sci. 2018, 96, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gan, M.; Yang, X.; Zhu, P.; Luo, Y.; Liu, B.; Zhu, K.; Cheng, W.; Chen, L.; Zhao, Y.; et al. Estimation of genetic parameters of pig reproductive traits. Front. Vet. Sci. 2023, 10, 1172287. [Google Scholar] [CrossRef]
- Högberg, A.; Rydhmer, L. A Genetic Study of Piglet Growth and Survival. Acta Agric. Scand. Sect. Anim. Sci. 2000, 50, 300–303. [Google Scholar] [CrossRef]
- Feldpausch, J.A.; Jourquin, J.; Bergstrom, J.R.; Bargen, J.L.; Bokenkroger, C.D.; Davis, D.L.; Gonzalez, J.M.; Nelssen, J.L.; Puls, C.L.; Trout, W.E.; et al. Birth Weight Threshold for Identifying Piglets at Risk for Preweaning Mortality. Transl. Anim. Sci. 2019, 3, 633–640. [Google Scholar] [CrossRef]
- Stange, K.; Miersch, C.; Sponder, G.; Röntgen, M. Low birth weight influences the postnatal abundance and characteristics of satellite cell subpopulations in pigs. Sci. Rep. 2020, 10, 6149. [Google Scholar] [CrossRef]
- Knol, E.F.; Mathur, P.K. Genomics-Based Selection for Reproduction and Adaptation in Pigs. Biosci. Proc. 2019. [Google Scholar] [CrossRef]
- Garrick, D.J. The Role of Genomics in Pig Improvement. Anim. Prod. Sci. 2017, 57, 2360. [Google Scholar] [CrossRef]
- Zhang, Z.; Ober, U.; Erbe, M.; Zhang, H.; Gao, N.; He, J.; Li, J.; Simianer, H. Improving the Accuracy of Whole Genome Prediction for Complex Traits Using the Results of Genome Wide Association Studies. PLoS ONE 2014, 9, e93017. [Google Scholar] [CrossRef]
- Zhu, D.; Zhao, Y.; Zhang, R.; Wu, H.; Cai, G.; Wu, Z.; Wang, Y.; Hu, X. Genomic prediction based on selective linkage disequilibrium pruning of low-coverage whole-genome sequence variants in a pure Duroc population. Genet. Sel. Evol. 2023, 55, 72. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Geng, H.; Yang, B.; Yin, Z.; Liu, Y. Integrating QTL and expression QTL of PigGTEx to improve the accuracy of genomic prediction for small population in Yorkshire pigs. Anim. Genet. 2025, 56, e70001. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-L.; Carissa; Park, A.; Reecy, J.M. Bringing the Animal QTLdb and CorrDB into the future: Meeting new challenges and providing updated services. Nucleic Acids Res. 2022, 50, D956–D961. [Google Scholar] [CrossRef]
- Hoffman, G.E. Correcting for Population Structure and Kinship Using the Linear Mixed Model: Theory and Extensions. PLoS ONE 2013, 8, e75707. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.; Tier, B. “SNP Snappy”: A Strategy for Fast Genome-Wide Association Studies Fitting a Full Mixed Model. Genetics 2012, 190, 275–277. [Google Scholar] [CrossRef]
- Zhou, X.; Carbonetto, P.; Stephens, M. Polygenic Modeling with Bayesian Sparse Linear Mixed Models. PLoS Genet. 2013, 9, e1003264. [Google Scholar] [CrossRef]
- Ricard, A.; Danvy, S.; Legarra, A. Computation of Deregressed Proofs for Genomic Selection When Own Phenotypes Exist with an Application in French Show-Jumping Horses. J. Anim. Sci. 2013, 91, 1076–1085. [Google Scholar] [CrossRef]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Fernando, R.L.; Vitezica, Z.; Okimoto, R.; Wing, T.; Hawken, R.; Muir, W.M. Genome-Wide Association Mapping Including Phenotypes from Relatives without Genotypes in a Single-Step (SsGWAS) for 6-Week Body Weight in Broiler Chickens. Front. Genet. 2014, 5, 134. [Google Scholar] [CrossRef]
- Wang, H.; Misztal, I.; Aguilar, I.; Legarra, A.; Muir, W.M. Genome-Wide Association Mapping Including Phenotypes from Relatives without Genotypes. Genet. Res. 2012, 94, 73–83. [Google Scholar] [CrossRef]
- Silva, E.F.P.; Gaia, R.C.; Mulim, H.A.; Pinto, L.F.B.; Iung, L.H.S.; Brito, L.F.; Pedrosa, V.B. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals 2024, 14, 2472. [Google Scholar] [CrossRef]
- Howie, B.; Fuchsberger, C.; Stephens, M.; Marchini, J.; Abecasis, G.R. Fast and Accurate Genotype Imputation in Genome-Wide Association Studies through Pre-Phasing. Nat. Genet. 2012, 44, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Edea, Z.; Dessie, T.; Dadi, H.; Do, K.-T.; Kim, K.-S. Genetic Diversity and Population Structure of Ethiopian Sheep Populations Revealed by High-Density SNP Markers. Front. Genet. 2017, 8, 218. [Google Scholar] [CrossRef]
- Shafer, A.B.A.; Peart, C.R.; Tusso, S.; Maayan, I.; Brelsford, A.; Wheat, C.W.; Wolf, J.B.W. Bioinformatic Processing of RAD-seq Data Dramatically Impacts Downstream Population Genetic Inference. Methods Ecol. Evol. 2017, 8, 907–917. [Google Scholar] [CrossRef]
- Hong, Y.; Ye, J.; Dong, L.; Li, Y.; Yan, L.; Cai, G.; Liu, D.; Tan, C.; Wu, Z. Genome-Wide Association Study for Body Length, Body Height, and Total Teat Number in Large White Pigs. Front. Genet. 2021, 12, 650370. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Luan, T.; Woolliams, J.A.; Lien, S.; Kent, M.; Svendsen, M.; Meuwissen, T.H.E. The Accuracy of Genomic Selection in Norwegian Red Cattle Assessed by Cross-Validation. Genetics 2009, 183, 1119–1126. [Google Scholar] [CrossRef]
- Henderson, C.R. Best Linear Unbiased Prediction of Breeding Values Not in the Model for Records. J. Dairy Sci. 1977, 60, 783–787. [Google Scholar] [CrossRef]
- Henderson, C.R. Estimation of Variances in Animal Model and Reduced Animal Model for Single Traits and Single Records. J. Dairy Sci. 1986, 69, 1394–1402. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Johnson, D.L.; Legarra, A.; Tsuruta, S.; Lawlor, T.J. Hot Topic: A Unified Approach to Utilize Phenotypic, Full Pedigree, and Genomic Information for Genetic Evaluation of Holstein Final Score. J. Dairy Sci. 2010, 93, 743–752. [Google Scholar] [CrossRef]
- VanRaden, P.M. Efficient Methods to Compute Genomic Predictions. J. Dairy Sci. 2008, 91, 4414–4423. [Google Scholar] [CrossRef]
- VanRaden, P.M.; Van Tassell, C.P.; Wiggans, G.R.; Sonstegard, T.S.; Schnabel, R.D.; Taylor, J.F.; Schenkel, F.S. Invited review: Reliability of genomic predictions for North American Holstein bulls. J. Dairy Sci. 2009, 92, 16–24. [Google Scholar] [CrossRef]
- Aguilar, I.; Misztal, I.; Legarra, A.; Tsuruta, S. Efficient Computation of the Genomic Relationship Matrix and Other Matrices Used in Single-Step Evaluation: Matrix Computation Genomic Selection. J. Anim. Breed. Genet. 2011, 128, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Tiezzi, F.; Parker-Gaddis, K.L.; Cole, J.B.; Clay, J.S.; Maltecca, C. A Genome-Wide Association Study for Clinical Mastitis in First Parity US Holstein Cows Using Single-Step Approach and Genomic Matrix Re-Weighting Procedure. PLoS ONE 2015, 10, e0114919. [Google Scholar] [CrossRef] [PubMed]
- Parker Gaddis, K.L.; Megonigal, J.H.; Clay, J.S.; Wolfe, C.W. Genome-Wide Association Study for Ketosis in US Jerseys Using Producer-Recorded Data. J. Dairy Sci. 2018, 101, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Misztal, I.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; UGA Animal Breeding and Genetics Group: Athens, GA, USA, 2014; p. 143. [Google Scholar]
- Dyer, S.C.; Austine-Orimoloye, O.; Azov, A.G.; Barba, M.; Barnes, I.; Barrera-Enriquez, V.P.; Becker, A.; Bennett, R.; Beracochea, M.; Berry, A.; et al. Ensembl 2025. Nucleic Acids Res. 2025, 53, D948–D957. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef]
- Imboonta, N.; Rydhmer, L.; Tumwasorn, S. Genetic Parameters and Trends for Production and Reproduction Traits in Thai Landrace Sows. Livest. Sci. 2007, 111, 70–79. [Google Scholar] [CrossRef]
- Lundgren, H.; Canario, L.; Grandinson, K.; Lundeheim, N.; Zumbach, B.; Vangen, O.; Rydhmer, L. Genetic Analysis of Reproductive Performance in Landrace Sows and Its Correlation to Piglet Growth. Livest. Sci. 2010, 128, 173–178. [Google Scholar] [CrossRef]
- Camargo, E.G.; Marques, D.B.D.; de Figueiredo, E.A.P.; e Silva, F.F.; Lopes, P.S. Genetic Study of Litter Size and Litter Uniformity in Landrace Pigs. Rev. Bras. Zootec. 2020, 49, e20180295. [Google Scholar] [CrossRef]
- Damgaard, L.H.; Rydhmer, L.; Løvendahl, P.; Grandinson, K. Genetic Parameters for Within-Litter Variation in Piglet Birth Weight and Change in within-Litter Variation during Suckling1. J. Anim. Sci. 2003, 81, 604–610. [Google Scholar] [CrossRef]
- Lopez, B.I.; Kim, T.H.; Makumbe, M.T.; Song, C.W.; Seo, K.S. Variance Components Estimation for Farrowing Traits of Three Purebred Pigs in Korea. Asian-Australas. J. Anim. Sci. 2017, 30, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Roehe, R.; Kennedy, B.W. Estimation of Genetic Parameters for Litter Size in Canadian Yorkshire and Landrace Swine with Each Parity of Farrowing Treated as a Different Trait. J. Anim. Sci. 1995, 73, 2959. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Song, K.-D.; Lee, H.-K.; Cho, K.-H.; Park, H.-C.; Park, K.-D. Genetic Parameters of Reproductive and Meat Quality Traits in Korean Berkshire Pigs. Asian-Australas. J. Anim. Sci. 2015, 28, 1388–1393. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Bidanel, J.-P.; Burlot, T.; Legault, C.; Naveau, J. Genetic Parameters and Genetic Trends in the Chinese × European Tiameslan Composite Pig Line. II. Genetic Trends. Genet. Sel. Evol. 2000, 32, 57. [Google Scholar] [CrossRef]
- Satoh, M. Comparison of Genetic Improvement for Litter Size at Birth by Direct and Indirect Selection in Swine Herd. Anim. Sci. J. 2006, 77, 566–573. [Google Scholar] [CrossRef]
- VanRaden, P.M. Symposium Review: How to Implement Genomic Selection. J. Dairy Sci. 2020, 103, 5291–5301. [Google Scholar] [CrossRef]
- Misztal, I.; Lourenco, D.; Legarra, A. Current Status of Genomic Evaluation. J. Anim. Sci. 2020, 98, skaa101. [Google Scholar] [CrossRef]
- Legarra, A.; Christensen, O.F.; Aguilar, I.; Misztal, I. Single Step, a General Approach for Genomic Selection. Livest. Sci. 2014, 166, 54–65. [Google Scholar] [CrossRef]
- Teissier, M.; Larroque, H.; Robert-Granié, C. Weighted Single-Step Genomic BLUP Improves Accuracy of Genomic Breeding Values for Protein Content in French Dairy Goats: A Quantitative Trait Influenced by a Major Gene. Genet. Sel. Evol. 2018, 50, 31. [Google Scholar] [CrossRef]
- Pszczola, M.; Strabel, T.; Mulder, H.A.; Calus, M.P.L. Reliability of Direct Genomic Values for Animals with Different Relationships within and to the Reference Population. J. Dairy Sci. 2012, 95, 389–400. [Google Scholar] [CrossRef]
- Naj, A.C. Genotype Imputation in Genome-Wide Association Studies. Curr. Protoc. Hum. Genet. 2019, 102, e84. [Google Scholar] [CrossRef] [PubMed]
- Asoro, F.G.; Newell, M.A.; Beavis, W.D.; Scott, M.P.; Jannink, J. Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats. Plant Genome 2011, 4, 132–144. [Google Scholar] [CrossRef]
- Hinckley, M.; Vaccari, S.; Horner, K.; Chen, R.; Conti, M. The G-Protein-Coupled Receptors GPR3 and GPR12 Are Involved in CAMP Signaling and Maintenance of Meiotic Arrest in Rodent Oocytes. Dev. Biol. 2005, 287, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.J.; Laun, A.S.; Song, Z.-H. Cannabidiol, a Novel Inverse Agonist for GPR12. Biochem. Biophys. Res. Commun. 2017, 493, 451–454. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, X.; Chen, S.; Jia, W.; Ma, X.; Wang, J.; Qian, Y.; Lei, D.; Liu, H.; Pan, X. GPR12 Inhibits Migration and Promotes Apoptosis in Esophageal Cancer and Hypopharyngeal Cancer Cells. Thorac. Cancer 2021, 12, 1525–1535. [Google Scholar] [CrossRef]
- Fujii, A.; Masuda, T.; Iwata, M.; Tobo, T.; Wakiyama, H.; Koike, K.; Kosai, K.; Nakano, T.; Kuramitsu, S.; Kitagawa, A.; et al. The Novel Driver Gene ASAP2 Is a Potential Druggable Target in Pancreatic Cancer. Cancer Sci. 2021, 112, 1655–1668. [Google Scholar] [CrossRef]
- Tekola-Ayele, F.; Zeng, X.; Ouidir, M.; Workalemahu, T.; Zhang, C.; Delahaye, F.; Wapner, R. DNA Methylation Loci in Placenta Associated with Birthweight and Expression of Genes Relevant for Early Development and Adult Diseases. Clin. Epigenet. 2020, 12, 78. [Google Scholar] [CrossRef]
- Tebani, A.; Jotanovic, J.; Hekmati, N.; Sivertsson, Å.; Gudjonsson, O.; Edén Engström, B.; Wikström, J.; Uhlèn, M.; Casar-Borota, O.; Pontén, F. Annotation of Pituitary Neuroendocrine Tumors with Genome-Wide Expression Analysis. Acta Neuropathol. Commun. 2021, 9, 181. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, K.; Cui, J.; Xiong, J.; Wu, H.; Peng, T.; Guo, Y. Circ-MBOAT2 Knockdown Represses Tumor Progression and Glutamine Catabolism by MiR-433-3p/GOT1 Axis in Pancreatic Cancer. J. Exp. Clin. Cancer Res. 2021, 40, 124. [Google Scholar] [CrossRef]
- Firestein, R.; Bass, A.J.; Kim, S.Y.; Dunn, I.F.; Silver, S.J.; Guney, I.; Freed, E.; Ligon, A.H.; Vena, N.; Ogino, S.; et al. CDK8 Is a Colorectal Cancer Oncogene That Regulates β-Catenin Activity. Nature 2008, 455, 547–551. [Google Scholar] [CrossRef]
- Teng, Y.; Mei, Y.; Hawthorn, L.; Cowell, J.K. WASF3 Regulates MiR-200 Inactivation by ZEB1 through Suppression of KISS1 Leading to Increased Invasiveness in Breast Cancer Cells. Oncogene 2014, 33, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Aron, R.; Pellegrini, P.; Green, E.W.; Maddison, D.C.; Opoku-Nsiah, K.; Oliveira, A.O.; Wong, J.S.; Daub, A.C.; Giorgini, F.; Muchowski, P.; et al. Deubiquitinase Usp12 Functions Noncatalytically to Induce Autophagy and Confer Neuroprotection in Models of Huntington’s Disease. Nat. Commun. 2018, 9, 3191. [Google Scholar] [CrossRef] [PubMed]
- Wangsa, D.; Braun, R.; Stuelten, C.H.; Brown, M.; Bauer, K.M.; Emons, G.; Weston, L.A.; Hu, Y.; Yang, H.H.; Vila-Casadesús, M.; et al. Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells. Neoplasia 2019, 21, 721–729. [Google Scholar] [CrossRef]
- Haag, N.; Tan, E.-C.; Begemann, M.; Buschmann, L.; Kraft, F.; Holschbach, P.; Lai, A.H.M.; Brett, M.; Mochida, G.H.; DiTroia, S.; et al. Biallelic Loss-of-Function Variants in WDR11 Are Associated with Microcephaly and Intellectual Disability. Eur. J. Hum. Genet. 2021, 29, 1663–1668. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Peiris, M.N.; Donoghue, D.J. Functions of FGFR2 Corrupted by Translocations in Intrahepatic Cholangiocarcinoma. Cytokine Growth Factor Rev. 2020, 52, 56–67. [Google Scholar] [CrossRef]
- Sinderewicz, E.; Grycmacher, K.; Boruszewska, D.; Kowalczyk-Zięba, I.; Staszkiewicz, J.; Ślężak, T.; Woclawek-Potocka, I. Bovine Ovarian Follicular Growth and Development Correlate with Lysophosphatidic Acid Expression. Theriogenology 2018, 106, 1–14. [Google Scholar] [CrossRef]
- Lian, Y.-F.; Huang, Y.-L.; Zhang, Y.-J.; Chen, D.-M.; Wang, J.-L.; Wei, H.; Bi, Y.-H.; Jiang, Z.-W.; Li, P.; Chen, M.-S.; et al. CACYBP Enhances Cytoplasmic Retention of P27 Kip1 to Promote Hepatocellular Carcinoma Progression in the Absence of RNF41 Mediated Degradation. Theranostics 2019, 9, 8392–8408. [Google Scholar] [CrossRef]
- Jackson, C.B.; Huemer, M.; Bolognini, R.; Martin, F.; Szinnai, G.; Donner, B.C.; Richter, U.; Battersby, B.J.; Nuoffer, J.-M.; Suomalainen, A.; et al. A Variant in MRPS14 (US14m) Causes Perinatal Hypertrophic Cardiomyopathy with Neonatal Lactic Acidosis, Growth Retardation, Dysmorphic Features and Neurological Involvement. Hum. Mol. Genet. 2019, 28, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Lévy, J.; Jung-Klawitter, S.; Bakhtiari, S.; Monteiro, F.; Maroofian, R.; Bierhals, T.; Hempel, M.; Elmaleh-Bergès, M.; Kitajima, J.P.; et al. Loss of TNR Causes a Nonprogressive Neurodevelopmental Disorder with Spasticity and Transient Opisthotonus. Genet. Med. 2020, 22, 1061–1068. [Google Scholar] [CrossRef]
- Guillen-Ahlers, H.; Erbe, C.B.; Chevalier, F.D.; Montoya, M.J.; Zimmerman, K.D.; Langefeld, C.D.; Olivier, M.; Runge, C.L. TMTC2 Variant Associated with Sensorineural Hearing Loss and Auditory Neuropathy Spectrum Disorder in a Family Dyad. Mol. Genet. Genomic Med. 2018, 6, 653–659. [Google Scholar] [CrossRef]
- Jacquemin, V.; Antoine, M.; Duerinckx, S.; Massart, A.; Desir, J.; Perazzolo, C.; Cassart, M.; Thomas, D.; Segers, V.; Lecomte, S.; et al. TrkA Mediates Effect of Novel KIDINS220 Mutation in Human Brain Ventriculomegaly. Hum. Mol. Genet. 2020, 29, 3757–3764. [Google Scholar] [CrossRef] [PubMed]
Statistic | Value |
---|---|
Number of animals with records | 62,445 |
Number of animals with genotypes | 2096 |
Number of animals with records or genotypes | 62,505 |
Number of animals with genotypes and no records | 60 |
Number of parents without records or genotypes | 262,758 |
Total number of animals | 325,263 |
Trait | n | Mean | SD | Min | Max | CV (100%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
TNB | 170,027 | 13.77 | 3.51 | 4 | 22 | 25% | −0.28 | 0.03 |
NBA | 166,880 | 12.21 | 3.34 | 3 | 21 | 27% | −0.29 | 0.02 |
NHB | 166,310 | 10.52 | 2.92 | 2 | 20 | 28% | −0.39 | 0.23 |
rNHB | 164,191 | 77.9 | 14.6 | 30 | 100 | 19% | −0.58 | 0.16 |
NWB | 170,027 | 1.48 | 2.32 | 0 | 6 | 157% | 1.05 | 0.61 |
NDF | 170,027 | 0.19 | 0.26 | 0 | 3 | 137% | 3.14 | 10.46 |
NSB | 170,027 | 1.27 | 1.67 | 0 | 8 | 131% | 1.91 | 4.09 |
MUMM | 170,027 | 0.42 | 0.89 | 0 | 5 | 212% | 2.8 | 8.97 |
LBWT | 164,341 | 15.07 | 4.32 | 3 | 28 | 29% | −0.05 | 0.04 |
Trait | Models | H2 | Re | ||||
---|---|---|---|---|---|---|---|
TNB | BLUP | 0.69 (0.05) | 0.9 (0.04) | 9.7 (0.04) | 11.29 (0.04) | 0.06 (0.01) | 0.14 (0.01) |
ssGBLUP | 0.68 (0.05) | 0.92 (0.04) | 9.7 (0.04) | 11.30 (0.04) | 0.06 (0.01) | 0.14 (0.01) | |
NBA | BLUP | 0.47 (0.04) | 0.88 (0.04) | 8.89 (0.04) | 10.24 (0.04) | 0.05 (0.01) | 0.13 (0.01) |
ssGBLUP | 0.46 (0.04) | 0.89 (0.04) | 8.89 (0.04) | 10.24 (0.04) | 0.04 (0.01) | 0.13 (0.01) | |
NHB | BLUP | 0.31 (0.03) | 0.64 (0.03) | 6.78 (0.03) | 7.73 (0.03) | 0.04 (0.01) | 0.12 (0.01) |
ssGBLUP | 0.31 (0.03) | 0.64 (0.03) | 6.78 (0.03) | 7.74 (0.03) | 0.04 (0.01) | 0.12 (0.01) | |
rNHB | BLUP | 8.49 (0.68) | 9.48 (0.69) | 180.19 (0.75) | 198.15 (0.72) | 0.04 (0.01) | 0.09 (0.01) |
ssGBLUP | 8.70 (0.68) | 9.31 (0.68) | 180.20 (0.75) | 198.21 (0.73) | 0.04 (0.01) | 0.09 (0.01) | |
NWB | BLUP | 0.10 (0.01) | 0.11 (0.01) | 1.96 (0.01) | 2.17 (0.01) | 0.04 (0.01) | 0.10 (0.01) |
ssGBLUP | 0.10 (0.01) | 0.11 (0.01) | 1.96 (0.01) | 2.1 (0.01) | 0.04 (0.01) | 0.10 (0.01) | |
NDF | BLUP | 0.01 (0.00) | 0.01 (0.00) | 0.25 (0.00) | 0.2 (0.00) | 0.01 (0.01) | 0.02 (0.01) |
ssGBLUP | 0.01 (0.00) | 0.01 (0.00) | 0.25 (0.00) | 0.25 (0.00) | 0.01 (0.01) | 0.02 (0.01) | |
NSB | BLUP | 0.12 (0.01) | 0.08 (0.01) | 2.35 (0.01) | 2.5 (0.01) | 0.05 (0.01) | 0.08 (0.01) |
ssGBLUP | 0.13 (0.01) | 0.08 (0.01) | 2.35 (0.01) | 2.55 (0.01) | 0.05 (0.01) | 0.08 (0.01) | |
MUMM | BLUP | 0.01 (0.00) | 0.02 (0.00) | 0.74 (0.00) | 0.76 (0.00) | 0.01 (0.01) | 0.03 (0.01) |
ssGBLUP | 0.01 (0.00) | 0.02 (0.00) | 0.74 (0.00) | 0.76 (0.00) | 0.01 (0.01) | 0.03 (0.01) | |
LBWT | BLUP | 0.81 (0.00) | 1.34 (0.06) | 13.38 (0.06) | 15.53 (0.06) | 0.05 (0.01) | 0.14 (0.01) |
ssGBLUP | 0.81 (0.06) | 1.34 (0.06) | 13.38 (0.06) | 15.53 (0.06) | 0.05 (0.01) | 0.14 (0.01) |
Trait | TNB | NBA | NHB | rNHB | NWB | NDF | NSB | MUMM | LBWT |
---|---|---|---|---|---|---|---|---|---|
TNB | \ | 0.84 (0.01) | 0.70 (0.01) | −0.32 (0.01) | 0.45 (0.01) | 0.13 (0.01) | 0.25 (0.01) | 0.16 (0.01) | 0.67 (0.01) |
NBA | 0.90 (0.01) | \ | 0.86 (0.01) | 0.02 (0.01) | 0.46 (0.01) | 0.14 (0.01) | −0.20 (0.01) | −0.11 (0.01) | 0.82 (0.01) |
NHB | 0.76 (0.02) | 0.87 (0.01) | \ | 0.39 (0.01) | 0.01 (0.01) | −0.02 (0.01) | −0.23 (0.01) | −0.12 (0.01) | 0.85 (0.01) |
rNHB | −0.45 (0.04) | −0.13 (0.06) | 0.21 (0.05) | \ | −0.57 (0.01) | −0.21 (0.01) | −0.66 (0.01) | −0.40 (0.01) | 0.24 (0.01) |
NWB | 0.54 (0.04) | 0.55 (0.03) | 0.10 (0.05) | −0.69 (0.03) | \ | 0.01 (0.01) | −0.02 (0.01) | −0.04 (0.01) | 0.15 (0.01) |
NDF | 0.36 (0.08) | 0.38 (0.08) | 0.23 (0.09) | −0.24 (0.09) | 0.27 (0.08) | \ | −0.02 (0.01) | −0.02 (0.01) | 0.07 (0.01) |
NSB | 0.41 (0.04) | −0.04 (0.06) | −0.11 (0.05) | −0.78 (0.02) | 0.10 (0.05) | 0.35 (0.04) | \ | 0.08 (0.01) | −0.21 (0.01) |
MUMM | 0.49 (0.06) | 0.21 (0.08) | 0.11 (0.08) | −0.61 (0.05) | 0.17 (0.07) | 0.27 (0.11) | 0.57 (0.06) | \ | −0.11 (0.01) |
LBWT | 0.63 (0.03) | 0.73 (0.02) | 0.87 (0.01) | 0.27 (0.05) | −0.04 (0.05) | 0.23 (0.08) | −0.07 (0.05) | 0.17 (0.08) | \ |
Trait a | BLUP-Rg | ssGBLUP-Rg | GBLUP vs. BLUP |
---|---|---|---|
Increase % | |||
TNB | 0.64 (0.01) | 0.70 (0.01) | 9.38 |
NBA | 0.61 (0.01) | 0.68 (0.01) | 11.48 |
NHB | 0.60 (0.01) | 0.68 (0.01) | 13.33 |
rNHB | 0.61 (0.01) | 0.68 (0.01) | 11.48 |
NWB | 0.62 (0.01) | 0.69 (0.01) | 11.29 |
NDF | 0.47 (0.01) | 0.50 (0.01) | 6.38 |
NSB | 0.62 (0.01) | 0.70 (0.01) | 12.9 |
MUMM | 0.52 (0.01) | 0.57 (0.01) | 9.62 |
LBWT | 0.62 (0.01) | 0.69 (0.01) | 11.29 |
Trait | SSC | Position (Mb) | gVar (%) | Number of SNPs | Top SNP Position | Candidate Genes |
---|---|---|---|---|---|---|
TNB | 11 | 4.42–4.50 | 1.22 | 47 | 4,423,721 | CDK8, WASF3, GPR12, USP12, ENSSSCG00000009303, RASL11A |
TNB | 14 | 130.94–130.95 | 1.07 | 4 | 130,945,803 | WDR11, ENSSSCG00000041462, ENSSSCG00000043365, FGFR2 |
NBA | 9 | 117.31–117.37 | 1.1 | 3 | 117,307,194 | RABGAP1L, CACYBP, MRPS14, TNN, KIAA0040, TNR |
NWB | 11 | 4.33–4.48 | 1.33 | 43 | 4,423,721 | CDK8, WASF3, GPR12, USP12, ENSSSCG00000009303, RASL11A |
NDF | 5 | 98.90–98.93 | 1.26 | 14 | 98,921,169 | TMTC2, METTL25 |
MUMM | 3 | 127.1–127.4 | 1.77 | 74 | 127,157,661 | ADAM17, IAH1, CPSF3, ITGB1BP1, ASAP2, MBOAT2, KIDINS220, ID2 |
GO | Description | Count | Percentage of All of the Provided Genes Related to Litter Size (%) | p-Values |
---|---|---|---|---|
R-HSA-9006934 | Signaling by Receptor Tyrosine Kinases | 5 | 21.74 | 3.89 × 10−5 |
GO:0000904 | cell morphogenesis involved in differentiation | 5 | 21.74 | 1.51 × 10−4 |
GO:0048738 | cardiac muscle tissue development | 3 | 13.04 | 7.41 × 10−4 |
GO:0045596 | negative regulation of cell differentiation | 4 | 17.39 | 1.62 × 10−3 |
GO:0043087 | regulation of GTPase activity | 3 | 13.04 | 2.29 × 10−3 |
R-HSA-9012999 | RHO GTPase cycle | 3 | 13.04 | 4.57 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Y.; He, X.; Wu, D.; Ye, J.; Zhang, Y.; Wu, Z.; Tan, C. Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs. Animals 2025, 15, 1724. https://doi.org/10.3390/ani15121724
Hong Y, He X, Wu D, Ye J, Zhang Y, Wu Z, Tan C. Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs. Animals. 2025; 15(12):1724. https://doi.org/10.3390/ani15121724
Chicago/Turabian StyleHong, Yifeng, Xiaoyan He, Dan Wu, Jian Ye, Yuxing Zhang, Zhenfang Wu, and Cheng Tan. 2025. "Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs" Animals 15, no. 12: 1724. https://doi.org/10.3390/ani15121724
APA StyleHong, Y., He, X., Wu, D., Ye, J., Zhang, Y., Wu, Z., & Tan, C. (2025). Genome Selection and Genome-Wide Association Analyses for Litter Size Traits in Large White Pigs. Animals, 15(12), 1724. https://doi.org/10.3390/ani15121724