Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Bird Husbandry
2.2. Sample Collection and Analytical Determination
2.2.1. Growth Performance
2.2.2. Plasma Biochemical Parameters
2.2.3. Antioxidant Capacity
2.2.4. Intestinal Morphology
2.2.5. Digestive Enzyme Activity
2.3. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Plasma Biochemical Parameters and Antioxidant Capacity
3.3. Intestinal Morphology and Duodenal Digestive Enzyme Activity
4. Discussion
4.1. Growth Performance
4.2. Plasma Biochemical Parameters and Antioxidant Capacity
4.3. Intestinal Morphology and Duodenal Digestive Enzyme Activity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SW | Sweet sorghum |
BW | Body weight |
ADFI | Average daily feed intake |
ADG | Average daily gain |
F/G | Feed/gain ratio |
ALT | Alanine amino transferase |
AST | Aspartate amino transferase |
ALP | Alkaline phosphatase |
LDH | Lactate dehydrogenase |
BUN | Blood urea nitrogen urea |
UA | Uric acid |
CHOL | Cholesterol |
TG | Triglyceride |
HDL | High-density lipoprotein |
LDL | Low-density lipoprotein |
GLU | Glucose |
T-AOC | Total antioxidant capacity |
MDA | Malondialdehyde |
GSH-Px | Glutathione peroxidase |
SOD | Superoxide dismutase |
CAT | Catalase |
VH | Villus height |
CD | Crypt depth |
MT | Muscularis thickness |
VH/CD | Villus height-to-crypt depth ratio |
References
- Hou, S.S.; Liu, L.Z. Report on the development of waterfowl industry and technology in 2023. Chin. J. Anim. Sci. 2024, 60, 318–321. [Google Scholar] [CrossRef]
- Chen, Z.M.; Liu, G.H. Research progress in development and utilization of poultry feed resources. Chin. J. Anim. Nutr. 2020, 32, 4646–4658. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, J.L.; Wang, Q.G.; Dong, G.Z.; Xie, M.; Hou, S.S.; Liu, Z.L.; Wang, C. A substitution effect of green sweet sorghum stalks for diet on the growth performance, carcass yields and meat quality in geese. Acta Vet. Zootech. Sin. 2017, 48, 483–491. [Google Scholar]
- Zhong, H.; Liu, Z.; Liang, M.; Wang, Q.; Wang, Y.; Luo, Y.; Sun, J.; Zhang, C.; Li, Q.; Wang, C. Effects of supplementing geese with green sweet sorghum stalks on microbiota in segments of the gastrointestinal tract. S. Afr. J. Anim. Sci. 2020, 50, 421–433. [Google Scholar] [CrossRef]
- Wang, M.; Li, S.M.; Shen, D.; Han, G.F.; Li, Y.S.; Dou, X.H.; Li, C.M. Effects of dietary different whole-plant corn silage levels on growth performance, slaughter performance, meat quality and serum biochemical parameters of geese. Acta Vet. Zootech. Sin. 2021, 52, 3501–3511. [Google Scholar] [CrossRef]
- Li, Y.P.; Wang, Z.Y.; Yang, H.M.; Xu, L.; Xie, Y.J.; Jin, S.L.; Sheng, D.F. Effects of dietary fiber on growth performance, slaughter performance, serum biochemical parameters, and nutrient utilization in geese. Poult. Sci. 2017, 96, 1250–1256. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Wang, N.; Li, C.; Xie, Q.; Tang, S. Sweet sorghum—A high efficient and quality forage crop. Biotechnol. Bull. 2019, 35, 2–8. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Luo, Y.N.; Xiong, Y.; Gao, R.; Wu, Z.; Yu, Z. Evaluation of sweet sorghum as a high-quality forage in pasture-livestock industry development. Chin. J. Grassl. 2021, 43, 104–112. [Google Scholar] [CrossRef]
- Li, S.S. Evaluation of Nutritional Value of Sweet Sorghum and Application in Dairy Production. Master’s Thesis, Lanzhou University, Lanzhou, China, 2018. [Google Scholar]
- Yu, X. Effects of Sweet Sorghum Silage on the Performance, Blood Biochemical Indexes and Rumen Function of Dairy Cows. Master’s Thesis, Inner Mongolia Minzu University, Tongliao, China, 2020. [Google Scholar]
- Zhou, L.P.; Wang, S.T. Effects of different levels of sweet sorghum in basic diet on growth performance, rumen fermentation, and slaughtering performance of fattening cattle. China Feed. 2023, 24, 121–124. [Google Scholar] [CrossRef]
- Amar, A. Effects of Sweet Sorghum and Alfalfa Mixed Storage on Growth Performance, Blood Biochemistry and Meat Quality of Karakul Sheep. Master’s Thesis, Tarim University, Alar, China, 2020. [Google Scholar]
- Wang, J. Effects of Mixed Silage of Sweet Sorghum and Alfalfa on Tissue Morphology, Enzyme Activity and Flora of Karakul Sheep Digestive Tract. Master’s Thesis, Tarim University, Alar, China, 2021. [Google Scholar]
- Wang, F.; He, Z.F.; Chen, P.; Xie, J.P.; He, C.G. Effect of sweet sorghum silage replacing maize silage on blood physiology, serum biochemical, and serum antioxidant indexes of sheep. Pratacultural Sci. 2023, 40, 2363–2372. [Google Scholar] [CrossRef]
- Wang, F.; He, Z.F.; Chen, P.; He, C.G. Effects of sweet sorghum hay replacement by different proportions of sweet sorghum silage on growth performance, nutrient digestibility and serum biochemical indexes of Dezhou donkey foals. Chin. J. Anim. Nutr. 2021, 33, 4560–4568. [Google Scholar] [CrossRef]
- Chen, X.W. Effects of Mixed Fermentation of Impurity from Machine-Picked Cotton and Sweet Sorghum on Serum Biochemical Indices, Intestinal Morphology and Microflora of Meat Rabbits. Master’s Thesis, Tarim University, Alar, China, 2024. [Google Scholar]
- Li, L.L. Nutritional Characteristics of Machine-Harvested Cotton Residue and Sweet Sorghum Fermented Feed and Their Effects on Growth and Slaughter Performance of Meat Rabbit. Master’s Thesis, Tarim University, Alar, China, 2024. [Google Scholar]
- Zhan, J.S.; Xia, C.; Liu, S.J.; Zhou, M.L.; Yang, H.B.; Lin, M.; Liu, M.M.; Zhao, G.Q. Effects of ryegrass on growth, carcass traits and blood biochemical indices of Yangzhou geese. Acta Prataculturae Sin. 2015, 24, 168–175. [Google Scholar] [CrossRef]
- Zhan, J.S.; Zhan, K.; Huo, Y.J.; Lin, M.; Zhao, G.Q.; Yang, F.Y. Effects of alfalfa pellet feed on growth performance, intestinal length and serum parameters of geese. J. China Agric. Univ. 2015, 20, 133–138. [Google Scholar] [CrossRef]
- Zhan, J.S.; Zhan, K.; Liu, M.M.; Huo, Y.J.; Lin, M.; Zhao, G.Q.; Yang, F.Y. Effects of alfalfa pellet feed on slaughter performance, organ weights and blood biochemical indices of geese. Acta Prataculturae Sin. 2015, 24, 181–187. [Google Scholar]
- Abdollahi, M.R.; Ravindran, V.; Svihus, B. Pelleting of broiler diets: An overview with emphasis on pellet quality and nutritional value. Anim. Feed Sci. Technol. 2013, 179, 1–23. [Google Scholar] [CrossRef]
- Goodarzi Boorejeni, F.; Svihus, B.; von Reichenbach, H.G.; Zentek, J. The effects of hydrothermal processing on feed hygiene, nutrient availability, intestinal microbiota and morphology in poultry—A review. Anim. Feed Sci. Technol. 2016, 220, 187–215. [Google Scholar] [CrossRef]
- Abdollahi, M.R.; Zaefarian, F.; Ravindran, V.; Selle, P.H. The interactive influence of dietary nutrient density and feed form on the performance of broiler chickens. Anim. Feed Sci. Technol. 2018, 239, 33–43. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Poultry, 9th revised ed.; National Academic Press: Washington, DC, USA, 1994. [Google Scholar]
- Liu, Z.L.; Xue, J.J.; Huang, X.F.; Luo, Y.; Liang, M.R.; Li, C.J.; Wang, Q.G.; Wang, C. Effect of feeding frequency on the growth performance, carcass traits, and apparent nutrient digestibility in geese. Poult. Sci. 2020, 99, 4818–4823. [Google Scholar] [CrossRef]
- Liu, Z.L.; Xue, J.J.; Huang, X.F.; Chen, Y.; Wang, Q.G.; Zhang, S.; Wang, C. Effect of stocking density on growth performance, feather quality, serum hormone, and intestinal development of geese from 1 to 14 days of age. Poult. Sci. 2021, 100, 101417. [Google Scholar] [CrossRef]
- Lv, X.; Chen, L.; Zhou, C.; Zhang, G.; Xie, J.; Kang, J.; Tan, Z.; Tang, S.; Kong, Z.; Liu, Z.; et al. Application of different proportions of sweet sorghum silage as a substitute for corn silage in dairy cows. Food Sci Nutr. 2023, 11, 3575–3587. [Google Scholar] [CrossRef]
- Li, S.S.; Zhang, J.J.; Bai, Y.F.; Allan Degen, A.; Wang, T.; Shang, Z.H.; Ding, L.M.; Long, R.J. Sorghum silage substituted for corn silage in diets for dairy cows: Effects on feed intake, milk yield and quality, and serum metabolites. Appl. Anim. Sci. 2020, 36, 228–236. [Google Scholar] [CrossRef]
- Ran, T.; Tang, S.X.; Yu, X.; Hou, Z.P.; Hou, F.J.; Beauchemin, K.A.; Yang, W.Z.; Wu, D.Q. Diets varying in ratio of sweet sorghum silage to corn silage for lactating dairy cows: Feed intake, milk production, blood biochemistry, ruminal fermentation, and ruminal microbial community. J. Dairy Sci. 2021, 104, 12600–12615. [Google Scholar] [CrossRef]
- Babu, J.; Kumari, N.N.; Reddy, Y.R.; Raghunandan, T.; Sridhar, K. Effect of feeding sweet sorghum stover-based complete rations on the growth performance and carcass characteristics of ram lambs. Trop. Anim. Health Prod. 2015, 47, 623–626. [Google Scholar] [CrossRef]
- Wu, P.; Fu, X.; Wang, H.; Hou, M.; Shang, Z. Effect of silage diet (sweet sorghum vs. whole-crop corn) and breed on growth performance, carcass traits, and meat quality of lambs. Animals 2021, 11, 3120. [Google Scholar] [CrossRef] [PubMed]
- Kokoszyński, D.; Bernacki, Z.; Grabowicz, M.; Stańczak, K. Effect of corn silage and quantitative feed restriction on growth performance, body measurements, and carcass tissue composition in White Kołuda W31 geese. Poult. Sci. 2014, 93, 1993–1999. [Google Scholar] [CrossRef]
- Jha, R.; Mishra, P. Dietary fiber in poultry nutrition and their effects on nutrient utilization, performance, gut health, and on the environment: A review. J. Anim. Sci. Biotechnol. 2021, 12, 51. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Liu, Y.; Yang, Y.; Wang, C.; Gong, S.; Zhu, L.; Lei, H.; Wang, H.; He, D. The effects of whole-plant silage maize as replacement commercial feed on the growth performance, carcass yield, relatively organ weight, blood biochemical, and economical traits in Holdobaki goose. Cogent Food Agric. 2023, 9, 2236825. [Google Scholar] [CrossRef]
- Chen, F.; He, J.; Wang, X.; Lv, T.; Liu, C.; Liao, L.; Li, Z.; Zhou, J.; He, B.; Qiu, H.; et al. Effect of dietary ramie powder at various levels on the growth performance, meat quality, serum biochemical indices and antioxidative capacity of yanling white geese. Animals 2022, 12, 2045. [Google Scholar] [CrossRef]
- Valvona, C.J.; Fillmore, H.L.; Nunn, P.B.; Pilkington, G.J. The regulation and function of lactate dehydrogenase a: Therapeutic potential in brain tumor. Brain Pathol. 2016, 26, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Rock, K.L.; Kataoka, H.; Lai, J.J. Uric acid as a danger signal in gout and its comorbidities. Nat. Rev. Rheumatol. 2013, 9, 13–23. [Google Scholar] [CrossRef]
- Yu, J.; Wang, Z.Y.; Yang, H.M.; Xu, L.; Wan, X.L. Effects of cottonseed meal on growth performance, small intestinal morphology, digestive enzyme activities, and serum biochemical parameters of geese. Poult. Sci. 2019, 98, 2066–2071. [Google Scholar] [CrossRef] [PubMed]
- Kurata, M.; Suzuki, M.; Agar, N.S. Antioxidant systems and erythrocyte life-span in mammals. Comp. Biochem. Physiol. Part B Comp. Biochem. 1993, 106, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernández, J.; Valverde, I.; Pereira, V.; Sotillo, J.; López Alonso, M.; Benedito, J.L. Plasma malonaldehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef]
- Luo, Q.; Cui, X.; Yan, J.; Yang, M.; Liu, J.; Jiang, Y.; Li, J.; Zhou, Y. Antagonistic effects of Lycium barbarum polysaccharides on the impaired reproductive system of male rats induced by local subchronic exposure to 60Co-γ irradiation. Phytother. Res. 2011, 25, 694–701. [Google Scholar] [CrossRef]
- Khosravi, M.; Rouzbehan, Y.; Rezaei, M.; Rezaei, J. Total replacement of corn silage with sorghum silage improves milk fatty acid profile and antioxidant capacity of Holstein dairy cows. J. Dairy Sci. 2018, 101, 10953–10961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.K.; Xue, J.J.; Chen, Y.; Huang, X.F.; Liu, Z.L.; Zhong, H.; Xie, Q.; Luo, Y.; Wang, Q.G.; Wang, C. Modulation of performance, plasma constituents, small intestinal morphology, and cecum microbiota in growing geese by dietary citric acid supplementation. Animals 2024, 14, 660. [Google Scholar] [CrossRef]
- Murakami, A.E.; Sakamoto, M.I.; Natali, M.R.M.; Souza, L.M.G.; Franco, J.R.G. Supplementation of glutamine and vitamin E on the morphometry of the intestinal mucosa in broiler chickens. Poult. Sci. 2007, 86, 488–495. [Google Scholar] [CrossRef]
- Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R.U.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef]
Items, % of DM | Content | Items, % of DM | Content |
---|---|---|---|
Gross energy (MJ/kg) | 17.8 | Methionine | 0.11 |
Crude protein | 11.94 | Threonine | 0.46 |
Crude fat | 2.57 | Arginine | 0.54 |
Crude fiber | 43.75 | Valine | 0.60 |
Ash | 8.06 | Isoleucine | 0.44 |
Calcium | 0.42 | Leucine | 0.87 |
Total phosphorus | 0.32 | Phenylalanine | 0.72 |
Lysine | 0.65 | Histidine | 0.23 |
Items | Sweet Sorghum Level | |||
---|---|---|---|---|
0% | 4% | 8% | 12% | |
Ingredients, % | ||||
Corn | 60.00 | 56.00 | 52.00 | 48.00 |
Sweet sorghum (air-dry basis) | 0.00 | 4.00 | 8.00 | 12.00 |
Soybean meal | 17.00 | 16.70 | 16.40 | 16.10 |
Wheat bran | 19.30 | 19.35 | 19.40 | 19.45 |
Soybean oil | 0.00 | 0.30 | 0.60 | 0.90 |
Limestone | 1.10 | 1.05 | 1.00 | 1.00 |
Calcium hydrogen phosphate | 1.40 | 1.40 | 1.40 | 1.35 |
Sodium chloride | 0.30 | 0.30 | 0.30 | 0.30 |
L-Lysine hydrochloride | 0.10 | 0.10 | 0.10 | 0.10 |
L-Methionine | 0.20 | 0.20 | 0.20 | 0.20 |
Tryptophan | 0.10 | 0.10 | 0.10 | 0.10 |
Threonine | 0.10 | 0.10 | 0.10 | 0.10 |
Choline chloride | 0.10 | 0.10 | 0.10 | 0.10 |
Mineral and vitamin premix 1 | 0.30 | 0.30 | 0.30 | 0.30 |
Total | 100 | 100 | 100 | 100 |
Measured nutrient levels, % | ||||
Crude protein | 16.02 | 15.98 | 15.93 | 15.88 |
Crude fiber | 4.31 | 5.78 | 7.24 | 8.71 |
Calcium | 0.81 | 0.81 | 0.80 | 0.80 |
Total phosphorus | 0.66 | 0.66 | 0.66 | 0.66 |
Lysine | 0.84 | 0.85 | 0.85 | 0.86 |
Methionine | 0.46 | 0.45 | 0.45 | 0.44 |
Threonine | 0.69 | 0.69 | 0.69 | 0.69 |
Calculated nutrient levels, % | ||||
Metabolizable energy (MJ/kg) | 10.96 | 10.96 | 10.96 | 10.96 |
Tryptophan | 0.30 | 0.29 | 0.29 | 0.28 |
Nonphytate phosphorus | 0.35 | 0.35 | 0.35 | 0.33 |
Item 1 | Day | Sweet Sorghum Level | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | 12% | ANOVA | Linear | Quadratic | |||
BW (g/bird) | 28 | 1110.9 | 1111.5 | 1111.9 | 1117.2 | 1.70 | 0.566 | 0.233 | 0.503 |
49 | 2461.1 | 2501.5 | 2453.0 | 2377.8 | 16.7 | 0.054 | 0.036 | 0.066 | |
70 | 3065.4 | 3109.0 | 3048.1 | 3033.5 | 15.4 | 0.353 | 0.264 | 0.351 | |
ADG (g/bird/day) | 28–49 | 64 a | 65.6 a | 63.9 a | 59.4 b | 0.77 | 0.017 | 0.014 | 0.027 |
49–70 | 28.8 | 28.9 | 28.3 | 31.2 | 0.52 | 0.197 | 0.148 | 0.175 | |
28–70 | 46.3 | 47.4 | 46.1 | 45.4 | 0.36 | 0.316 | 0.232 | 0.245 | |
ADFI (g/bird/day) | 28–49 | 171.7 | 175.4 | 177.4 | 178.8 | 1.40 | 0.316 | 0.073 | 0.684 |
49–70 | 167.7 b | 176.3 b | 174.0 b | 187.1 a | 1.96 | 0.001 | <0.001 | 0.436 | |
28–70 | 169.7 b | 175.8 b | 175.7 b | 182.9 a | 1.44 | 0.006 | 0.001 | 0.810 | |
F/G (g/g) | 28–49 | 2.69 b | 2.68 b | 2.78 b | 3.01 a | 0.03 | <0.001 | <0.001 | 0.002 |
49–70 | 5.84 | 6.11 | 6.17 | 6.03 | 0.08 | 0.555 | 0.420 | 0.241 | |
28–70 | 3.67 c | 3.71 bc | 3.81 b | 4.03 a | 0.03 | <0.001 | <0.001 | 0.036 | |
Cost of feed/1000 kg (USD) | 463.4 | 455.3 | 447.2 | 438.9 | / | / | / | / | |
Feed cost/kg gain (USD) | 1.70 a | 1.69 a | 1.71 a | 1.77 b | 0.01 | 0.010 | 0.005 | 0.045 |
Item 1 | Sweet Sorghum Level | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | 12% | ANOVA | Linear | Quadratic | ||
ALT (U/L) | 9.50 | 12.33 | 10.83 | 11.50 | 0.63 | 0.463 | 0.437 | 0.403 |
AST (U/L) | 24.2 | 22.3 | 26.0 | 23.8 | 1.04 | 0.693 | 0.784 | 0.939 |
ALP (U/L) | 1366.2 | 1374.5 | 1431.8 | 1250.2 | 81.8 | 0.899 | 0.711 | 0.589 |
LDH (U/L) | 402.3 | 390.5 | 400.0 | 414.3 | 19.2 | 0.982 | 0.807 | 0.753 |
BUN (mmol/L) | 0.42 | 0.36 | 0.46 | 0.41 | 0.02 | 0.581 | 0.773 | 1.000 |
UA (μmol/L) | 264.5 | 233.5 | 235.8 | 217.7 | 8.89 | 0.322 | 0.093 | 0.718 |
CHOL (mmol/L) | 4.13 | 4.28 | 4.07 | 3.62 | 0.13 | 0.306 | 0.136 | 0.244 |
TG (mmol/L) | 0.64 | 0.64 | 0.48 | 0.62 | 0.05 | 0.585 | 0.618 | 0.500 |
HDL (mmol/L) | 2.24 | 2.16 | 2.30 | 2.00 | 0.06 | 0.360 | 0.299 | 0.392 |
LDL (mmol/L) | 1.53 | 1.74 | 1.40 | 1.26 | 0.07 | 0.093 | 0.060 | 0.204 |
GLU (mmol/L) | 9.94 | 9.38 | 10.05 | 8.60 | 0.26 | 0.171 | 0.139 | 0.371 |
Item 1 | Sweet Sorghum Level | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | 12% | ANOVA | Linear | Quadratic | ||
Plasma | ||||||||
T-AOC (mmol/mL) | 1.22 | 1.25 | 1.23 | 1.23 | 0.01 | 0.856 | 0.869 | 0.652 |
GSH-Px (U/mL) | 291.8 | 316.9 | 328.2 | 371.3 | 11.6 | 0.093 | 0.016 | 0.676 |
SOD (U/mL) | 1187.5 | 1125.0 | 1173.7 | 1094.5 | 20.9 | 0.383 | 0.230 | 0.843 |
CAT (U/mL) | 0.32 | 0.37 | 0.44 | 0.40 | 0.02 | 0.064 | 0.031 | 0.168 |
MDA (nmol/mL) | 4.33 | 4.06 | 3.98 | 3.83 | 0.10 | 0.336 | 0.080 | 0.748 |
Liver | ||||||||
Protein concentration (mgprot/mL) | 10.13 | 9.41 | 9.58 | 9.80 | 0.19 | 0.608 | 0.643 | 0.247 |
T-AOC (mmol/gprot) | 0.19 | 0.20 | 0.21 | 0.20 | 0.01 | 0.720 | 0.567 | 0.370 |
GSH-Px (U/mgprot) | 208.8 | 201.9 | 230.3 | 216.7 | 5.08 | 0.235 | 0.248 | 0.739 |
SOD (U/mgprot) | 722.6 | 801.5 | 785.4 | 761.9 | 18.3 | 0.479 | 0.546 | 0.182 |
CAT (U/mgprot) | 37.2 | 39.5 | 39.6 | 36.7 | 0.68 | 0.312 | 0.791 | 0.069 |
MDA (nmol/mgprot) | 0.59 | 0.69 | 0.61 | 0.66 | 0.03 | 0.638 | 0.646 | 0.631 |
Item 1 | Sweet Sorghum Level | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | 12% | ANOVA | Linear | Quadratic | ||
Duodenum | ||||||||
VH (μm) | 712.4 b | 768.4 ab | 799.2 ab | 918.8 a | 28.2 | 0.045 | 0.012 | 0.774 |
CD (μm) | 137.6 | 148.2 | 135.6 | 155.6 | 4.42 | 0.356 | 0.302 | 0.599 |
MT (μm) | 536.7 | 496.0 | 460.7 | 477.2 | 13 | 0.189 | 0.067 | 0.261 |
VH/CD | 5.22 | 5.41 | 6.16 | 6.04 | 0.25 | 0.498 | 0.175 | 0.762 |
Jejunum | ||||||||
VH (μm) | 1011.4 | 1069.2 | 992.1 | 1193.1 | 34.6 | 0.159 | 0.125 | 0.286 |
CD (μm) | 111.6 | 116.2 | 118.3 | 117.6 | 2.93 | 0.868 | 0.476 | 0.669 |
MT (μm) | 344.1 b | 498.9 a | 405.2 ab | 370.9 b | 21.4 | 0.045 | 0.938 | 0.021 |
VH/CD | 9.08 | 9.68 | 8.59 | 10.24 | 0.45 | 0.617 | 0.565 | 0.574 |
Ileum | ||||||||
VH (μm) | 653.5 | 631.4 | 736.3 | 750.6 | 25.4 | 0.259 | 0.087 | 0.716 |
CD (μm) | 126.7 | 125.8 | 127.6 | 132.9 | 3.40 | 0.898 | 0.533 | 0.674 |
MT (μm) | 423.3 | 459.7 | 435.7 | 473.5 | 14.8 | 0.647 | 0.363 | 0.981 |
VH/CD | 5.13 | 5.10 | 5.85 | 5.67 | 0.19 | 0.406 | 0.173 | 0.849 |
Item 1 | Sweet Sorghum Level | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
0% | 4% | 8% | 12% | ANOVA | Linear | Quadratic | ||
Protein concentration (mgprot/mL) | 3.45 | 3.36 | 3.45 | 3.78 | 0.11 | 0.585 | 0.301 | 0.365 |
Cellulase (U/mgprot) | 2.97 | 2.91 | 2.68 | 2.69 | 0.15 | 0.876 | 0.454 | 0.911 |
Trypsin (U/mgprot) | 574.5 | 557.9 | 450.4 | 458.5 | 38.4 | 0.570 | 0.208 | 0.877 |
Chymotrypsin (U/mgprot) | 0.78 | 0.91 | 0.88 | 0.80 | 0.07 | 0.891 | 0.941 | 0.451 |
Lipase (U/gprot) | 4.95 | 5.23 | 5.79 | 5.12 | 0.24 | 0.659 | 0.639 | 0.350 |
Amylase (U/mgprot) | 1.79 | 2.16 | 1.84 | 1.83 | 0.12 | 0.674 | 0.866 | 0.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Huang, X.; Chen, Y.; Xue, J.; Xie, Q.; Zhong, H.; Luo, Y.; Wang, Q.; Wang, C. Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health. Animals 2025, 15, 1706. https://doi.org/10.3390/ani15121706
Liu Z, Huang X, Chen Y, Xue J, Xie Q, Zhong H, Luo Y, Wang Q, Wang C. Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health. Animals. 2025; 15(12):1706. https://doi.org/10.3390/ani15121706
Chicago/Turabian StyleLiu, Zuolan, Xiaofeng Huang, Ying Chen, Jiajia Xue, Qun Xie, Hang Zhong, Yi Luo, Qigui Wang, and Chao Wang. 2025. "Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health" Animals 15, no. 12: 1706. https://doi.org/10.3390/ani15121706
APA StyleLiu, Z., Huang, X., Chen, Y., Xue, J., Xie, Q., Zhong, H., Luo, Y., Wang, Q., & Wang, C. (2025). Dietary Sweet Sorghum (Sorghum bicolor (L.) Moench) Inclusion in Geese: Impacts on Growth Performance, Blood Biochemistry, and Intestinal Health. Animals, 15(12), 1706. https://doi.org/10.3390/ani15121706