Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach
Simple Summary
Abstract
1. Introduction
2. Antimicrobial Resistance
Multidrug-Resistant Bacteria
3. Drug-Resistant Bacteria of Concern in Companion Animals
3.1. Gram-Positive Bacteria of Concern in Companion Animals
3.1.1. Methicillin-Resistant Staphylococci
Gram-Positive | Gram-Negative | ||||||
---|---|---|---|---|---|---|---|
Antibiotic | S. pseudo | S. aureus | E. coli | Proteus spp. | Enterobacter spp. | Klebsiella spp. | P. aeruginosa |
3rd Cephalosporins 1 | - | - | 0.2–71 | 1.8–75 | 5.2–5.2 | 0–100 | - |
Aminopenicillins | - | - | 12.1–100 | 9.1–28.9 | - | 100–100 | - |
Amox./Clav. 2 | - | - | 0–100 | 3.9–68.7 | - | 27.3–91.7 | - |
Fluoroquinolones | 1–94.3 | 0–51.3 | 2–39.3 | 3.6–26.2 | - | 9.1–100 | 8–67.7 |
Nitrofurantoin | - | - | 1–1.6 | - | - | - | - |
Sulfa./TMP 3 | 5–97.1 | 0–100 | 4.3–61.2 | 10.9–87.5 | - | 9.1–91.7 | - |
Fusidic Acid | 6.1–38 | - | - | - | - | - | - |
Gentamicine | 1.7–58.6 | 0–74.4 | - | - | - | - | 2–56.5 |
Lincosamides | 13–98.6 | 4.4–100 | - | - | - | - | - |
Methicilin | 0–41.4 | 0–35.9 | - | - | - | - | - |
Tetracyclines | 20.2–95.7 | 10–60 | - | - | - | - | |
Polymyxin B/Colistin | - | - | - | - | - | 0–1 |
3.1.2. Other Species
3.2. Gram-Negative Bacteria of Concern in Companion Animals
3.2.1. Enterobacteriaceae
3.2.2. Genus Pseudomonas and Acinetobacter
3.2.3. Other Bacteria
4. Antibiotic Classes and Safe Use Recommendations
- Category A: Antibiotics in this category are reserved exclusively for human use and are not authorized for veterinary use in the European Union.
- Category B: This includes antibiotics considered critically important in human medicine. Their use in veterinary medicine is restricted and should only be considered as a last resort when all other options (from Categories C and D) have been exhausted.
- Category C: These antibiotics should be used with caution and only if those from Category D are ineffective.
- Category D: Representing the first-line treatment options in veterinary practice, these antibiotics should also be used judiciously to minimize resistance risks [51].
5. Importance of Antibiotic Resistance—One Health Perspective
6. Animals’ Contribution to AMR
6.1. Farm Animals
6.2. Aquatic Environment and Aquaculture
6.3. Exotic Animals and Wildlife
6.4. Urban and Racing Pigeons
6.5. Companion Animals
7. European Situation
- European Antimicrobial Resistance Surveillance Network (EARS-Net): This network collects data on eight pathogens of critical importance to human health, including Streptococcus pneumoniae, S. aureus, E. faecalis, E. faecium, E. coli, Klebsiella pneumoniae, P. aeruginosa, and Acinetobacter spp.
- European Surveillance of Antimicrobial Consumption Network (ESAC-Net): The ESAC-Net focuses on gathering data related to antimicrobial consumption in humans, enabling an understanding of usage patterns across European countries.
- European Food and Waterborne Diseases and Zoonoses Network (FWD-Net): This network collects AMR data on foodborne pathogens, specifically Salmonella spp. and Campylobacter spp., which pose significant risks to public health.
- European Food Safety Authority (EFSA): The EFSA conducts harmonized monitoring of AMR in zoonotic and commensal bacteria from food-producing animals. This includes Salmonella spp., Campylobacter spp., E. coli, and Enterococcus spp.
- European Surveillance of Veterinary Antimicrobial Consumption (ESVAC): ESVAC monitors antimicrobial usage in animals, providing critical insights into AMU trends in veterinary medicine.
- Global Antimicrobial Resistance Surveillance System (GLASS): Operated by the WHO (World Health Organization), the GLASS gathers global data on resistance patterns among human-priority bacterial pathogens.
8. Veterinarians and Their Role in Combating AMR
9. Future Endeavours
- Surveillance systems: Continuous and systematic collection, analysis, and interpretation of health-related data to plan, implement, and evaluate public health practices.
- Stewardship programmes: Regulation of antimicrobial use to preserve its effectiveness and ensure availability.
- Pharmaceutical policies: Limiting antibiotic use without a valid prescription.
- Information campaign: Raising awareness of AMR and responsible antibiotic use.
- Infection prevention and control programmes: Strategies to prevent infections and limit the spread of resistance.
- Vaccination encouragement: Promoting vaccination to reduce reliance on antibiotics.
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMR-NAP | Antimicrobial Resistance National Action Plan |
AMR | Antimicrobial Resistance |
AMR-GAP | Antimicrobial Resistance Global Action Plan |
AMU | Antimicrobial Use |
ARB | Antibiotic-Resistant Bacteria |
ARG | Antibiotic-Resistant Gene |
AVMA | American Veterinary Medical Association |
BSAVA | British Small Animal Veterinary Association |
CIA | Critically Important Antibiotics |
EARS-Net | European Antimicrobial Resistance Surveillance Network |
EARS-Vet | European Antimicrobial Resistance Surveillance Network in Veterinary Medicine |
EFSA | European Food Safety Authority |
EMA | European Medicines Agency |
ESAC-Net | European Surveillance of Antimicrobial Consumption Network |
ESBL | Extended-Spectrum Beta Lactamase |
ESKAPE | Enterococcus faecium, S. aureus, Klebsiella pneumoniae, A. baumannii, P. aeruginosa, Enterobacter |
ESVAC | European Surveillance of Veterinary Antimicrobial Consumption |
EU | European Union |
FECAVA | Federation of European Companion Animal Veterinary Association |
FWD-Net | European Food and Waterborne Diseases and Zoonoses Network |
GAP | Global Action Plan |
GLASS | Global Antimicrobial Resistance Surveillance System |
HPCIA | Highest-Priority Critically Important Antibiotics |
MDR | Multidrug Resistant |
MRSA | Methicillin-Resistant S. aureus |
MRSP | Methicillin-Resistant S. pseudointermedius |
US | United States of America |
VER | Vancomycin-Resistant Enterococcus |
XDR | Extensively Drug Resistant |
Appendix A
Category A—AVOID |
Aminopenicillins |
Ketolides |
Monobactams |
Rifamycins (except rifaximin) |
Carboxypenicillin and ureidopenicillin (including combinations with lactamase inhibitors) |
Carbapenems |
Lipopeptides |
Oxazolidinones |
Riminophenazines |
Sulfones |
Streptogramins |
Drugs used solely for tuberculosis and mycobacterial diseases |
Other cephalosporins and penems (including 3rd-generation cephalosporins with β-lactamase inhibitors) |
Glycopeptides |
Glycylcyclines |
Phosphonic acid and derivates |
Pseudomonic acids |
Substances newly authorized in human medicine |
Category B—Restrict |
Cephalosporins 3rd and 4th generation, except combinations with β-lactamase inhibitors |
Polymyxins |
Quinolones (fluoroquinolones and others) |
Category C—Caution |
Aminoglycosides (except spectinomycin) |
Aminopenicillins in combination with β-lactamase inhibitors |
Cephalosporins 1st and 2nd generation and cephamycins |
Amphenicols |
Lincosamides |
Pleuromutilins |
Macrolides |
Rifamycins (only rifaximin) |
Category D—Prudence |
Aminopenicillins, without β-lactamase inhibitors |
Tetracyclines |
Natural narrow-spectrum penicillins (β-lactamase-sensitive penicillins) |
Aminoglycosides (only spectinomycin) |
Anti-staphylococcal penicillins (β-lactamase-resistant penicillins) |
Sulphonamides, dihydrofolate reductase inhibitors, and combinations |
Cyclic peptides |
Nitroimidazoles |
Steroid antibacterials |
Nitrofuran derivates |
References
- Joosten, P.; Ceccarelli, D.; Odent, E.; Sarrazin, S.; Graveland, H.; Van Gompel, L.; Battisti, A.; Caprioli, A.; Franco, A.; Wagenaar, J.A.; et al. Antimicrobial Usage and Resistance in Companion Animals: A Cross-Sectional Study in Three European Countries. Antibiotics 2020, 9, 87. [Google Scholar] [CrossRef]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Cassini, A.; Högberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable Deaths and Disability-Adjusted Life-Years Caused by Infections with Antibiotic-Resistant Bacteria in the EU and the European Economic Area in 2015: A Population-Level Modelling Analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef]
- Fariñas-Guerrero, F.; Villatoro, A.J.; Martinez-Manzanares, E.; López-Gigosos, R. Occurrence of Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus pseudintermedius Colonization among Veterinarians in the Province of Malaga, Spain. Vet. World 2024, 17, 2719–2724. [Google Scholar] [CrossRef]
- Shahbandeh, M. Pet Population in the European Union 2023, by Animal Type. Available online: https://www.statista.com/statistics/515010/pet-population-european-union-eu-by-animal/ (accessed on 3 May 2025).
- European Medicines Agency. Committee for Medicinal Products for Veterinary Use (CVMP) Reflection Paper on the Risk of Antimicrobial Resistance Transfer from Companion Animals; European Medicines Agency: Amsterdam The Netherlands, 2015. [Google Scholar]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Ballash, G.A.; Parker, E.M.; Mollenkopf, D.F.; Wittum, T.E. The One Health Dissemination of Antimicrobial Resistance Occurs in Both Natural and Clinical Environments. J. Am. Vet. Med. Assoc. 2024, 262, 451–458. [Google Scholar] [CrossRef]
- Toutain, P.L.; Ferran, A.A.; Bousquet-Melou, A.; Pelligand, L.; Lees, P. Veterinary Medicine Needs New Green Antimicrobial Drugs. Front. Microbiol. 2016, 7, 1196. [Google Scholar] [CrossRef]
- Ponzo, E.; De Gaetano, S.; Midiri, A.; Mancuso, G.; Giovanna, P.; Giuliana, D.; Zummo, S.; Biondo, C. The Antimicrobial Resistance Pandemic Is Here: Implementation Challenges and the Need for the One Health Approach. Hygiene 2024, 4, 297–316. [Google Scholar] [CrossRef]
- Røken, M.; Iakhno, S.; Haaland, A.H.; Wasteson, Y.; Bjelland, A.M. Transmission of Methicillin-Resistant Staphylococcus spp. from Infected Dogs to the Home Environment and Owners. Antibiotics 2022, 11, 637. [Google Scholar] [CrossRef] [PubMed]
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Allerton, F.; Prior, C.; Bagcigil, A.F.; Broens, E.; Callens, B.; Damborg, P.; Dewulf, J.; Filippitzi, M.E.; Carmo, L.P.; Gómez-Raja, J.; et al. Overview and Evaluation of Existing Guidelines for Rational Antimicrobial Use in Small-Animal Veterinary Practice in Europe. Antibiotics 2021, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef]
- Gwenzi, W.; Chaukura, N.; Muisa-Zikali, N.; Teta, C.; Musvuugwa, T.; Rzymski, P.; Abia, A.L.K. Insects, Rodents, and Pets as Reservoirs, Vectors, and Sentinels of Antimicrobial Resistance. Antibiotics 2021, 10, 68. [Google Scholar] [CrossRef]
- Giedraitiene, A.; Vitkauskiene, A.; Naginiene, R.; Pavilonis, A. Antibiotic Resistance Mechanisms of Clinically Important Bacteria. Medicina 2011, 47, 19. [Google Scholar] [CrossRef]
- Sultan, I.; Rahman, S.; Jan, A.T.; Siddiqui, M.T.; Mondal, A.H.; Haq, Q.M.R. Antibiotics, Resistome and Resistance Mechanisms: A Bacterial Perspective. Front. Microbiol. 2018, 9, 2066. [Google Scholar] [CrossRef]
- Tiamiyu, A.M.; Okocha, R.C.; Adesina, I.A.; Okon, E.M.; Olatoye, I.O.; Adedeji, O.B. Antimicrobial Resistance A Significant public health issue in both human and veterinary concern Public2024. Open Health 2024, 5. [Google Scholar] [CrossRef]
- Aminov, R.I. Horizontal Gene Exchange in Environmental Microbiota. Front. Microbiol. 2011, 2, 158. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Allende, A.; Álvarez-Ordóñez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; et al. Role Played by the Environment in the Emergence and Spread of Antimicrobial Resistance (AMR) through the Food Chain. EFSA J. 2021, 19, 6651. [Google Scholar] [CrossRef]
- Fisher, R.A.; Gollan, B.; Helaine, S. Persistent Bacterial Infections and Persister Cells. Nat. Rev. Microbiol. 2017, 15, 453–464. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. Management of Multidrug-Resistant Organisms in Health Care Settings, 2006. Am. J. Infect. Control 2007, 35, S165–S193. [Google Scholar] [CrossRef] [PubMed]
- Tseng, Y.C.; Wang, J.T.; Wu, F.L.L.; Chen, Y.C.; Chie, W.C.; Chang, S.C. Prognosis of Adult Patients with Bacteremia Caused by Extensively Resistant Acinetobacter baumannii. Diagn. Microbiol. Infect. Dis. 2007, 59, 181–190. [Google Scholar] [CrossRef]
- Kuo, L.C.; Teng, L.J.; Yu, C.J.; Ho, S.W.; Hsueh, P.R. Dissemination of a Clone of Unusual Phenotype of Pandrug-Resistant Acinetobacter baumannii at a University Hospital in Taiwan. J. Clin. Microbiol. 2004, 42, 1759–1763. [Google Scholar] [CrossRef]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, J.H. Efficacy of Tigecycline and Linezolid Against Pan-Drug-Resistant Bacteria Isolated From Companion Dogs in South Korea. Front. Vet. Sci. 2021, 8, 693506. [Google Scholar] [CrossRef]
- John, F. Prescott; Patrick Boerlin Antimicrobial Use in companion Animals and Good Stewardship Practice. Vet. Rec. 2017, 176, 172. [Google Scholar] [CrossRef]
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2017, 72, 957–968. [Google Scholar] [CrossRef]
- Menezes, J.; Frosini, S.-M.; Weese, S.; Perreten, V.; Schwarz, S.; Amaral, A.J.; Loeffler, A.; Pomba, C. Transmission Dynamics of ESBL/AmpC and Carbapenemase-Producing Enterobacterales between Companion Animals and Humans. Front. Microbiol. 2024, 15, 1432240. [Google Scholar] [CrossRef]
- Yordanova, R.; Platikanova, M.; Hristova, P. The Use of Antibiotics in Food Animals—A Threat to Human Health. J. IMAB Annu. Proc. Sci. Pap. 2024, 30, 5495–5499. [Google Scholar] [CrossRef]
- Simjee, S.; White, D.; McDermott, P.; Wagner, D.; Zervos, M.; Donabedian, S.; English, L.; Hayes, J.; Walker, R. Characterization of Tn1546 in Vancomycin-Resistant Enterococcus faecium Isolated from Canine Urinary Tract Infections: Evidence of Gene Exchange between Human and Animal Enterococci. J. Clin. Microbiol. 2002, 12, 4659–4665. [Google Scholar] [CrossRef]
- Leite-Martins, L.; Meireles, D.; Bessa, L.J.; Mendes, Â.; De Matos, A.J.; Martins Da Costa, P. Spread of Multidrug-Resistant Enterococcus faecalis within the Household Setting. Microb. Drug Resist. 2014, 20, 501–507. [Google Scholar] [CrossRef]
- Manian, F.A. Asymptomatic Nasal Carriage of Mupirocin-Resistant, Methicillin-Resistant Staphylococcus aureus (MRSA) in a Pet Dog Associated with MRSA Infection in Household Contacts. Clin. Infect. Dis. 2003, 36, e26–e28. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Monteiro, A.; Pereira, J.E.; Maltez, L.; Igrejas, G.; Poeta, P. MRSA in Humans, Pets and Livestock in Portugal: Where We Came from and Where We Are Going. Pathogens 2022, 11, 1110. [Google Scholar] [CrossRef] [PubMed]
- Vernaccini, M.; De Marchi, L.; Briganti, A.; Lippi, I.; Marchetti, V.; Meucci, V.; Intorre, L. Antimicrobial Use in Cats in a University Veterinary Hospital in Central Italy: A Retrospective Study. Antibiotics 2024, 13, 927. [Google Scholar] [CrossRef]
- Rendle, D.I.; Page, S.W. Antimicrobial Resistance in Companion Animals. Equine Vet. J. 2018, 50, 147–152. [Google Scholar] [CrossRef]
- Li, Y.; Fernández, R.; Durán, I.; Molina-López, R.A.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from cats and dogs From the Iberian Peninsula. Front. Microbiol. 2021, 11, 621597. [Google Scholar] [CrossRef]
- Nielsen, S.S.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales Rojas, J.L.; Gortazar Schmidt, C.; Herskin, M.; Michel, V.; et al. Assessment of Animal Diseases Caused by Bacteria Resistant to Antimicrobials: Dogs and Cats. EFSA J. 2021, 19, 6680. [Google Scholar] [CrossRef]
- Perreten, V.; Kadlec, K.; Schwarz, S.; Andersson, U.G.; Finn, M.; Greko, C.; Moodley, A.; Kania, S.A.; Frank, L.A.; Bemis, D.A.; et al. Clonal Spread of Methicillin-Resistant Staphylococcus pseudintermedius in Europe and North America: An International Multicentre Study. J. Antimicrob. Chemother. 2010, 65, 1145–1154. [Google Scholar] [CrossRef]
- da Silva, J.M.; Menezes, J.; Marques, C.; Pomba, C.F. Companion Animals—An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics 2022, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Frenzer, S.K.; Feuer, L.; Bartel, A.; Bethe, A.; Lübke-Becker, A.; Klein, B.; Bäumer, W.; Merle, R. Third-Generation Cephalosporin Resistant Escherichia coli in dogs and cats in Germany in 2019–2021. PLoS ONE 2024, 19, e0309554. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.J.; Kim, S.S.; Mollenkopf, D.F.; Mathys, D.A.; Schuenemann, G.M.; Daniels, J.B.; Wittum, T.E. Antimicrobial-Resistant Enterobacteriaceae Recovered from Companion Animal and Livestock Environments. Zoonoses Public Health 2018, 65, 519–527. [Google Scholar] [CrossRef]
- Moreira da Silva, J.; Menezes, J.; Fernandes, L.; Santos Costa, S.; Amaral, A.; Pomba, C. Carbapenemase-Producing Enterobacterales Strains Causing Infections in Companion Animals—Portugal. Microbiol. Spectr. 2024, 12, e0341623. [Google Scholar] [CrossRef] [PubMed]
- Darwich, L.; Seminati, C.; Burballa, A.; Nieto, A.; Durán, I.; Tarradas, N.; Molina-López, R.A. Antimicrobial Susceptibility of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Spain. Vet. Rec. 2021, 188, e60. [Google Scholar] [CrossRef]
- Muñoz-Ibarra, E.; Molina-López, R.A.; Durán, I.; Garcias, B.; Martín, M.; Darwich, L. Antimicrobial Resistance in Bacteria Isolated from Exotic Pets: The Situation in the Iberian Peninsula. Animals 2022, 12, 1912. [Google Scholar] [CrossRef] [PubMed]
- Francey, T.; Gaschen, F.; Nicolet, J.; Burnens, A.P. The Role of Acinetobacter baumannii as a Nosocomial Pathogen for dogs and cats in an Intensive Care Unit. J. Vet. Intern. Med. 2000, 14, 177–183. [Google Scholar] [CrossRef]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the Transmission of Antimicrobial Resistant Bacteria between Humans and Companion Animals: A Scoping Review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef]
- EMA; CVMP; CHMP. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam The Netherlands, 2019; Volume 31.
- Horvat, O.; Kovačević, Z. Human and Veterinary Medicine Collaboration: Synergistic Approach to Address Antimicrobial Resistance Through the Lens of Planetary Health. Antibiotics 2025, 14, 38. [Google Scholar] [CrossRef]
- Economou, V.; Gousia, P. Agriculture and Food Animals as a Source of Antimicrobial-Resistant Bacteria. Infect. Drug Resist. 2015, 8, 49–61. [Google Scholar] [CrossRef] [PubMed]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Georgia Ștefan, M.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef]
- Collineau, L.; Rojo-Gimeno, C.; Léger, A.; Backhans, A.; Loesken, S.; Nielsen, E.O.; Postma, M.; Emanuelson, U.; Beilage, E.G.; Sjölund, M.; et al. Herd-Specific Interventions to Reduce Antimicrobial Usage in Pig Production without Jeopardising Technical and Economic Performance. Prev. Vet. Med. 2017, 144, 167–178. [Google Scholar] [CrossRef]
- Postma, M.; Vanderhaeghen, W.; Sarrazin, S.; Maes, D.; Dewulf, J. Reducing Antimicrobial Usage in Pig Production without Jeopardizing Production Parameters. Zoonoses Public Health 2017, 64, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, T.M. Use of Antimicrobial Agents in Veterinary Medicine and Implications for Human Health. Crit. Rev. Microbiol. 2005, 31, 155–169. [Google Scholar] [CrossRef]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A Review of Antibiotic Use in Food Animals: Perspective, Policy, and Potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Calero, G.C.; Gómez, N.C.; Benomar, N.; Montoro, B.P.; Knapp, C.W.; Gálvez, A.; Abriouel, H. Deciphering Resistome and Virulome Diversity in a Porcine Slaughterhouse and Pork Products through Its Production Chain. Front. Microbiol. 2018, 9, 2099. [Google Scholar] [CrossRef]
- Aenishaenslin, C.; Häsler, B.; Ravel, A.; Parmley, J.; Stärk, K.; Buckeridge, D. Evidence Needed for Antimicrobial Resistance Surveillance Systems. Bull. World Health Organ. 2019, 97, 283–289. [Google Scholar] [CrossRef]
- Collineau, L.; Bourely, C.; Rousset, L.; Berger-Carbonne, A.; Ploy, M.C.; Pulcini, C.; Colomb-Cotinat, M. Towards One Health Surveillance of Antibiotic Resistance: Characterisation and Mapping of Existing Programmes in Humans, Animals, Food and the Environment in France, 2021. Eurosurveillance 2023, 28, 2200804. [Google Scholar] [CrossRef]
- Välitalo, P.; Kruglova, A.; Mikola, A.; Vahala, R. Toxicological Impacts of Antibiotics on Aquatic Micro-Organisms: A Mini-Review. Int. J. Hyg. Environ. Health 2017, 220, 558–569. [Google Scholar] [CrossRef]
- Liu, X.; Lu, S.; Guo, W.; Xi, B.; Wang, W. Antibiotics in the Aquatic Environments: A Review of Lakes, China. Sci. Total Environ. 2018, 627, 1195–1208. [Google Scholar] [CrossRef]
- Fastl, C.; De Carvalho Ferreira, H.C.; Babo Martins, S.; Sucena Afonso, J.; Di Bari, C.; Venkateswaran, N.; Pires, S.M.; Mughini-Gras, L.; Huntington, B.; Rushton, J.; et al. Animal Sources of Antimicrobial-Resistant Bacterial Infections in Humans: A Systematic Review. Epidemiol. Infect. 2023, 151, e143. [Google Scholar] [CrossRef]
- Watts, J.E.M.; Schreier, H.J.; Lanska, L.; Hale, M.S. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Sanganyado, E.; Gwenzi, W. Antibiotic Resistance in Drinking Water Systems: Occurrence, Removal, and Human Health Risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Buschmann, A.H.; Dölz, H.J. Aquaculture as yet Another Environmental Gateway to the Development and Globalisation of Antimicrobial Resistance. Lancet Infect. Dis. 2016, 16, e127–e133. [Google Scholar] [CrossRef]
- Santos, L.; Ramos, F. Antimicrobial Resistance in Aquaculture: Current Knowledge and Alternatives to Tackle the Problem. Int. J. Antimicrob. Agents 2018, 52, 135–143. [Google Scholar] [CrossRef]
- Ferri, G.; Lauteri, C.; Vergara, A. Antibiotic Resistance in the Finfish Aquaculture Industry: A Review. Antibiotics 2022, 11, 1574. [Google Scholar] [CrossRef]
- O’Flaherty, E.; Solimini, A.G.; Pantanella, F.; De Giusti, M.; Cummins, E. Human Exposure to Antibiotic Resistant-Escherichia coli through irrigated lettuce. Environ. Int. 2019, 122, 270–280. [Google Scholar] [CrossRef]
- Broens, E.M.; van Geijlswijk, I.M. Prudent Use of Antimicrobials in Exotic Animal Medicine. Vet. Clin. N. Am. Exot. Anim. Pract. 2018, 21, 341–353. [Google Scholar] [CrossRef]
- Loncaric, I.; Künzel, F. Sequence Type 398 Meticillin-Resistant Staphylococcus aureus Infection in a Pet Rabbit. Vet. Dermatol. 2013, 24, 370. [Google Scholar] [CrossRef]
- Lopes, K.F.C.; Moura, R.A.; de Melo Germano, R.; Pachaly, J.R.; dos Santos, I.C.; de Almeida Martins, L.; Del Vechio, M.A.C.; Gonçalves, D.D. Detection of Extended Spectrum Beta-Lactamases from a Pet Blue-Fronted-Amazon Parrot (Amazona aestiva). Acta Sci. Vet. 2018, 46, 5. [Google Scholar] [CrossRef]
- Yılmaz, E.Ş.; Dolar, A. Detection of Extended-Spectrum β-Lactamases in Escherichia coli From Cage Birds. J. Exot. Pet. Med. 2017, 26, 13–18. [Google Scholar] [CrossRef]
- Fernández, M.; Garcias, B.; Duran, I.; Molina-López, R.A.; Darwich, L. Current Situation of Bacterial Infections and Antimicrobial Resistance Profiles in Pet Rabbits in Spain. Vet. Sci. 2023, 10, 352. [Google Scholar] [CrossRef]
- Aun, E.; Kisand, V.; Laht, M.; Telling, K.; Kalmus, P.; Väli, Ü.; Brauer, A.; Remm, M.; Tenson, T. Molecular Characterization of Enterococcus Isolates from Different Sources in Estonia Reveals Potential Transmission of Resistance Genes Among Different Reservoirs. Front. Microbiol. 2021, 12, 601490. [Google Scholar] [CrossRef]
- Gómez-Ramírez, P.; Jiménez-Montalbán, P.J.; Delgado, D.; Martínez-López, E.; María-Mojica, P.; Godino, A.; García-Fernández, A.J. Development of a QuEChERS Method for Simultaneous Analysis of Antibiotics in Carcasses for Supplementary Feeding of Endangered Vultures. Sci. Total Environ. 2018, 626, 319–327. [Google Scholar] [CrossRef]
- Sousa, M.; Silva, N.; Igrejas, G.; Sargo, R.; Benito, D.; Gómez, P.; Lozano, C.; Manageiro, V.; Torres, C.; Caniça, M.; et al. Genetic Diversity and Antibiotic Resistance among Coagulase-Negative Staphylococci Recovered from Birds of Prey in Portugal. Microb. Drug Resist. 2016, 22, 727–730. [Google Scholar] [CrossRef]
- Cagnoli, G.; Bertelloni, F.; Interrante, P.; Ceccherelli, R.; Marzoni, M.; Ebani, V.V. Antimicrobial-Resistant Enterococcus Spp. in Wild Avifauna from Central Italy. Antibiotics 2022, 11, 852. [Google Scholar] [CrossRef]
- Borges, C.A.; Maluta, R.P.; Beraldo, L.G.; Cardozo, M.V.; Guastalli, E.A.L.; Kariyawasam, S.; DebRoy, C.; Ávila, F.A. Captive and Free-Living Urban Pigeons (Columba livia) from Brazil as Carriers of Multidrug-Resistant Pathogenic Escherichia coli. Vet. J. 2017, 219, 65–67. [Google Scholar] [CrossRef]
- Aslantaş, O.; Gövce, N. Investigation of Antimicrobial Resistance in Pigeons (Columba livia domestica) Using Indicator Bacteria. J. Hell. Vet. Med. Soc. 2020, 71, 2095–2106. [Google Scholar] [CrossRef]
- Wilson, T.K.; Zishiri, O.T.; El Zowalaty, M.E. Molecular Detection of Multidrug and Methicillin Resistance in Staphylococcus aureus Isolated from Wild Pigeons (Columba livia) in South Africa. One Health 2024, 18, 100671. [Google Scholar] [CrossRef]
- Chrobak-Chmiel, D.; Kwiecień, E.; Golke, A.; Dolka, B.; Adamczyk, K.; Biegańska, M.J.; Spinu, M.; Binek, M.; Rzewuska, M. Pigeons as Carriers of Clinically Relevant Multidrug-Resistant Pathogens—A Clinical Case Report and Literature Review. Front. Vet. Sci. 2021, 8, 664226. [Google Scholar] [CrossRef]
- Dolka, B.; Czopowicz, M.; Chrobak-Chmiel, D.; Ledwoń, A.; Szeleszczuk, P. Prevalence, Antibiotic Susceptibility and Virulence Factors of Enterococcus Species in Racing Pigeons (Columba livia f. Domestica). BMC Vet. Res. 2020, 16, 7. [Google Scholar] [CrossRef]
- Ledwon, A.; Rzewuska, M.; Czopowicz, M.; Kizerwetter-Swida, M.; Chrobak-Chmiel, D.; Szeleszczuk, P. Occurrence and Antimicrobial Susceptibility of Salmonella spp. Isolated from Domestic Pigeons Columba livia Var. domestica in 2007–2017 in Poland. Med. Weter. 2019, 75, 6280. [Google Scholar] [CrossRef]
- Ewers, C.; Bethe, A.; Stamm, I.; Grobbel, M.; Kopp, P.A.; Guerra, B.; Stubbe, M.; Doi, Y.; Zong, Z.; Kola, A.; et al. CTX-M-15-D-ST648 Escherichia coli from Companion Animals and Horses: Another Pandemic Clone Combining Multiresistance and Extraintestinal Virulence? J. Antimicrob. Chemother. 2014, 69, 1224–1230. [Google Scholar] [CrossRef]
- Weese, J.S.; van Duijkeren, E. Methicillin-Resistant Staphylococcus aureus and Staphylococcus pseudintermedius in Veterinary Medicine. Vet. Microbiol. 2010, 140, 418–429. [Google Scholar] [CrossRef]
- Wieler, L.H.; Ewers, C.; Guenther, S.; Walther, B.; Lübke-Becker, A. Methicillin-Resistant Staphylococci (MRS) and Extended-Spectrum Beta-Lactamases (ESBL)-Producing Enterobacteriaceae in Companion Animals: Nosocomial Infections as One Reason for the Rising Prevalence of These Potential Zoonotic Pathogens in Clinical Samples. Int. J. Med. Microbiol. 2011, 301, 635–641. [Google Scholar]
- Ma, G.C.; Worthing, K.A.; Gottlieb, T.; Ward, M.P.; Norris, J.M. Molecular Characterization of Community-Associated Methicillin-Resistant Staphylococcus aureus from Pet Dogs. Zoonoses Public Health 2020, 67, 222–230. [Google Scholar] [CrossRef]
- Morris, D.O.; Loeffler, A.; Davis, M.F.; Guardabassi, L.; Weese, J.S. Recommendations for Approaches to Meticillin-Resistant Staphylococcal Infections of Small Animals: Diagnosis, Therapeutic Considerations and Preventative Measures: Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet. Dermatol. 2017, 28, 304-e69. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Benavides, J.A.; Adell, A.D.; Paes, A.C.; Moreno-Switt, A.I. Global Prevalence and Molecular Characterization of Extended-Spectrum β-Lactamase Producing-Escherichia coli in Dogs and Cats–A Scoping Review and Meta-Analysis. One Health 2021, 12, 100236. [Google Scholar] [CrossRef]
- 2022 AVMA Pet Ownership and Demographics Sourcebook; Veterinary Economics Division, American Veterinary Medical Association: Schaumburg, IL, USA, 2022; ISBN 9781882691562.
- Bhat, A.H. Bacterial Zoonoses Transmitted by Household Pets and as Reservoirs of Antimicrobial Resistant Bacteria. Microb. Pathog. 2021, 155, 104891. [Google Scholar] [CrossRef]
- Ghasemzadeh, I.; Namazi, S. Review of Bacterial and Viral Zoonotic Infections Transmitted by Dogs. J. Med. Life 2015, 8, 1–5. [Google Scholar]
- Guardabassi, L.; Schwarz, S.; Lloyd, D.H. Pet Animals as Reservoirs of Antimicrobial-Resistant Bacteria. J. Antimicrob. Chemother. 2004, 54, 321–332. [Google Scholar] [CrossRef]
- Banerjee, A.; Batabyal, K.; Singh, A.D.; Joardar, S.N.; Dey, S.; Isore, D.P.; Sar, T.K.; Dutta, T.K.; Bandyopadhyay, S.; Samanta, I. Multi-Drug Resistant, Biofilm-Producing High-Risk Clonal Lineage of Klebsiella in Companion and Household Animals. Lett. Appl. Microbiol. 2020, 71, 580–587. [Google Scholar] [CrossRef]
- Rodrigues, J.; Poeta, P.; Martins, A.; Costa, D. The Importance of Pets as Reservoirs of Resistant Enterococcus strains, with special reference to Vancomycin. J. Vet. Med. Ser. B 2002, 49, 278–280. [Google Scholar] [CrossRef]
- Hopman, N.E.M.; Van Dijk, M.A.M.; Broens, E.M.; Wagenaar, J.A.; Heederik, D.J.J.; Van Geijlswijk, I.M. Quantifying Antimicrobial Use in Dutch Companion Animals. Front. Vet. Sci. 2019, 6, 158. [Google Scholar] [CrossRef]
- Singleton, D.A.; Sánchez-Vizcaíno, F.; Dawson, S.; Jones, P.H.; Noble, P.J.M.; Pinchbeck, G.L.; Williams, N.J.; Radford, A.D. Patterns of Antimicrobial Agent Prescription in a Sentinel Population of Canine and Feline Veterinary Practices in the United Kingdom. Vet. J. 2017, 224, 18–24. [Google Scholar] [CrossRef]
- Van Cleven, A.; Sarrazin, S.; de Rooster, H.; Paepe, D.; Van der Meeren, S.; Dewulf, J. Antimicrobial Prescribing Behaviour in Dogs and Cats by Belgian Veterinarians. Vet. Rec. 2018, 182, 324. [Google Scholar] [CrossRef]
- Wang, R.; Van Dorp, L.; Shaw, L.P.; Bradley, P.; Wang, Q.; Wang, X.; Jin, L.; Zhang, Q.; Liu, Y.; Rieux, A.; et al. The Global Distribution and Spread of the Mobilized Colistin Resistance Gene Mcr-1. Nat. Commun. 2018, 9, 1179. [Google Scholar] [CrossRef] [PubMed]
- Garcias, B.; Batalla, M.; Vidal, A.; Durán, I.; Darwich, L. Trends in Antimicrobial Resistance of Canine Otitis Pathogens in the Iberian Peninsula (2010–2021). Antibiotics 2025, 14, 328. [Google Scholar] [CrossRef] [PubMed]
- Prouillac, C. Use of Antimicrobials in a French Veterinary Teaching Hospital: A Retrospective Study. Antibiotics 2021, 10, 1369. [Google Scholar] [CrossRef]
- Churak, A.; Poolkhet, C.; Tamura, Y.; Sato, T.; Fukuda, A.; Thongratsakul, S. Evaluation of Nosocomial Infections through Contact Patterns in a Small Animal Hospital Using Social Network Analysis and Genotyping Techniques. Sci. Rep. 2021, 11, 1647. [Google Scholar] [CrossRef]
- Van Balen, J.; Kelley, C.; Nava-Hoet, R.C.; Bateman, S.; Hillier, A.; Dyce, J.; Wittum, T.E.; Hoet, A.E. Presence, Distribution, and Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in a Small Animal Teaching Hospital: A Year-Long Active Surveillance Targeting Dogs and Their Environment. Vector-Borne Zoonotic Dis. 2013, 13, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2019/of the European Parliament and of the Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC; 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006 (accessed on 25 February 2025).
- Valiakos, G.; Pavlidou, E.; Zafeiridis, C.; Tsokana, C.N.; Del Rio Vilas, V.J. Antimicrobial Practices among Small Animal Veterinarians in Greece: A Survey. One Health Outlook 2020, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Bennani, H.; Cornelsen, L.; Stärk, K.D.C.; Häsler, B. Characterisation and Mapping of the Surveillance System for Antimicrobial Resistance and Antimicrobial Use in the United Kingdom. Vet. Rec. 2021, 188, e18. [Google Scholar] [CrossRef]
- Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022; ISBN 9789240062702. Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 25 February 2025).
- Tompson, A.C.; Mateus, A.L.P.; Brodbelt, D.C.; Chandler, C.I.R. Understanding Antibiotic Use in Companion Animals: A Literature Review Identifying Avenues for Future Efforts. Front. Vet. Sci. 2021, 8, 719547. [Google Scholar] [CrossRef]
- Jessen, L.R.; Werner, M.; Singleton, D.; Prior, C.; Foroutan, F.; Ferran, A.A.; Arenas, C.; Bjørnvad, C.R.; Lavy, E.; Allerton, F.; et al. European Network for Optimization of Veterinary Antimicrobial Therapy (ENOVAT) Guidelines for Antimicrobial Use in Canine Acute Diarrhoea. Vet. J. 2024, 307, 106208. [Google Scholar] [CrossRef]
- Robbins, S.N.; Goggs, R.; Lhermie, G.; Lalonde-Paul, D.F.; Menard, J. Antimicrobial Prescribing Practices in Small Animal Emergency and Critical Care. Front. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef]
- WHO Library Cataloguing-in-Publication Data Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015; ISBN 9789241509763.
- Deusch, S.; Tilocca, B.; Camarinha-Silva, A.; Seifert, J. News in Livestock Research—Use of Omics-Technologies to Study the Microbiota in the Gastrointestinal Tract of Farm Animals. Comput. Struct. Biotechnol. J. 2015, 13, 55–63. [Google Scholar] [CrossRef]
- Tilocca, B.; Burbach, K.; Heyer, C.M.E.; Hoelzle, L.E.; Mosenthin, R.; Stefanski, V.; Camarinha-Silva, A.; Seifert, J. Dietary Changes in Nutritional Studies Shape the Structural and Functional Composition of the Pigs’ Fecal Microbiome-from Days to Weeks. Microbiome 2017, 5, 144. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage Selection Restores Antibiotic Sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef] [PubMed]
- Gordya, N.; Yakovlev, A.; Kruglikova, A.; Tulin, D.; Potolitsina, E.; Suborova, T.; Bordo, D.; Rosano, C.; Chernysh, S. Natural Antimicrobial Peptide Complexes in the Fighting of Antibiotic Resistant Biofilms: Calliphora vicina Medicinal Maggots. PLoS ONE 2017, 12, e0173559. [Google Scholar] [CrossRef]
- Lagrange, J.; Amat, J.P.; Ballesteros, C.; Damborg, P.; Grönthal, T.; Haenni, M.; Jouy, E.; Kaspar, H.; Kenny, K.; Klein, B.; et al. Pilot Testing the EARS-Vet Surveillance Network for Antibiotic Resistance in Bacterial Pathogens from Animals in the EU/EEA. Front. Microbiol. 2023, 14, 1188423. [Google Scholar] [CrossRef]
- Mestrovic, T.; Robles Aguilar, G.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Davis Weaver, N.; Han, C.; Wool, E.E.; Gershberg Hayoon, A.; Hay, S.I.; et al. Roadmap on Antimicrobial resistance for the WHO European Region 2023–2030. Lancet Public Health 2022, 7, e897–e913. [Google Scholar] [CrossRef] [PubMed]
- European Commission: A European One Health Action Plan Against Antimicrobial Resistance (AMR); European Commission: Brussels, Belgium, 2017.
- Mader, R.; Muñoz Madero, C.; Aasmäe, B.; Bourély, C.; Broens, E.M.; Busani, L.; Callens, B.; Collineau, L.; Crespo-Robledo, P.; Damborg, P.; et al. Review and Analysis of National Monitoring Systems for Antimicrobial Resistance in Animal Bacterial Pathogens in Europe: A Basis for the Development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front. Microbiol. 2022, 13, 838490. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC). Fighting Antimicrobial Resistance in EU and EEA Countries-Embracing a One Health Approach; European Centre for Disease Prevention and Control (ECDC): Solna, Sweden, 2023.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monteiro, H.I.G.; Silva, V.; de Sousa, T.; Calouro, R.; Saraiva, S.; Igrejas, G.; Poeta, P. Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach. Animals 2025, 15, 1708. https://doi.org/10.3390/ani15121708
Monteiro HIG, Silva V, de Sousa T, Calouro R, Saraiva S, Igrejas G, Poeta P. Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach. Animals. 2025; 15(12):1708. https://doi.org/10.3390/ani15121708
Chicago/Turabian StyleMonteiro, Helena I. G., Vanessa Silva, Telma de Sousa, Rita Calouro, Sónia Saraiva, Gilberto Igrejas, and Patrícia Poeta. 2025. "Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach" Animals 15, no. 12: 1708. https://doi.org/10.3390/ani15121708
APA StyleMonteiro, H. I. G., Silva, V., de Sousa, T., Calouro, R., Saraiva, S., Igrejas, G., & Poeta, P. (2025). Antimicrobial Resistance in European Companion Animals Practice: A One Health Approach. Animals, 15(12), 1708. https://doi.org/10.3390/ani15121708