Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Purification of β-Conglycinin (7S Globulin)
2.2. Bird Management and Experimental Diets
2.3. Growth Performance Data Collection
2.4. Sample Collection
2.5. Nutrient Utilization
2.6. Analysis of Digestive Enzymes
2.7. Enzyme-Linked Immunosorbent Assay
2.8. RNA Extraction and Real-Time PCR
2.9. Microbiota Community Analysis
2.10. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Utilization and Digestive Enzymes
3.3. Serum Histamine Levels and β-Conglycinin-Specific IgY and IgM Levels
3.4. Serum Cytokine Levels
3.5. Tight Junction Protein Gene Expression in Duodenal, Jejunal, and Ileal Mucosa
3.6. Serum Levels of DAO and D-LA
3.7. MUC1 and MUC2 Gene Expression in the Duodenal Mucosa
3.8. TNF-α, IL-6, and IL-10 Gene Expression in Duodenal, Jejunal, and Ileal Mucosa
3.9. Cecal Microbiota Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Qin, G.-X.; Sun, Z.-W.; Zhao, Y. Advances of Research on Glycinin and β-Conglycinin: A Review of Two Major Soybean Allergenic Proteins. Crit. Rev. Food Sci. Nutr. 2014, 54, 850–862. [Google Scholar] [CrossRef]
- Pi, X.W.; Sun, Y.X.; Fu, G.M.; Wu, Z.H.; Cheng, J.J. Effect of processing on soybean allergens and their allergenicity. Trends Food Sci. Technol. 2021, 118, 316–327. [Google Scholar] [CrossRef]
- Anderson, R.L.; Wolf, W.J. Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J. Nutr. 1995, 125, 581S–588S. [Google Scholar] [CrossRef]
- Liu, C.; Wang, H.L.; Cui, Z.M.; He, X.L.; Wang, X.S.; Zeng, X.X.; Ma, H. Optimization of extraction and isolation for 11S and 7S globulins of soybean seed storage protein. Food Chem. 2007, 102, 1310–1316. [Google Scholar] [CrossRef]
- Ju, Q.; Wang, J.; Zhou, H.; Qin, D.; Hu, X.; McClements, D.J.; Luan, G. Influence of pH and ionic strength on the physicochemical and structural properties of soybean β-conglycinin subunits in aqueous dispersions. Int. J. Biol. Macromol. 2023, 253, 126927. [Google Scholar] [CrossRef]
- Krishnan, H.B.; Kim, W.S.; Jang, S.; Kerley, M.S. All Three Subunits of Soybean β-Conglycinin Are Potential Food Allergens. J. Agric. Food Chem. 2009, 57, 938–943. [Google Scholar] [CrossRef]
- Hao, Y.; Zhan, Z.; Guo, P.; Piao, X.; Li, D. Soybean β-conglycinin-induced gut hypersensitivity reaction in a piglet model. Arch. Anim. Nutr. 2009, 63, 188–202. [Google Scholar] [CrossRef]
- Lalles, J.P.; Tukur, H.M.; Salgado, P.; Mills, E.N.; Morgan, M.R.; Quillien, L.; Levieux, D.; Toullec, R. Immunochemical studies on gastric and intestinal digestion of soybean glycinin and beta-conglycinin in vivo. J. Agric. Food Chem. 1999, 47, 2797–2806. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Xin, S.Z.; Wu, S.; Peng, C.L.; Ding, H.Y.; Feng, S.B.; Zhao, C.; Wu, J.J.; Wang, X.C. Soybean glycinin and β-conglycinin damage the intestinal barrier by triggering oxidative stress and inflammatory response in weaned piglets. Eur. J. Nutr. 2023, 62, 2841–2854. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, A.; Wang, Z.; Ai, D. Effects of glycinin and β-conglycinin on integrity and immune responses of mouse intestinal epithelial cells. J. Anim. Plant Sci. 2010, 20, 170–174. [Google Scholar]
- Zhao, Y.; Qin, G.X.; Han, R.; Wang, J.; Zhang, X.D.; Liu, D.D. β-conglycinin Reduces the Tight Junction Occludin and ZO-1 Expression in IPEC-J2. Int. J. Mol. Sci. 2014, 15, 1915–1926. [Google Scholar] [CrossRef]
- He, Y.; Liang, J.; Dong, X.; Liu, H.; Yang, Q.; Zhang, S.; Chi, S.; Tan, B. Soybean β-conglycinin and glycinin reduced growth performance and the intestinal immune defense and altered microbiome in juvenile pearl gentian groupers Epinephelus fuscoguttatus♀ × Epinephelus lanceolatus♂. Anim. Nutr. 2022, 9, 193–203. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.J.; Zhang, D.L.; Ding, H.Y.; Feng, S.B.; Zhao, C.; Wu, J.J.; Wang, X.C. Soybean Antigen Protein-Induced Intestinal Barrier Damage by Trigging Endoplasmic Reticulum Stress and Disordering Gut Microbiota in Weaned Piglets. Molecules 2023, 28, 6500. [Google Scholar] [CrossRef]
- Wang, X.C.; Geng, F.F.; Wu, J.J.; Kou, Y.A.; Xu, S.L.; Sun, Z.K.; Feng, S.B.; Ma, L.Y.; Luo, Y. Effects of β-conglycinin on growth performance, immunoglobulins and intestinal mucosal morphology in piglets. Arch. Anim. Nutr. 2014, 68, 186–195. [Google Scholar] [CrossRef]
- Luo, Q.H.; Zhou, Z.L.; Zhao, J.H.; Xu, H.; Limbu, S.M.; Xu, Q.Y. Dietary β-conglycinin induces intestinal enteritis and affects glycerophospholipid and arginine metabolism in mirror carp (Cyprinus carpio). Aquaculture 2023, 567, 739257. [Google Scholar] [CrossRef]
- Kang, D.R.; Belal, S.A.; Song, K.D.; Yoon, C.; Park, B.Y.; Shim, K.S. Soybean β-conglycinin Induces Intestinal Immune Responses in Chicks. Braz. J. Poult. Sci. 2020, 22, eRBCA-2018-0798. [Google Scholar] [CrossRef]
- Osman, A.; Bin-Jumah, M.; Abd El-Hack, M.E.; Elaraby, G.; Swelum, A.A.; Taha, A.E.; Sitohy, M.; Allam, A.A.; Ashour, E.A. Dietary supplementation of soybean glycinin can alter the growth, carcass traits, blood biochemical indices, and meat quality of broilers. Poult. Sci. 2020, 99, 820–828. [Google Scholar] [CrossRef]
- Wu, S.; Murphy, P.A.; Johnson, L.A.; Reuber, M.A.; Fratzke, A.R. Simplified Process for Soybean Glycinin and β-Conglycinin Fractionation. J. Agric. Food Chem. 2000, 48, 2702–2708. [Google Scholar] [CrossRef]
- Iwabuchi, S.; Yamauchi, F. Determination of Glycinin and β-Conglycinin in Soybean Proteins by Immunological Methods. Food Chem. 1987, 35, 200–205. [Google Scholar] [CrossRef]
- Chen, T.Y.; Xu, C.Y.; Ao, R.; Zhu, C.M.; Yao, W.; Zheng, W.J. Effects of fermented soybean meal on the growth performance, nutrient apparent metabolic rate, blood indicator and cecum microbiota of pullets. J. Nanjing Agric. Univ. 2023, 46, 333–344. [Google Scholar]
- Zhang, G.X.; Chang, Z.; Song, Z.G. Effect of Fermented Soybean Meal on The Production Performance and Immune Functionof White-Feather Broilers. Feed Ind. 2024, 45, 11–15. [Google Scholar]
- Dale, N. National Research Council Nutrient Requirements of Poultry—Ninth Revised Edition (1994). J. Appl. Poult. Res. 1994, 3, 101. [Google Scholar] [CrossRef]
- Tian, S.H.; Li, W.G. A study on extrapolation of metabolizable energy content by chemical composition of chicken feed. China Feed 1995, 02, 17–18. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Helm, R.M.; Furuta, G.T.; Stanley, J.S.; Ye, J.; Cockrell, G.; Connaughton, C.; Simpson, P.; Bannon, G.A.; Burks, A.W. A neonatal swine model for peanut allergy. J. Allergy Clin. Immunol. 2002, 109, 136–142. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- McDonald, D.; Jiang, Y.; Balaban, M.; Cantrell, K.; Zhu, Q.; Gonzalez, A.; Morton, J.T.; Nicolaou, G.; Parks, D.H.; Karst, S.M.; et al. Author Correction: Greengenes2 unifies microbial data in a single reference tree. Nat. Biotechnol. 2024, 42, 813. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Friedman, M.; Brandon, D.L. Nutritional and Health Benefits of Soy Proteins. J. Agric. Food Chem. 2001, 49, 1069–1086. [Google Scholar] [CrossRef]
- Holzhauser, T.; Wackermann, O.; Ballmer-Weber, B.K.; Bindslev-Jensen, C.; Scibilia, J.; Perono-Garoffo, L.; Utsumi, S.; Poulsen, L.K.; Vieths, S. Soybean (Glycine max) allergy in Europe: Gly m 5 (β-conglycinin) and Gly m 6 (glycinin) are potential diagnostic markers for severe allergic reactions to soy. J. Allergy Clin. Immunol. 2009, 123, 452–458. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, G.X.; Sun, Z.W.; Zhang, B.; Wang, T. Effects of glycinin and β-conglycinin on enterocyte apoptosis, proliferation and migration of piglets. Food Agric. Immunol. 2010, 21, 209–218. [Google Scholar] [CrossRef]
- Casaubon-Huguenin, M.T.; Avila-Gonzalez, E.; Vazquez-Pelaez, C.; Trigo, F.; Lascurain, R.; Zenteno, E. The effect of raw full-fat soybean and its lectin on the nutrition and pigmentation of broilers. J. Agric. Food Chem. 2004, 52, 5702–5708. [Google Scholar] [CrossRef]
- Yi, W.; Huang, Q.; Liu, Y.; Fu, S.; Shan, T. Effects of dietary multienzymes on the growth performance, digestive enzyme activity, nutrient digestibility, excreta noxious gas emission, and nutrient transporter gene expression in white feather broilers. J. Anim. Sci. 2024, 102, skae133. [Google Scholar] [CrossRef]
- Hejdysz, M.; Kaczmarek, S.A.; Kubiś, M.; Adamski, M.; Perz, K.; Rutkowski, A. The effect of faba bean extrusion on the growth performance, nutrient utilization, metabolizable energy, excretion of sialic acids and meat quality of broiler chickens. Animal 2019, 13, 1583–1590. [Google Scholar] [CrossRef]
- Abdel-Raheem, S.M.; Mohammed, E.Y.; Mahmoud, R.E.; El Gamal, M.F.; Nada, H.S.; El-Ghareeb, W.R.; Marzok, M.; Meligy, A.M.A.; Abdulmohsen, M.; Ismail, H.; et al. Double-Fermented Soybean Meal Totally Replaces Soybean Meal in Broiler Rations with Favorable Impact on Performance, Digestibility, Amino Acids Transporters and Meat Nutritional Value. Animals 2023, 13, 1030. [Google Scholar] [CrossRef]
- Gu, M.; Bai, N.; Xu, W.; Zhou, H.; Zhang, W.; Mai, K. Effects of dietary β-conglycinin and glycinin on digestive enzymes ac-tivities, intestinal histology and immune responses of juvenile turbot Scophthalmus maximus. Aquac. Res. 2016, 47, 1001–1008. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, A.; Chen, Z.; Pirzado, S.A.; Wang, Z.; Chen, J.; Zou, Z.; Liu, G. Potassium diformate affects the growth and development of broilers by improving intestinal function and digestive enzyme activity. Poult. Sci. 2024, 103, 104049. [Google Scholar] [CrossRef]
- Liu, X.; Ji, Y.; Miao, Z.; Lv, H.; Lv, Z.; Guo, Y.; Nie, W. Effects of baicalin and chlorogenic acid on growth performance, slaughter performance, antioxidant capacity, immune function and intestinal health of broilers. Poult. Sci. 2024, 103, 104251. [Google Scholar] [CrossRef]
- Cao, J.; Guo, Y.; Luo, X.; Ge, C.; Hu, Z.; Wu, L.; Lv, Y.; Lin, G.; Yu, D.; Liu, B. Interactions between enzyme preparations and trace element sources on growth performance and intestinal health of broiler chicks. Poult. Sci. 2023, 102, 103124. [Google Scholar] [CrossRef]
- Li, L.; Li, M.; Zhu, R.; Yu, Z.; Wang, J.; Duan, J.; Wang, T.; Wu, L. Effects of β-conglycinin on growth performance, antioxidant capacity and intestinal health in juvenile golden crucian carp, Carassius auratus. Aquac. Res. 2019, 50, 3231–3241. [Google Scholar] [CrossRef]
- Metcalfe, D.D.; Baram, D.; Mekori, Y.A. Mast cells. Physiol. Rev. 1997, 77, 1033–1079. [Google Scholar] [CrossRef]
- Petersen, L.J.; Mosbech, H.; Skov, P.S. Allergen-induced histamine release in intact human skin in vivo assessed by skin microdialysis technique: Characterization of factors influencing histamine releasability. J. Allergy Clin. Immunol. 1996, 97, 672–679. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Wang, Y.Z.; Liu, J.X.; Feng, J. Allergen-specific immunoglobulin, histamine and T-cell responses induced by soybean glycinin and β-conglycinin in BALB/c mice of oral sensitisation. Food Agric. Immunol. 2013, 24, 489–501. [Google Scholar] [CrossRef]
- Zheng, S.; Qin, G.; Tian, H.; Sun, Z. Role of soybean β-conglycinin subunits as potential dietary allergens in piglets. Vet. J. 2014, 199, 434–438. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Calvert, R.A.; Sutton, B.J.; Doré, K.A. IgY: A key isotype in antibody evolution. Biol. Rev. 2017, 92, 2144–2156. [Google Scholar] [CrossRef]
- Faith, R.E.; Clem, L.W. Passive cutaneous anaphylaxis in the chicken. Biological fractionation of the mediating antibody population. Immunology 1973, 25, 151–164. [Google Scholar]
- Gong, S.Q.; Ruprecht, R.M. Immunoglobulin M: An Ancient Antiviral Weapon—Rediscovered. Front. Immunol. 2020, 11, 1943. [Google Scholar] [CrossRef]
- Li, Y.; Hu, H.; Liu, J.; Yang, P.; Zhang, Y.; Ai, Q.; Xu, W.; Zhang, W.; Mai, K. Dietary soya allergen β-conglycinin induces intestinal inflammatory reactions, serum-specific antibody response and growth reduction in a carnivorous fish species, turbot Scophthalmus maximus L. Aquac. Res. 2017, 48, 4022–4037. [Google Scholar] [CrossRef]
- Sun, P.; Li, D.; Li, Z.; Dong, B.; Wang, F. Effects of glycinin on IgE-mediated increase of mast cell numbers and histamine release in the small intestine. J. Nutr. Biochem. 2008, 19, 627–633. [Google Scholar] [CrossRef]
- Parrish, A.; Boudaud, M.; Kuehn, A.; Ollert, M.; Desai, M.S. Intestinal mucus barrier: A missing piece of the puzzle in food allergy. Trends Mol. Med. 2022, 28, 36–50. [Google Scholar] [CrossRef]
- Neubauer, K.; Bednarz-Misa, I.; Walecka-Zacharska, E.; Wierzbicki, J.; Agrawal, A.; Gamian, A.; Krzystek-Korpacka, M. Oversecretion and Overexpression of Nicotinamide Phosphoribosyltransferase/Pre-B Colony-Enhancing Factor/Visfatin in Inflammatory Bowel Disease Reflects the Disease Activity, Severity of Inflammatory Response and Hypoxia. Int. J. Mol. Sci. 2019, 20, 166. [Google Scholar] [CrossRef]
- Saraiva, M.; Vieira, P.; O’Garra, A. Biology and therapeutic potential of interleukin-10. J. Exp. Med. 2019, 217, e20190418. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Zhang, Y.; Dong, J.H.; Cao, C.M.; Li, B.; Feng, S.B.; Ding, H.Y.; Ma, L.Y.; Wang, X.C.; Li, Y. Allergens and intestinal damage induced by soybean antigen proteins in weaned piglets. Ital. J. Anim. Sci. 2016, 15, 437–445. [Google Scholar] [CrossRef]
- Guo, P.; Piao, X.; Ou, D.; Li, D.; Hao, Y. Characterization of the antigenic specificity of soybean protein β-conglycinin and its effects on growth and immune function in rats. Arch. Anim. Nutr. 2007, 61, 189–200. [Google Scholar] [CrossRef]
- Yin, B.; Liu, H.; Tan, B.; Dong, X.; Chi, S.; Yang, Q.; Zhang, S. Dietary supplementation of β-conglycinin, with or without sodium butyrate on the growth, immune response and intestinal health of hybrid grouper. Sci. Rep. 2021, 11, 17298. [Google Scholar] [CrossRef]
- Duan, X.D.; Jiang, W.D.; Wu, P.; Liu, Y.; Jiang, J.; Tan, B.P.; Yang, Q.H.; Kuang, S.Y.; Tang, L.; Zhou, X.Q.; et al. Soybean β-conglycinin caused intestinal inflammation and oxidative damage in association with NF-κB, TOR and Nrf2 in juvenile grass carp (Ctenopharyngodon idella): Varying among different intestinal segments. Fish Shellfish Immunol. 2019, 95, 105–116. [Google Scholar] [CrossRef]
- Han, F.L.; Wang, X.D.; Guo, J.L.; Qi, C.L.; Xu, C.; Luo, Y.; Li, E.C.; Qin, J.G.; Chen, L.Q. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). Fish Shellfish Immunol. 2019, 84, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Zhong, L.; Liu, Y.; Zheng, S.; Xu, S.; Xie, S.; Hu, Y. Gossypol is the main limiting factor in the application of cottonseed meal in grass carp feed production: Involvement of growth, intestinal physical and immune barrier, and intestinal microbiota. Water Biol. Secur. 2024, 3, 100287. [Google Scholar] [CrossRef]
- Limbu, S.M.; Zhou, L.; Sun, S.X.; Zhang, M.L.; Du, Z.Y. Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environ. Int. 2018, 115, 205–219. [Google Scholar] [CrossRef]
- Zhao, Y.; Qin, G.; Sun, Z.; Zhang, X.; Bao, N.; Wang, T.; Zhang, B.; Zhang, B.; Zhu, D.; Sun, L. Disappearance of immunoreactive glycinin and β-conglycinin in the digestive tract of piglets. Arch. Anim. Nutr. 2008, 62, 322–330. [Google Scholar] [CrossRef]
- Anderson, R.C.; Dalziel, J.E.; Gopal, P.K.; Bassett, S.; Ellis, A.; Roy, N.C. The Role of Intestinal Barrier Function in Early Life in the Development of Colitis. In Colitis; Masayuki, F., Ed.; IntechOpen: Rijeka, Croatia, 2012; p. Ch. 1. [Google Scholar]
- González-Mariscal, L.; Betanzos, A.; Nava, P.; Jaramillo, B.E. Tight junction proteins. Prog. Biophys. Mol. Biol. 2003, 81, 1–44. [Google Scholar] [CrossRef]
- Wolvekamp, M.C.; de Bruin, R.W. Diamine oxidase: An overview of historical, biochemical and functional aspects. Dig. Dis. 1994, 12, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.J.; Liu, N.; Wu, X.H.; Wang, G.Y.; Lin, L. Glutamine alleviates heat stress-induced impairment of intestinal morphology, intestinal inflammatory response, and barrier integrity in broilers. Poult. Sci. 2018, 97, 2675–2683. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, R.; Yu, Z.; Liu, J.; Qu, Z.; Wu, L. Effects of β-Conglycinin on intestinal structure and intestinal permeability in Rhynchocypris lagowski Dybowski. Aquac. Nutr. 2021, 27, 1946–1958. [Google Scholar] [CrossRef]
- Gao, C.Z.; Koko, M.Y.; Hong, W.C.; Gankhuyag, J.; Hui, M.Z.; Gantumur, M.A.; Dong, N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. J. Agric. Food Chem. 2023, 72, 27–45. [Google Scholar] [CrossRef]
- Dhar, P.; McAuley, J. The Role of the Cell Surface Mucin MUC1 as a Barrier to Infection and Regulator of Inflammation. Front. Cell. Infect. Microbiol. 2019, 9, 117. [Google Scholar] [CrossRef]
- Weiner, H.L. Oral tolerance, an active immunologic process mediated by multiple mechanisms. J. Clin. Investig. 2000, 106, 935–937. [Google Scholar] [CrossRef]
- Chen, Y.; Inobe, J.; Marks, R.; Gonnella, P.; Kuchroo, V.K.; Weiner, H.L. Peripheral deletion of antigen-reactive T cells in oral tolerance. Nature 1995, 376, 177–180. [Google Scholar] [CrossRef]
- Yao, T.; Wang, C.; Liang, L.; Xiang, X.; Zhou, H.; Zhou, W.; Hou, R.; Wang, T.; He, L.; Bin, S.; et al. Effects of fermented sweet potato residue on nutrient digestibility, meat quality, and intestinal microbes in broilers. Anim. Nutr. 2024, 17, 75–86. [Google Scholar] [CrossRef]
- Larsen, O.F.A.; Claassen, E. The mechanistic link between health and gut microbiota diversity. Sci. Rep. 2018, 8, 2183. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.-M.; Zhou, Y.-L.; Almeida, A.; Finn, R.D.; Danchin, A.; He, L.-S. Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genom. 2020, 21, 408. [Google Scholar] [CrossRef] [PubMed]
- He, L.-S.; Zhang, P.-W.; Huang, J.-M.; Zhu, F.-C.; Danchin, A.; Wang, Y. The Enigmatic Genome of an Obligate Ancient Spiroplasma Symbiont in a Hadal Holothurian. Appl. Environ. Microbiol. 2018, 84, e01965-01917. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.H.; Tillotson, G.; MacKenzie, T.N.; Warren, C.A.; Wexler, H.M.; Goldstein, E.J.C. Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe 2024, 85, 102819. [Google Scholar] [CrossRef]
- Liu, X.M.; Mao, B.Y.; Gu, J.Y.; Wu, J.Y.; Cui, S.M.; Wang, G.; Zhao, J.X.; Zhang, H.; Chen, W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes 2021, 13, 1875796. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.P.; Sun, X.L.; Wan, X.H.; Li, K.K.; Jian, F.C.; Li, W.T.; Jiang, R.R.; Han, R.L.; Li, H.; Kang, X.T.; et al. Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. Anim. Nutr. 2021, 7, 1105–1114. [Google Scholar] [CrossRef]
- Zhu, Y.B.; Zhu, J.; Zhao, L.; Zhang, M.; Guo, H.Y.; Ren, F.Z. Effect of oral administration of Lactobacillus paracasei l9 on mouse systemic immunity and the immune response in the intestine. Arch. Biol. Sci. 2016, 68, 311–318. [Google Scholar] [CrossRef]
- Wu, X.Z.; Wen, Z.G.; Hua, J.L. Effects of dietary inclusion of Lactobacillus and inulin on growth performance, gut microbiota, nutrient utilization, and immune parameters in broilers. Poult. Sci. 2019, 98, 4656–4663. [Google Scholar] [CrossRef]
Ingredients | β-Conglycinin Level (%) | |||||
---|---|---|---|---|---|---|
CON | 1% | 2% | 3% | 4% | 5% | |
β-conglycinin | 0.00 | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 |
Corn | 62.51 | 62.55 | 62.29 | 62.12 | 61.87 | 62.22 |
Casein | 3.95 | 3.27 | 2.58 | 1.60 | 0.88 | 0.10 |
Corn DDGS | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 | 10.00 |
Corn gluten meal | 11.70 | 11.60 | 11.45 | 11.30 | 11.10 | 10.70 |
Rapeseed meal | 4.70 | 4.66 | 4.67 | 4.72 | 4.74 | 4.69 |
Soybean oil | 1.99 | 1.85 | 1.93 | 2.11 | 2.25 | 2.09 |
Limestone | 1.43 | 1.42 | 1.41 | 1.39 | 1.37 | 1.35 |
Dicalcium phosphate | 1.70 | 1.67 | 1.71 | 1.75 | 1.78 | 1.82 |
Salt | 0.17 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
L-lysine HCL | 0.83 | 0.82 | 0.81 | 0.82 | 0.82 | 0.82 |
DL-methionine | 0.09 | 0.10 | 0.10 | 0.12 | 0.13 | 0.14 |
Threonine | 0.18 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 |
Tryptophan | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 | 0.06 |
Valine | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.03 |
Vitamin–mineral premix 1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Nutrient levels 2 | ||||||
Dry matter | 88.14 | 88.19 | 88.28 | 88.37 | 88.46 | 88.51 |
Crude protein | 20.50 | 20.71 | 20.89 | 20.87 | 21.00 | 21.00 |
Ether extract | 5.13 | 4.98 | 5.03 | 5.18 | 5.28 | 5.12 |
Crude fiber | 2.90 | 2.90 | 2.90 | 2.90 | 2.90 | 2.90 |
Apparent metabolizable energy (MJ/kg) | 12.55 | 12.54 | 12.56 | 12.58 | 12.61 | 12.57 |
Calcium | 1.01 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Total phosphorus | 0.69 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 |
Lysine | 1.35 | 1.35 | 1.35 | 1.35 | 1.35 | 1.35 |
Methionine | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 | 0.54 |
Threonine | 0.90 | 0.90 | 0.91 | 0.91 | 0.90 | 0.91 |
Tryptophan | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 |
Valine | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
Gene Name | Primer Sequences (5′ to 3′) | Product Size (bp) | Accession No. |
---|---|---|---|
ZO-1 | F: TGGGCCTCACGGACTAAAAT R: GTTTGCTCCAACAAGATAGTTTGG | 118 | XM_413773.4 |
Claudin-1 | F: TGATTGCTTCCAACCAGGCT R: CACACGGCTCTCCTTGTCTA | 89 | NM_001013611.2 |
Occludin | F: ATGCACCCACTGAGTGTTGG R: GAGGTGTGGGCCTTACACAG | 93 | NM_205128.1 |
TNF-α | F: GAGCGTTGACTTGGCTGTC R: AAGCAACAACCAGCTA TGCAC | 176 | NM_214022.1 |
IL-6 | F: CGCCCAGAAATCCCTCCTC R: AGGCACTGAAACTCCTGGTC | 203 | NM_204628.1 |
IL-10 | F: AGAAATCCCTCCTCGCCAAT R: AAATAGCGAACGGCCCTCA | 121 | NM_001004414.2 |
MUC1 | F: GTGCCGACGAAAGAACTG R: TGCCAGGTTCGAGTAAGAG | 187 | XM_021089728.1 |
MUC2 | F: CTGTGTGGGGCCTGACAA R: AGTGCTTGCAGTCGAACTCA | 65 | XM_021082584.1 |
β-actin | F: CACCACAGCCGAGAGAGAAA R: CACAGGACTCCATACCCAAGAA | 215 | NM_205518.2 |
Items | β-Conglycinin Level (%) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | 1% | 2% | 3% | 4% | 5% | Treatment | Linear | Quadratic | ||
IBW (g) | 38.13 | 38.56 | 38.38 | 38.35 | 38.35 | 37.96 | 0.155 | 0.93 | 0.65 | 0.58 |
FBW (g) | 682.79 a | 603.62 b | 536.46 c | 509.99 c | 511.96 c | 527.03 c | 13.376 | <0.01 | <0.01 | <0.01 |
ADG (g/d) | 30.70 a | 26.91 b | 23.72 c | 22.46 c | 22.55 c | 23.29 c | 0.718 | <0.01 | <0.01 | <0.01 |
ADFI (g/d) | 42.83 a | 41.08 a | 37.90 b | 35.92 b | 35.95 b | 36.02 b | 0.654 | <0.01 | <0.01 | <0.01 |
FCR | 1.40 a | 1.53 b | 1.61 b | 1.61 b | 1.59 b | 1.55 b | 0.019 | <0.01 | <0.05 | <0.01 |
Items | β-Conglycinin Level (%) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | 1% | 2% | 3% | 4% | 5% | Treatment | Linear | Quadratic | ||
Nutrient utilization (%) | ||||||||||
DM | 85.92 a | 83.46 b | 83.26 b | 80.79 c | 80.21 c | 80.83 c | 0.504 | <0.01 | 0.66 | <0.05 |
CP | 78.75 a | 71.40 b | 71.09 b | 72.78 b | 71.99 b | 71.77 b | 0.682 | <0.01 | <0.05 | <0.05 |
EE | 88.07 a | 88.06 a | 83.79 b | 83.00 b | 79.63 c | 80.02 c | 0.782 | <0.01 | <0.01 | <0.01 |
CF | 69.64 a | 60.78 b | 60.39 b | 58.38 b | 61.74 b | 60.55 b | 0.858 | <0.01 | <0.01 | <0.01 |
Ash | 40.71 | 40.63 | 40.08 | 39.71 | 39.62 | 39.70 | 0.763 | 0.10 | 0.60 | 0.86 |
AME | 87.69 a | 85.01 b | 85.10 b | 83.43 b | 83.39 b | 82.97 b | 0.441 | <0.01 | 0.45 | <0.05 |
Digestive enzymes (U/mg prot) | ||||||||||
Chymotrypsin | 1.98 a | 1.93 a | 1.76 b | 1.72 b | 1.40 c | 1.50 c | 0.043 | <0.01 | <0.01 | <0.01 |
Lipase | 9.94 a | 9.54 a | 7.90 b | 7.55 b | 7.47 b | 7.23 b | 0.246 | <0.01 | <0.01 | <0.01 |
Amylase | 1.40 a | 1.33 b | 1.25 c | 1.21 c | 1.27 c | 1.24 c | 0.016 | <0.01 | <0.01 | <0.01 |
Items | β-Conglycinin Level (%) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | 1% | 2% | 3% | 4% | 5% | Treatment | Linear | Quadratic | ||
Histamine (pg/mL) | 27.34 d | 31.67 c | 31.03 c | 34.92 a | 32.38 b | 32.55 b | 0.431 | <0.01 | <0.01 | <0.01 |
IgY (OD492nm) | 0.64 d | 0.70 c | 0.71 bc | 0.76 a | 0.74 ab | 0.73 ab | 0.008 | <0.01 | <0.01 | <0.01 |
IgM (OD492nm) | 0.88 d | 0.95 c | 1.14 b | 1.26 a | 1.31 a | 1.29 a | 0.032 | <0.01 | <0.01 | <0.01 |
Items | β-Conglycinin Level (%) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | 1% | 2% | 3% | 4% | 5% | Treatment | Linear | Quadratic | ||
DAO (U/mL) | 9.19 c | 13.38 b | 14.86 a | 14.75 a | 13.47 b | 12.68 b | 0.411 | <0.01 | <0.05 | <0.01 |
D-LA (μmol/mL) | 0.15 | 0.20 | 0.19 | 0.18 | 0.18 | 0.21 | 0.010 | 0.57 | 0.20 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Yu, Z.; Wan, S.; Li, Y.; Liu, R.; Zhang, J.; Sun, Z.; Zhong, Q. Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota. Animals 2025, 15, 1701. https://doi.org/10.3390/ani15121701
Du Y, Yu Z, Wan S, Li Y, Liu R, Zhang J, Sun Z, Zhong Q. Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota. Animals. 2025; 15(12):1701. https://doi.org/10.3390/ani15121701
Chicago/Turabian StyleDu, Yusong, Zixi Yu, Shasha Wan, Yunfei Li, Rujie Liu, Jiaxuan Zhang, Zewei Sun, and Qingzhen Zhong. 2025. "Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota" Animals 15, no. 12: 1701. https://doi.org/10.3390/ani15121701
APA StyleDu, Y., Yu, Z., Wan, S., Li, Y., Liu, R., Zhang, J., Sun, Z., & Zhong, Q. (2025). Soybean β-Conglycinin Inhibits Broiler Growth and Nutrient Utilization by Inducing Allergic and Inflammatory Responses, Impairing Intestinal Barrier Integrity and Altering Cecal Microbiota. Animals, 15(12), 1701. https://doi.org/10.3390/ani15121701