Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Diets
2.2. Feeding Management
2.3. Sample Collection
2.4. Apparent Nutrient Metabolism
2.5. Jejunal Morphology
2.6. 16S rDNA Sequencing and Analysis
2.7. Data Processing and Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Apparent Nutrient Metabolism
3.3. Digestive Organ Index
3.4. Jejunal Morphology
3.5. 16S rDNA Analysis of Cecal Microbiota
4. Discussion
4.1. Growth Performance and Apparent Nutrient Metabolism
4.2. Digestive Organ Index and Jejunal Morphology
4.3. Cecal Microbiome
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ME | Metabolizable energy |
CP | Crude protein |
ADG | Average daily gain |
FCR | Feed conversion ratio |
VH | Villus height |
CD | Crypt depth |
MLT | Muscle layer thickness |
DM | Dry matter |
GE | Gross energy |
References
- Zhang, Q.; Zhang, H.; Jiang, Y.; Wang, J.; Wu, D.; Wu, C.; Che, L.; Lin, Y.; Zhuo, Y.; Luo, Z.; et al. Chromium propionate supplementation to energy- and protein-reduced diets reduces feed consumption but improves feed conversion ratio of yellow-feathered male broilers in the early period and improves meat quality. Poult. Sci. 2024, 103, 103260. [Google Scholar] [CrossRef]
- Shen, Y.; Li, W.; Kai, L.; Fan, Y.; Wu, Y.; Wang, F.; Wang, Y.; Lu, Z. Effects of dietary metabolizable energy and crude protein levels on production performance, meat quality and cecal microbiota of Taihe Silky Fowl during growing period. Poult. Sci. 2025, 104, 104654. [Google Scholar] [CrossRef]
- Ko, H.; Wang, J.; Chiu, J.W.-C.; Kim, W.K. Effects of metabolizable energy and emulsifier supplementation on growth performance, nutrient digestibility, body composition, and carcass yield in broilers. Poult. Sci. 2023, 102, 102509. [Google Scholar] [CrossRef]
- Laudadio, V.; Passantino, L.; Perillo, A.; Lopresti, G.; Passantino, A.; Khan, R.U.; Tufarelli, V. Productive performance and histological features of intestinal mucosa of broiler chickens fed different dietary protein levels. Poult. Sci. 2012, 91, 265–270. [Google Scholar] [CrossRef]
- Yu, Y.; Ai, C.; Luo, C.; Yuan, J. Effect of Dietary Crude Protein and Apparent Metabolizable Energy Levels on Growth Performance, Nitrogen Utilization, Serum Parameter, Protein Synthesis, and Amino Acid Metabolism of 1- to 10-Day-Old Male Broilers. Int. J. Mol. Sci. 2024, 25, 7431. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Huang, Y.; Li, A.; Mi, Q.; Wang, K.; Chen, L.; Zhao, Z.; Zhang, Q.; Bai, X.; Pan, H. Effects of different energy levels in low-protein diet on liver lipid metabolism in the late-phase laying hens through the gut-liver axis. J. Anim. Sci. Biotechnol. 2024, 15, 98. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, Q.; Wang, H.; Chu, Q.; Zhang, J.; Yan, Z.; Liu, H.; Geng, A. Dietary metabolizable energy and crude protein levels affect pectoral muscle composition and gut microbiota in native growing chickens. Poult. Sci. 2023, 102, 102353. [Google Scholar] [CrossRef]
- Goodarzi Boroojeni, F.; Vahjen, W.; Männer, K.; Blanch, A.; Sandvang, D.; Zentek, J. Bacillus subtilis in broiler diets with different levels of energy and protein. Poult. Sci. 2018, 97, 3967–3976. [Google Scholar] [CrossRef]
- Li, W.; Kai, L.; Wei, W.; Fan, Y.; Wang, Y.; Lu, Z. Dietary metabolizable energy and crude protein levels affect Taihe silky fowl growth performance, meat quality, and cecal microbiota during fattening. Poult. Sci. 2024, 103, 104363. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Wang, D.; Abouelezz, K.; Shi, L.; Cao, T.; Hou, G. Impact of dietary protein and energy levels on fatty acid profile, gut microbiome and cecal metabolome in native growing chickens. Poult. Sci. 2024, 103, 103917. [Google Scholar] [CrossRef]
- Wen, C.; Yan, W.; Mai, C.; Duan, Z.; Zheng, J.; Sun, C.; Yang, N. Joint contributions of the gut microbiota and host genetics to feed efficiency in chickens. Microbiome 2021, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Jackson, S.; Summers, J.D.; Leeson, S. Effect of Dietary Protein and Energy on Broiler Carcass Composition and Efficiency of Nutrient Utilization. Poult. Sci. 1982, 61, 2224–2231. [Google Scholar] [CrossRef]
- Zhao, J.P.; Chen, J.L.; Zhao, G.P.; Zheng, M.Q.; Jiang, R.R.; Wen, J. Live performance, carcass composition, and blood metabolite responses to dietary nutrient density in two distinct broiler breeds of male chickens1. Poult. Sci. 2009, 88, 2575–2584. [Google Scholar] [CrossRef]
- Candrawati, D.P.M.A. The effect of different energy-protein ratio in diets on feed digestibility and performance of native chickens in the starter phase. Int. J. Fauna Biol. Stud. 2020, 7, 92–96. [Google Scholar]
- de Los Mozos, J.; García-Ruiz, A.I.; den Hartog, L.A.; Villamide, M.J. Growth curve and diet density affect eating motivation, behavior, and body composition of broiler breeders during rearing. Poult. Sci. 2017, 96, 2708–2717. [Google Scholar] [CrossRef]
- Matus-Aragón, M.Á.; González-Cerón, F.; Salinas-Ruiz, J.; Sosa-Montes, E.; Pro-Martínez, A.; Hernández-Mendo, O.; Cuca-García, J.M.; Chan-Díaz, D.J. Productive performance of Mexican Creole chickens from hatching to 12 weeks of age fed diets with different concentrations of metabolizable energy and crude protein. Anim. Biosci. 2021, 34, 1794–1801. [Google Scholar] [CrossRef] [PubMed]
- NY/T33-2004; Chicken Breeding Standard. Ministry of Agriculture of the People’s Republic of China: Beijing, China, 2006.
- Feed Database in China. Tables of Feed Composition and Nutritive Values in China. 2015. Available online: http://www.chinafeeddata.org.cn (accessed on 9 July 2023).
- Dong, L.; Li, Y.; Zhang, Y.; Zhang, Y.; Ren, J.; Zheng, J.; Diao, J.; Ni, H.; Yin, Y.; Sun, R.; et al. Effects of organic zinc on production performance, meat quality, apparent nutrient digestibility and gut microbiota of broilers fed low-protein diets. Sci. Rep. 2023, 13, 10803. [Google Scholar] [CrossRef]
- Mera-Zúñiga, F.; Pro-Martínez, A.; Zamora-Natera, J.F.; Sosa-Montes, E.; Guerrero-Rodríguez, J.D.; Mendoza-Pedroza, S.I.; Cuca-García, J.M.; López-Romero, R.M.; Chan-Díaz, D.; Becerril-Pérez, C.M.; et al. Soybean meal substitution by dehulled lupine (Lupinus angustifolius) with enzymes in broiler diets. Asian-Australas. J. Anim. Sci. 2019, 32, 564–573. [Google Scholar] [CrossRef]
- GB/T 6435-2014; Determination of Moisture in Feeds. China National Standard, Supervision: Beijing, China, 2014.
- GB/T 45104-2024; Determination of Gross Energy in Feeds—Bomb Calorimetry. China National Standard, Supervision: Beijing, China, 2024.
- GB/T 6432-1994; Determination of Crude Protein in Feeds—Kjeldahl Method. China National Standard, Supervision: Beijing, China, 1994.
- Hou, J.; Lu, L.; Lian, L.; Tian, Y.; Zeng, T.; Ma, Y.; Li, S.; Chen, L.; Xu, W.; Gu, T.; et al. Effects of coated sodium butyrate on the growth performance, serum biochemistry, antioxidant capacity, intestinal morphology, and intestinal microbiota of broiler chickens. Front. Microbiol. 2024, 15, 1368736. [Google Scholar] [CrossRef]
- Corsetti, G.; Pasini, E.; Scarabelli, T.M.; Romano, C.; Singh, A.; Scarabelli, C.C.; Dioguardi, F.S. Importance of Energy, Dietary Protein Sources, and Amino Acid Composition in the Regulation of Metabolism: An Indissoluble Dynamic Combination for Life. Nutrients 2024, 16, 2417. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Jiang, Z.Y.; Jiang, S.Q.; Zhou, G.L.; Lin, Y.C.; Chen, F.; Hong, P. Maternal energy and protein affect subsequent growth performance, carcass yield, and meat color in Chinese Yellow broilers. Poult. Sci. 2012, 91, 1869–1878. [Google Scholar] [CrossRef]
- Dairo, F.; Adesehinwa, A.; Oluwasola, T.A.; Oluyemi, J. High and low dietary energy and protein levels for broiler chickens. Afr. J. Agric. Res. 2010, 5, 2030–2038. [Google Scholar]
- Musigwa, S.; Morgan, N.; Swick, R.A.; Cozannet, P.; Wu, S.-B. Energy dynamics, nitrogen balance, and performance in broilers fed high- and reduced-CP diets. J. Appl. Poult. Res. 2020, 29, 830–841. [Google Scholar] [CrossRef]
- Zeng, Q.F.; Cherry, P.; Doster, A.; Murdoch, R.; Adeola, O.; Applegate, T.J. Effect of dietary energy and protein content on growth and carcass traits of Pekin ducks. Poult. Sci. 2015, 94, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Frikha, M.; Safaa, H.M.; Jiménez-Moreno, E.; Lázaro, R.; Mateos, G.G. Influence of energy concentration and feed form of the diet on growth performance and digestive traits of brown egg-laying pullets from 1 to 120 days of age. Anim. Feed Sci. Technol. 2009, 153, 292–302. [Google Scholar] [CrossRef]
- Yang, H.; Yang, Z.; Wang, Z.; Wang, W.; Huang, K.; Fan, W.; Jia, T. Effects of Early Dietary Energy and Protein Dilution on Growth Performance, Nutrient Utilization and Internal Organs of Broilers. Ital. J. Anim. Sci. 2015, 14, 3729. [Google Scholar] [CrossRef]
- Peng, J.; Huang, W.; Zhang, W.; Zhang, Y.; Yang, M.; Zheng, S.; Lv, Y.; Gao, H.; Wang, W.; Peng, J.; et al. Effect of different dietary energy/protein ratios on growth performance, reproductive performance of breeding pigeons and slaughter performance, meat quality of squabs in summer. Poult. Sci. 2023, 102, 102577. [Google Scholar] [CrossRef] [PubMed]
- Incharoen, T.; Yamauchi, K.-e.; Erikawa, T.; Gotoh, H. Histology of intestinal villi and epithelial cells in chickens fed low-crude protein or low-crude fat diets. Ital. J. Anim. Sci. 2010, 9, e82. [Google Scholar] [CrossRef]
- Sun, Z.H.; He, Z.X.; Zhang, Q.L.; Tan, Z.L.; Han, X.F.; Tang, S.X.; Zhou, C.S.; Wang, M.; Yan, Q.X. Effects of energy and protein restriction, followed by nutritional recovery on morphological development of the gastrointestinal tract of weaned kids1. J. Anim. Sci. 2013, 91, 4336–4344. [Google Scholar] [CrossRef]
- Gu, X.; Li, D. Effect of dietary crude protein level on villous morphology, immune status and histochemistry parameters of digestive tract in weaning piglets. Anim. Feed Sci. Technol. 2004, 114, 113–126. [Google Scholar] [CrossRef]
- Buwjoom, T.; Yamauchi, K.; Erikawa, T.; Goto, H. Histological intestinal alterations in chickens fed low protein diet. J. Anim. Physiol. Anim. Nutr. 2010, 94, 354–361. [Google Scholar] [CrossRef]
- Houshmand, M.; Azhar, K.; Zulkifli, I.; Bejo, M.H.; Kamyab, A. Effects of nonantibiotic feed additives on performance, nutrient retention, gut pH, and intestinal morphology of broilers fed different levels of energy. J. Appl. Poult. Res. 2011, 20, 121–128. [Google Scholar] [CrossRef]
- Garçon, C.J.J.; Ellis, J.L.; Powell, C.D.; Navarro Villa, A.; Garcia Ruiz, A.I.; France, J.; de Vries, S. A dynamic model to measure retention of solid and liquid digesta fractions in chickens fed diets with differing fibre sources. Animal 2023, 17, 100867. [Google Scholar] [CrossRef]
- Yokoyama, M.T.; Carlson, J.R. Microbial metabolites of tryptophan in the intestinal tract with special reference to skatole. Am. J. Clin. Nutr. 1979, 32, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Shi, X.; Li, Z.; Shen, Y.; Shi, X.; Wang, L.; Li, G.; Yuan, Y.; Wang, J.; Zhang, Y.; et al. Possible association of Firmicutes in the gut microbiota of patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2018, 14, 3329–3337. [Google Scholar] [CrossRef] [PubMed]
- Willis, C.L.; Cummings, J.H.; Neale, G.; Gibson, G.R. Nutritional aspects of dissimilatory sulfate reduction in the human large intestine. Curr. Microbiol. 1997, 35, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Rowan, F.; Docherty, N.G.; Murphy, M.; Murphy, T.B.; Coffey, J.C.; O’Connell, P.R. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis. Ann. Surg. 2010, 252, 869–875. [Google Scholar] [CrossRef]
- Zhou, X.; Li, S.; Jiang, Y.; Deng, J.; Yang, C.; Kang, L.; Zhang, H.; Chen, X. Use of fermented Chinese medicine residues as a feed additive and effects on growth performance, meat quality, and intestinal health of broilers. Front. Vet. Sci. 2023, 10, 1157935. [Google Scholar] [CrossRef]
- Saleem, K.; Saima; Rahman, A.; Pasha, T.N.; Mahmud, A.; Hayat, Z. Effects of dietary organic acids on performance, cecal microbiota, and gut morphology in broilers. Trop. Anim. Health Prod. 2020, 52, 3589–3596. [Google Scholar] [CrossRef]
- Yin, Z.; Ji, S.; Yang, J.; Guo, W.; Li, Y.; Ren, Z.; Yang, X. Cecal Microbial Succession and Its Apparent Association with Nutrient Metabolism in Broiler Chickens. mSphere 2023, 8, e00614–00622. [Google Scholar] [CrossRef]
- Liu, Y.; Wachemo, A.C.; Yuan, H.; Li, X. Anaerobic digestion performance and microbial community structure of corn stover in three-stage continuously stirred tank reactors. Bioresour. Technol. 2019, 287, 121339. [Google Scholar] [CrossRef]
- Sebastià, C.; Folch Josep, M.; Ballester, M.; Estellé, J.; Passols, M.; Muñoz, M.; García-Casco Juan, M.; Fernández Ana, I.; Castelló, A.; Sánchez, A.; et al. Interrelation between gut microbiota, SCFA, and fatty acid composition in pigs. mSystems 2023, 9, e01049–01023. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Zhang, L.; Shang, Y.; Wang, M.; Phillips, C.J.C.; Wang, Y.; Su, C.; Lian, H.; Fu, T.; Gao, T. Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals 2022, 12, 1406. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Z.; Hu, R.; Wang, X.; Li, F.; Zhang, X.; Zou, H.; Peng, Q.; Xue, B.; Wang, L. Comparative study of the bacterial communities throughout the gastrointestinal tract in two beef cattle breeds. Appl. Microbiol. Biotechnol. 2021, 105, 313–325. [Google Scholar] [CrossRef]
- Ma, J.; Wang, J.; Mahfuz, S.; Long, S.; Wu, D.; Gao, J.; Piao, X. Supplementation of Mixed Organic Acids Improves Growth Performance, Meat Quality, Gut Morphology and Volatile Fatty Acids of Broiler Chicken. Animals 2021, 11, 3020. [Google Scholar] [CrossRef]
- Kou, R.; Wang, J.; Li, A.; Wang, Y.; Fan, D.; Zhang, B.; Fu, W.; Liu, J.; Fu, H.; Wang, S. 2′-Fucosyllactose alleviates OVA-induced food allergy in mice by ameliorating intestinal microecology and regulating the imbalance of Th2/Th1 proportion. Food Funct. 2023, 14, 10924–10940. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Yu, Y.; Zhang, R.; Wu, Y.; Yue, M.; Yang, C. Effects of Bacillus Coagulans on growth performance, antioxidant capacity, immunity function, and gut health in broilers. Poult. Sci. 2021, 100, 101168. [Google Scholar] [CrossRef] [PubMed]
- Huber-Ruano, I.; Calvo, E.; Mayneris-Perxachs, J.; Rodríguez-Peña, M.M.; Ceperuelo-Mallafré, V.; Cedó, L.; Núñez-Roa, C.; Miro-Blanch, J.; Arnoriaga-Rodríguez, M.; Balvay, A.; et al. Orally administered Odoribacter laneus improves glucose control and inflammatory profile in obese mice by depleting circulating succinate. Microbiome 2022, 10, 135. [Google Scholar] [CrossRef] [PubMed]
Items | LE | ME | HE | ||||||
---|---|---|---|---|---|---|---|---|---|
LP | MP | HP | LP | MP | HP | LP | MP | HP | |
Ingredients, % | |||||||||
Corn | 47.32 | 44.00 | 47.18 | 47.92 | 49.02 | 46.50 | 50.27 | 48.40 | 47.34 |
Soybean meal | 6.98 | 11.85 | 18.10 | 7.90 | 13.56 | 18.78 | 8.03 | 12.22 | 16.10 |
Wheat middling | 16.70 | 18.00 | 11.50 | 18.00 | 13.80 | 14.20 | 14.50 | 13.70 | 12.00 |
Soybean oil | 1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 3.40 | 3.40 | 3.40 |
Wheat barn | 21.80 | 19.17 | 16.60 | 18.20 | 15.80 | 12.90 | 16.94 | 14.94 | 12.90 |
Corn protein meal | 1.10 | 1.16 | 1.00 | 1.00 | 1.00 | 1.00 | 1.82 | 2.45 | 3.50 |
Mountain flour | 1.72 | 1.72 | 1.66 | 1.64 | 1.60 | 1.58 | 1.60 | 1.58 | 1.54 |
CaHPO4 | 1.30 | 1.26 | 1.29 | 1.38 | 1.40 | 1.38 | 1.45 | 1.44 | 1.45 |
NaCl | 0.50 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 |
Premix 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Lys | 0.34 | 0.23 | 0.09 | 0.33 | 0.22 | 0.08 | 0.35 | 0.25 | 0.17 |
L-Met | 0.24 | 0.21 | 0.18 | 0.23 | 0.20 | 0.18 | 0.24 | 0.22 | 0.20 |
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Analysis results of nutrient level 2 | |||||||||
DM, % | 94.66 | 94.06 | 94.96 | 94.63 | 95.24 | 95.50 | 96.48 | 95.60 | 94.66 |
Gross energy, J/kg | 11.27 | 11.20 | 11.20 | 11.70 | 11.70 | 11.70 | 12.12 | 12.13 | 12.13 |
CP, % | 13.53 | 15.40 | 17.26 | 14.80 | 15.33 | 16.71 | 14.44 | 15.35 | 16.93 |
Nutrient levels 3 | |||||||||
CP, % | 14.00 | 15.52 | 17.01 | 14.00 | 15.50 | 17.03 | 14.04 | 15.50 | 17.01 |
ME, MJ/kg | 11.28 | 11.28 | 11.29 | 11.70 | 11.70 | 11.69 | 12.12 | 12.12 | 12.13 |
Ca, % | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 | 1.07 |
P, % | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
AP, % | 0.35 | 0.35 | 0.37 | 0.37 | 0.39 | 0.39 | 0.39 | 0.39 | 0.40 |
Ca/P | 1.42 | 1.44 | 1.44 | 1.42 | 1.43 | 1.43 | 1.43 | 1.43 | 1.43 |
Lys, % | 0.84 | 0.84 | 0.84 | 0.84 | 0.85 | 0.84 | 0.84 | 0.84 | 0.84 |
Met, % | 0.41 | 0.41 | 0.41 | 0.41 | 0.40 | 0.41 | 0.41 | 0.41 | 0.41 |
ME, MJ/kg | CP, % | ADG/g | ADFI/g | FCR |
---|---|---|---|---|
11.28 | 14.0 | 21.52 d | 78.99 ab | 3.67 a |
15.5 | 21.26 d | 78.68 abc | 3.70 a | |
17.0 | 21.52 d | 76.93 c | 3.58 ab | |
11.70 | 14.0 | 21.66 d | 78.54 abc | 3.62 ab |
15.5 | 24.02 a | 77.66 bc | 3.23 d | |
17.0 | 22.67 c | 77.00 c | 3.40 c | |
12.12 | 14.0 | 21.58 d | 77.59 bc | 3.60 ab |
15.5 | 22.35 c | 78.71 abc | 3.52 bc | |
17.0 | 23.34 b | 79.83 a | 3.42 c | |
SEM | 0.187 | 0.240 | 0.030 | |
Main effect means | ||||
ME | 11.28 | 21.43 b | 78.20 | 3.65 a |
11.70 | 22.78 a | 77.73 | 3.42 b | |
12.12 | 22.42 a | 78.71 | 3.51 b | |
p-value | <0.001 | 0.139 | <0.001 | |
CP | 14.0 | 21.59 b | 78.37 | 3.63 a |
15.5 | 22.54 a | 78.35 | 3.49 b | |
17.0 | 22.51 a | 77.92 | 3.47 b | |
p-value | <0.001 | 0.558 | <0.001 | |
ME*CP | p-value | <0.001 | 0.011 | <0.001 |
ME, MJ/kg | CP, % | Dry Matter % | Gross Energy % | Crude Protein % |
---|---|---|---|---|
11.28 | 14.0 | 64.77 | 62.47 | 67.03 ab |
15.5 | 64.50 | 63.04 | 67.29 a | |
17.0 | 64.15 | 65.60 | 64.63 c | |
11.70 | 14.0 | 64.25 | 65.37 | 65.85 abc |
15.5 | 65.01 | 67.21 | 66.51 ab | |
17.0 | 64.42 | 67.08 | 65.56 bc | |
12.12 | 14.0 | 64.38 | 67.23 | 62.70 d |
15.5 | 63.95 | 66.33 | 64.67 c | |
17.0 | 64.19 | 66.66 | 64.32 c | |
SEM | 0.089 | 0.382 | 0.309 | |
Main effect means | ||||
ME | 11.28 | 64.47 | 63.70 b | 66.32 a |
11.70 | 64.56 | 66.55 a | 65.97 a | |
12.12 | 64.17 | 66.74 a | 63.90 b | |
p-value | 0.135 | <0.001 | <0.001 | |
CP | 14.0 | 64.46 | 65.02 | 65.19 b |
15.5 | 64.49 | 65.53 | 66.16 a | |
17.0 | 64.25 | 66.45 | 64.84 b | |
p-value | 0.418 | 0.061 | 0.018 | |
ME*CP | p-value | 0.100 | 0.071 | 0.021 |
ME, MJ/kg | CP, % | Proventriculus/g | Gizzard/g | Duodenum/cm | Jejunoileum/cm | Cecum/cm |
---|---|---|---|---|---|---|
11.28 | 14.0 | 5.37 | 39.30 ab | 22.20 b | 107.75 | 36.00 |
15.5 | 5.33 | 36.85 bc | 21.00 b | 113.50 | 38.00 | |
17.0 | 5.20 | 33.39 c | 23.20 b | 114.20 | 39.00 | |
11.70 | 14.0 | 4.98 | 35.96 bc | 22.23 b | 97.50 | 32.60 |
15.5 | 5.91 | 38.35 ab | 27.20 a | 121.25 | 33.80 | |
17.0 | 5.52 | 34.34 c | 21.50 b | 112.40 | 35.40 | |
12.12 | 14.0 | 5.57 | 39.05 ab | 22.20 b | 108.20 | 36.20 |
15.5 | 6.02 | 39.64 ab | 21.80 b | 121.00 | 38.00 | |
17.0 | 6.53 | 40.96 a | 26.25 a | 119.20 | 42.75 | |
SEM | 0.114 | 0.521 | 0.386 | 1.746 | 0.643 | |
Main effect means | ||||||
ME | 11.28 | 5.30 b | 36.54 b | 22.21 b | 112.00 | 37.54 a |
11.70 | 5.38 b | 36.07 b | 23.80 a | 110.54 | 33.93 b | |
12.12 | 6.00 a | 39.77 a | 23.21 ab | 115.79 | 38.77 a | |
p-value | 0.011 | 0.002 | 0.039 | 0.283 | <0.001 | |
CP | 14.0 | 5.30 | 38.10 | 22.21 | 104.48 b | 34.93 b |
15.5 | 5.75 | 38.28 | 23.50 | 118.58 a | 36.60 ab | |
17.0 | 5.75 | 36.23 | 23.62 | 115.27 a | 38.77 a | |
p-value | 0.100 | 0.099 | 0.055 | 0.002 | 0.011 | |
ME*CP | p-value | 0.223 | 0.034 | <0.001 | 0.471 | 0.699 |
ME, MJ/kg | CP, % | Crypt Depth, CD/μm | Villus Height, VH/μm | VH/CD | Muscle Layer Thickness, MLT/μm |
---|---|---|---|---|---|
11.28 | 14.0 | 128.19 de | 702.44 c | 5.33 bc | 271.45 ab |
15.5 | 131.10 cd | 699.45 c | 5.08 cd | 276.10 ab | |
17.0 | 135.15 abc | 628.31 d | 4.62 de | 279.55 a | |
11.70 | 14.0 | 132.51 bcd | 744.55 b | 4.98 cd | 182.95 d |
15.5 | 131.83 bcd | 799.02 a | 6.24 a | 280.55 a | |
17.0 | 130.32 cd | 684.28 c | 5.15 bc | 246.30 c | |
12.12 | 14.0 | 139.53 a | 679.58 c | 5.11 bcd | 273.67 ab |
15.5 | 123.68 e | 629.25 d | 4.39 e | 247.85 c | |
17.0 | 136.84 ab | 753.82 b | 5.60 b | 256.47 bc | |
SEM | 0.626 | 4.854 | 0.063 | 3.050 | |
Main effect means | |||||
ME | 11.28 | 132.25 | 675.89 b | 4.97 b | 275.79 a |
11.70 | 131.41 | 737.09 a | 5.44 a | 220.62 c | |
12.12 | 134.05 | 688.12 b | 5.12 b | 261.28 b | |
p-value | 0.359 | <0.001 | <0.001 | <0.001 | |
CP | 14.0 | 134.58 a | 703.63 ab | 5.12 | 227.78 b |
15.5 | 129.38 b | 714.03 a | 5.33 | 270.05 a | |
17.0 | 133.65 a | 681.29 b | 5.10 | 259.74 a | |
p-value | <0.001 | 0.043 | 0.624 | <0.001 | |
ME*CP | p-value | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Liu, J.; Yang, J.; Gao, Q.; Zhang, J.; Yang, W.; Xin, G. Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken. Animals 2025, 15, 2387. https://doi.org/10.3390/ani15162387
Guo X, Liu J, Yang J, Gao Q, Zhang J, Yang W, Xin G. Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken. Animals. 2025; 15(16):2387. https://doi.org/10.3390/ani15162387
Chicago/Turabian StyleGuo, Xin, Jie Liu, Jie Yang, Qiaoxian Gao, Juan Zhang, Wenzhi Yang, and Guosheng Xin. 2025. "Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken" Animals 15, no. 16: 2387. https://doi.org/10.3390/ani15162387
APA StyleGuo, X., Liu, J., Yang, J., Gao, Q., Zhang, J., Yang, W., & Xin, G. (2025). Effects of Dietary Metabolizable Energy and Crude Protein Levels on the Nutrient Metabolism, Gut Development and Microbiota Composition in Jingyuan Chicken. Animals, 15(16), 2387. https://doi.org/10.3390/ani15162387