Study of the Association Between SNPs and External Pelvimetry Measurements in Romanian Simmental Cattle
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Phenotypic Records
2.2. Sampling and Genotyping
2.3. Investigated Genes and SNPs
2.4. Association Analysis
3. Results
3.1. Value and Variability of Pelvic Measurements in Simmental Cattle
3.2. Analysis of SNPs Associated with Croup Height (CH)
3.3. Analysis of SNPs Associated with Buttock Height (BH)
3.4. Analysis of SNPs Associated with Rump Angle (RA)
3.5. Analysis of SNPs Associated with Croup Length (CL)
3.6. Analysis of SNPs Associated with Croup Width (CW)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BH | Buttock height |
CH | Croup height |
Chr | Chromosome |
CL | Croup length |
CW | Croup width |
F-actin | Filamentous actin |
GWAS | Genome-wide association studies |
RA | Rump angle |
SMAD | Suppressor of Mothers against Decapentaplegic |
SNP | Single nucleotide polymorphism |
TGF-β | Transforming growth factor β |
References
- Shastry, B.S. SNPs: Impact on Gene Function and Phenotype. In Single Nucleotide Polymorphisms; Komar, A., Ed.; Methods in Molecular Biology™; Humana Press: Totowa, NJ, USA, 2009; Volume 578, pp. 3–22. [Google Scholar]
- Bush, W.S.; Moore, J.H. Genome-wide association studies. PLoSComput. Biol. 2012, 8, e1002822. [Google Scholar]
- Zhang, L.; Liu, J.; Zhao, F.; Ren, H.; Xu, L.; Lu, J.; Zhang, S.; Zhang, X.; Wei, C.; Lu, G.; et al. Genome-wide association studies for growth and meat production traits in sheep. PLoS ONE 2013, 8, 66569. [Google Scholar] [CrossRef] [PubMed]
- Spătaru, I.-I.; Mizeranschi, A.E.; Bratu, D.; Torda, I.; Lungu, B.C.; Florea, B.; Huțu, I.; Mircu, C. Descriptive statistical analysis of values obtained from external pelvimetry measurements. RJVS 2025, in press. [Google Scholar]
- Neamț, R.I.; Ilie, D.E.; Șaplačan, S.; Cziszter, L.T. Effects of some factors on calves’ viability and growth in Simmental cattle. Res. J. Biotechnol. 2019, 14, 40–46. [Google Scholar]
- Abdela, N.; Ahmed, W.M. Risk factors and economic impact of dystocia in dairy cows: A systematic review. J. Reprod. Infertil. 2016, 7, 63–74. [Google Scholar]
- Gonzalez Guzman, J.L.; Lázaro, S.F.; do Nascimento, A.V.; de Abreu Santos, D.J.; Cardoso, D.F.; Becker Scalez, D.C.; Galvão de Albuquerque, L.; Hurtado Lugo, N.A.; Tonhati, H. Genome-wide association study applied to type traits related to milk yield in water buffaloes (Bubalus bubalis). J. Dairy. Sci. 2020, 103, 1642–1650. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Chen, Q.; Wang, D.; Zhang, X.; Huang, X.; Xu, L. Genome-Wide Association Study on Body Conformation Traits in Xinjiang Brown Cattle. Int. J. Mol. Sci. 2024, 25, 10557. [Google Scholar] [CrossRef]
- Jourshari, M.G.; Shadparvar, A.A.; Ghavi Hossein-Zadeh, N.; Rafeie, F.; Banabazi, M.H.; Johansson, A.M. Genome-wide association study on abdomen depth, head width, hip width, and withers height in native cattle of Guilan (Bos indicus). PLoS ONE 2023, 18, e0289612. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, I.M.; Lu, X.; Nazar, M.; Arbab, A.A.I.; Xu, T.; Yousif, M.H.; Mao, Y.; Yang, Z. Genome-wide association study identifies candidate genes associated with feet and leg conformation traits in Chinese Holstein cattle. Animals 2021, 11, 2259. [Google Scholar] [CrossRef]
- Yu, H.; Yu, S.; Guo, J.; Cheng, G.; Mei, C.; Zan, L. Genome-wide association study reveals novel loci associated with body conformation traits in Qinchuan cattle. Animals 2023, 13, 3628. [Google Scholar] [CrossRef]
- Genome Assembly Bos_taurus_UMD_3.1.1. Available online: https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000003055.6/ (accessed on 12 December 2024).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Pook, T.; Mayer, M.; Geibel, J.; Weigend, S.; Cavero, D.; Schoen, C.C.; Simianer, H. Improving Imputation Quality in BEAGLE for Crop and Livestock Data. G3 Genes Genomes Genet. 2020, 10, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.F.P.; Gaia, R.C.; Mulim, H.A.; Pinto, L.F.B.; Iung, L.H.S.; Brito, L.F.; Pedrosa, V.B. Genome-Wide Association Study of Conformation Traits in Brazilian Holstein Cattle. Animals 2024, 14, 2472. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Abdalla, I.M.; Nazar, M.; Fan, Y.; Zhang, Z.; Wu, X.; Xu, T.; Yang, Z. Genome-wide association study on reproduction-related body-shape traits of Chinese Holstein cows. Animals 2021, 11, 1927. [Google Scholar] [CrossRef]
- Bouwman, A.C.; Daetwyler, H.D.; Chamberlain, A.J.; van den Berg, I.; Ponce, C.H.; Sargolzaei, M.; Schenkel, F.S.; Sahana, G.; Gredler, B.; Pryce, J.E.; et al. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 2018, 50, 362–367. [Google Scholar] [CrossRef]
- Takasuga, A. PLAG1 and NCAPG-LCORL in livestock. Anim. Sci. J. 2016, 87, 159–167. [Google Scholar] [CrossRef]
- Lin, X.; Li, B.; Chen, Y.; Chen, H.; Liu, M. KAT2B Gene Polymorphisms Are Associated with Body Measure Traits in Four Chinese Cattle Breeds. Animals 2022, 12, 1954. [Google Scholar] [CrossRef]
- Van vanhossou, S.F.U.; Dossa, L.H.; Diogo, R.V.C.; Schlecht, E. Evaluation of the genetic diversity in indigenous cattle populations from Benin. BMC Genom. 2020, 21, 783. [Google Scholar]
- Kim, Y.-I.; Tseng, Y.-C.; Ayaz, G.; Wang, S.; Yan, H.; du Bois, W.; Yang, H.; Zhen, T.; Lee, M.P.; Liu, P.; et al. SOX9 is a key component of RUNX2-regulated transcriptional circuitry in osteosarcoma. Cell Biosci. 2023, 13, 136. [Google Scholar] [CrossRef]
- Komori, T. Regulation of skeletal development and maintenance by Runx2 and Sp7. Int. J. Mol. Sci. 2024, 25, 10102. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, H.; Pan, C.; Wang, S.; Yang, M.; Hu, C.; Wei, D.; Wang, Y.; Ma, Y. Identification of key genes in bovine muscle development by co-expression analysis. PeerJ 2023, 11, e15093. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 15 March 2025).
- William, R. psych: Procedures for Psychological, Psychometric, and Personality Research, R package version 2.4.12; Northwestern University: Evanston, IL, USA, 2024. [Google Scholar]
- Amstalden, M.; Williams, G.L. Neuroendocrine control of estrus and ovulation. In Bovine Reproduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 203–218. [Google Scholar]
- Samadi, F.; Blache, D.; Martin, G.B.; D’Occhio, M.J. Nutrition, metabolic profiles and puberty in Brahman (Bos indicus) beef heifers. Anim. Reprod. Sci. 2014, 146, 134–142. [Google Scholar] [CrossRef]
- Lim, D.; Kim, N.K.; Lee, S.H.; Park, H.S.; Cho, Y.M.; Chai, H.H.; Kim, H. Characterization of genes for beef marbling based on applying gene coexpression network. Int. J. Genom. 2014, 2014, 708562. [Google Scholar] [CrossRef]
- Jin, J.; Cardozo, T.; Lovering, R.C.; Elledge, S.J.; Pagano, M.; Harper, J.W. Systematic analysis and nomenclature of mammalian F-box proteins. Genes. Dev. 2004, 18, 2573–2580. [Google Scholar] [CrossRef] [PubMed]
- Håkansson, K.; Runker, A.E.; O’Sullivan, G.J.; Mitchell, K.J.; Waddington, J.L.; O’Tuathaigh, C.M.P. Semaphorin 6A knockout mice display abnormalities across ethologically-based topographies of exploration and in motor learning. Neurosci. Lett. 2017, 641, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, Z.; Xu, L.; Yang, J.; Gao, H.; Zhang, L.; Gao, X.; Li, J.; Zhu, B. Weighted Single-step Genome-wide Association Study for Growth Traits in Chinese Simmental Beef Cattle. Genes 2020, 11, 189. [Google Scholar] [CrossRef]
- Mancin, E.; Tuliozi, B.; Pegolo, S.; Sartori, C.; Mantovani, R. Genome-wide association study of beef traits in local alpine breed reveals the diversity of the pathways involved and the role of time stratification. Front. Genet. 2022, 12, 746665. [Google Scholar] [CrossRef]
- Machado, P.C.; Brito, L.F.; Martins, R.; Pinto, L.F.B.; Silva, M.R.; Pedrosa, V.B. Genome-wide association analysis reveals novel loci related with visual score traits in Nellore cattle raised in pasture-based systems. Animals 2022, 12, 3526. [Google Scholar] [CrossRef]
- Butterfield, N.C.; Curry, K.F.; Steinberg, J.; Dewhurst, H.; Komla-Ebri, D.; Mannan, N.S.; Adoum, A.T.; Leitch, V.D.; Logan, J.G.; Waung, J.A.; et al. Accelerating functional gene discovery in osteoarthritis. Nat. Commun. 2021, 12, 467. [Google Scholar] [CrossRef]
- Takahashi, T.; Tanaka, H.; Iguchi, N.; Kitamura, K.; Chen, Y.; Maekawa, M.; Nishimura, H.; Ohta, H.; Miyagawa, Y.; Matsumiya, K.; et al. Rosbin: A novel homeobox-like protein gene expressed exclusively in round spermatids. Biol. Reprod. 2004, 70, 1485–1492. [Google Scholar] [CrossRef]
- Rothammer, S.; Seichter, D.; Förster, M.; Medugorac, I. A genome-wide scan for signatures of differential artificial selection in ten cattle breeds. BMC Genom. 2013, 14, 908. [Google Scholar] [CrossRef]
- Liu, Y.; Lear, T.; Iannone, O.; Shiva, S.; Corey, C.; Rajbhandari, S.; Jerome, J.; Chen, B.B.; Mallampalli, R.K. The proapoptotic F-box protein Fbxl7 regulates mitochondrial function by mediating the ubiquitylation and proteasomal degradation of survivin. J. Biol. Chem. 2015, 290, 11843–11852. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wang, K.; Yang, Q.; Zhou, J.; Chen, D.; Ma, J.; Tang, Q.; Jin, L.; Xiao, W.; Jiang, A.; et al. Identifying SNPs and candidate genes for three litter traits using single-step GWAS across six parities in Landrace and Large White pigs. Physiol. Genom. 2018, 50, 1026–1035. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, K.; Arai, K.Y.; Kuramoto, Y.; Yamakawa, N.; Hasegawa, Y.; Sugino, H. Identification and characterization of a novel follistatin-like protein as a binding protein for the TGF-beta family. J. Biol. Chem. 2000, 275, 40788–40796. [Google Scholar] [CrossRef]
- Abedel-Majed, M.A.; Romereim, S.M.; Davis, J.S.; Cupp, A.S. Perturbations in lineage specification of granulosa and theca cells may alter corpus luteum formation and function. Front. Endocrinol. 2019, 10, 832. [Google Scholar] [CrossRef]
- Ambrizi, D.R.; Camara De Bem, T.H.; Nociti, R.P.; Puttini Paixao, J.V.; Chiaratti, M.R.; Sangalli, J.R.; Meirelles, F.V. Retrospective model utilizing biopsies, granulosa cells, and polar body to predict oocyte competence in bovine. bioRxiv 2023. [Google Scholar] [CrossRef]
- Schneider, T.; Neumaier, F.; Hescheler, J.; Alpdogan, S. Cav2.3 R-type calcium channels: From its discovery to pathogenic de novo CACNA1E variants: A historical perspective. Pflugers Arch. 2020, 472, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Bradley, W.D.; Koleske, A.J. Regulation of cell migration and morphogenesis by Abl-family kinases: Emerging mechanisms and physiological contexts. J. Cell Sci. 2009, 122, 3441–3454. [Google Scholar] [CrossRef]
- Khatri, A.; Wang, J.; Pendergast, A.M. Multifunctional Abl kinases in health and disease. J. Cell Sci. 2016, 129, 9–16. [Google Scholar] [CrossRef]
- Lee, J.K.; Hallock, P.T.; Burden, S.J. Abelson tyrosine-protein kinase 2 regulates myoblast proliferation and controls muscle fiber length. eLife 2017, 6, e29905. [Google Scholar] [CrossRef]
- Yoshioka, N.; Kurose, M.; Yano, M.; Tran, D.M.; Okuda, S.; Mori-Ochiai, Y.; Horie, M.; Nagai, T.; Nishino, I.; Shibata, S.; et al. Isoform-specific mutation in Dystonin-b gene causes late-onset protein aggregate myopathy and cardiomyopathy. eLife 2022, 11, e78419. [Google Scholar] [CrossRef] [PubMed]
- Cagnone, G.; Sirard, M.-A. The impact of exposure to serum lipids during in vitro culture on the transcriptome of bovine blastocysts. Theriogenology 2014, 81, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Park, J.J.; Lee, S.J.; Baek, M.; Lee, O.J.; Nam, S.; Kim, J.; Kim, J.Y.; Shin, E.Y.; Kim, E.G. FRMD6 Determines the Cell Fate towards Senescence: Involvement of the Hippo-YAP-CCN3 Axis. Cell Death Differ. 2024, 31, 1398–1409. [Google Scholar] [CrossRef] [PubMed]
- Ilie, D.E.; Mizeranschi, A.E.; Mihali, C.V.; Neamț, R.I.; Goilean, G.V.; Georgescu, O.I.; Zaharie, D.; Carabaș, M.; Huțu, I. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes 2021, 12, 1495. [Google Scholar] [CrossRef]
Variable (ACRONYM) (Measure Units) | Mean | SD | Median | Min | Max | Skewness | Kurtosis | SE |
---|---|---|---|---|---|---|---|---|
Croup height (CH) (cm) | 143.73 | 3.73 | 144 | 134 | 152.0 | −0.28 | −0.46 | 0.30 |
Buttock height (BH) (cm) | 126.47 | 3.80 | 126 | 117 | 137.0 | −0.01 | −0.08 | 0.31 |
Rump angle (RA) (°) | −0.24 | 2.17 | 0 | −6 | 5.5 | 0.09 | −0.23 | 0.18 |
Croup length (CL) (cm) | 54.25 | 1.92 | 54 | 50 | 58.0 | −0.07 | −0.63 | 0.16 |
Croup width (CW) (cm) | 56.68 | 2.35 | 57 | 50 | 62.0 | −0.18 | 0.02 | 0.19 |
SNP | Chr | Reference Allele | Alternative Allele | Contrast | Estimated Value | p-Value | Gene |
---|---|---|---|---|---|---|---|
AX-106723587 | 1 | T | G | SNP0–SNP1 | −5.74 | 0.0227 | CLSTN2 |
AX-106723587 | 1 | T | G | SNP0–SNP2 | −5.33 | 0.0467 | CLSTN2 |
AX-106750655 | 1 | T | C | SNP1–SNP2 | 1.83 | 0.0269 | CLSTN2 |
AX-185119475 | 3 | A | G | SNP0–SNP1 | −2.86 | 0.0094 | DPYD |
AX-106763743 | 4 | C | T | SNP1–SNP2 | 1.51 | 0.0489 | FBXL13 |
AX-106753436 | 7 | C | A | SNP0–SNP2 | −3.82 | 0.0487 | SEMA6A |
AX-106724218 | 14 | C | T | SNP0–SNP2 | −3.87 | 0.0031 | SAMD12 |
AX-106724218 | 14 | C | T | SNP0–SNP1 | −3.77 | 0.0019 | SAMD12 |
AX-117082755 | 14 | C | T | SNP0–SNP1 | −2.56 | 0.0261 | SAMD12 |
AX-117082755 | 14 | C | T | SNP0–SNP2 | −3.31 | 0.0060 | SAMD12 |
SNP | Chr | Reference Allele | Alternative Allele | Contrast | Estimated Value | p-Value | Gene |
---|---|---|---|---|---|---|---|
AX-106733516 | 3 | T | G | SNP0–SNP2 | −3.07 | 0.0389 | SH3BP4 |
AX-106736322 | 4 | A | G | SNP0–SNP2 | −2.70 | 0.0148 | FBXL13 |
AX-124375871 | 4 | G | A | SNP0–SNP1 | −2.17 | 0.0471 | RSBN1L |
AX-117082755 | 14 | C | T | SNP1–SNP2 | −1.77 | 0.0266 | SAMD12 |
AX-185112171 | 14 | A | G | SNP0–SNP1 | 2.25 | 0.0326 | SAMD12 |
AX-106731384 | 20 | G | A | SNP1–SNP2 | 2.23 | 0.0098 | FBXL7 |
SNP | Chr | Reference Allele | Alternative Allele | Contrast | Estimated Value | p-Value | Gene |
---|---|---|---|---|---|---|---|
AX-106751591 | 3 | A | G | SNP1–SNP2 | 1.06 | 0.0393 | DPYD |
AX-106735685 | 3 | C | T | SNP0–SNP2 | 1.89 | 0.0263 | DPYD |
AX-124348371 | 3 | G | T | SNP0–SNP2 | 2.07 | 0.0130 | DPYD |
AX-106727722 | 7 | T | C | SNP0–SNP2 | −1.57 | 0.0361 | FSTL4 |
AX-106742186 | 16 | G | A | SNP0–SNP1 | 1.36 | 0.0288 | ABL2 |
AX-106724034 | 16 | T | C | SNP0–SNP2 | −1.73 | 0.0247 | CAV2.3 |
AX-106724034 | 16 | T | C | SNP0–SNP1 | −1.63 | 0.0317 | CAV2.3 |
AX-124384326 | 23 | C | T | SNP0–SNP2 | −3.89 | 0.0330 | RUNX2 |
AX-124384326 | 23 | C | T | SNP0–SNP1 | −4.49 | 0.0119 | RUNX2 |
SNP | Chr | Reference Allele | Alternative Allele | Contrast | Estimated Value | p-Value | Gene |
---|---|---|---|---|---|---|---|
AX-106752137 | 16 | T | C | SNP0–SNP1 | 2.12 | 0.0105 | CAV2.3 |
AX-106752137 | 16 | T | C | SNP0–SNP2 | 2.26 | 0.0215 | CAV2.3 |
AX-117088037 | 23 | C | T | SNP0–SNP1 | 1.41 | 0.0375 | DST |
SNP | Chr | Reference Allele | Alternative Allele | Contrast | Estimated Value | p-Value | Gene |
---|---|---|---|---|---|---|---|
AX-106742670 | 1 | T | C | SNP1–SNP2 | 1.19 | 0.0236 | DCBLD2 |
AX-115103182 | 1 | C | T | SNP1–SNP2 | −1.27 | 0.0318 | DCBLD2 |
AX-106763243 | 10 | C | G | SNP0–SNP2 | 1.53 | 0.0320 | FRMD6 |
AX-124386523 | 10 | G | A | SNP0–SNP1 | −1.63 | 0.0157 | FRMD6 |
AX-106724034 | 16 | T | C | SNP0–SNP1 | 2.16 | 0.0050 | CAV2.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spătaru, I.-I.; Mizeranschi, A.E.; Ilie, D.E.; Torda, I.; Bratu, D.G.; Lungu, B.C.; Huțu, I.; Mircu, C. Study of the Association Between SNPs and External Pelvimetry Measurements in Romanian Simmental Cattle. Animals 2025, 15, 1586. https://doi.org/10.3390/ani15111586
Spătaru I-I, Mizeranschi AE, Ilie DE, Torda I, Bratu DG, Lungu BC, Huțu I, Mircu C. Study of the Association Between SNPs and External Pelvimetry Measurements in Romanian Simmental Cattle. Animals. 2025; 15(11):1586. https://doi.org/10.3390/ani15111586
Chicago/Turabian StyleSpătaru, Ioana-Irina, Alexandru Eugeniu Mizeranschi, Daniela Elena Ilie, Iuliu Torda, Daniel George Bratu, Bianca Cornelia Lungu, Ioan Huțu, and Călin Mircu. 2025. "Study of the Association Between SNPs and External Pelvimetry Measurements in Romanian Simmental Cattle" Animals 15, no. 11: 1586. https://doi.org/10.3390/ani15111586
APA StyleSpătaru, I.-I., Mizeranschi, A. E., Ilie, D. E., Torda, I., Bratu, D. G., Lungu, B. C., Huțu, I., & Mircu, C. (2025). Study of the Association Between SNPs and External Pelvimetry Measurements in Romanian Simmental Cattle. Animals, 15(11), 1586. https://doi.org/10.3390/ani15111586