Reproductive Management of Peruvian Grunt Anisotremus scapularis in Captivity: Spawning Dynamics, Hatching Rate, and Larval Survival
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Broodstock Maintenance
2.2. Natural Spawning and Egg Collection
2.3. Egg Quality, Hatching Rate, and Survival
2.4. Data Analyses
3. Results
3.1. Annual Spawning Dynamics
3.2. Temporal Patterns of Spawning Efficiency
3.3. Relationship Between Spawning and Abiotic Parameters
4. Discussion
4.1. Annual Pattern of Spawning Dynamics
4.2. Temporal Patterns of Spawning Efficiency
4.3. Relationship Between Spawning and Abiotic Parameters
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bromage, N.R.; Roberts, R.J. Broodstock Management and Egg and Larval Quality, 1st ed.; Bromage, N.R., Roberts, R.J., Eds.; Blackwell Science: Stirling, UK, 1995; Volume 1, ISBN 9780632035915. [Google Scholar]
- Bhujel, R.C. A Review of Strategies for the Management of Nile Tilapia (Oreochromis niloticus) Broodfish in Seed Production Systems, Especially Hapa-Based Systems. Aquaculture 2000, 181, 37–59. [Google Scholar] [CrossRef]
- Izquierdo, M.S.; Fernández-Palacios, H.; Tacon, A.G.J. Effect of Broodstock Nutrition on Reproductive Performance of Fish. Aquaculture 2001, 197, 25–42. [Google Scholar] [CrossRef]
- Çelik, P.; Cirik, Ş. Embryonic and Larval Development of Serpae Tetra Hyphessobrycon eques (Steindachner, 1882). Aquac. Res. 2020, 51, 292–306. [Google Scholar] [CrossRef]
- Chirichigno, N.; Cornejo, R.M. Catálogo Comentado de los Peces Marinos del Perú, 1st ed.; IMARPE: Callao, Peru, 2001; Volume 1. [Google Scholar]
- Angel, A.; Ojeda, F.P. Structure and Trophic Organization of Subtidal Fish Assemblages on the Northern Chilean Coast: The Effect of Habitat Complexity. Mar. Ecol. Prog. Ser. 2001, 217, 81–91. [Google Scholar] [CrossRef]
- Alaica, A.K. Partial and Complete Deposits and Depictions: Social Zooarchaeology, Iconography and the Role of Animals in Late Moche Peru. J. Archaeol. Sci. Rep. 2018, 20, 864–872. [Google Scholar] [CrossRef]
- Shoji, K. La Utilización de La Fauna Durante El Período Arcaico a Partir de Los Macro Restos de Cruz Verde, Costa Norte Del Perú. Archaeobios 2022, 1, 64–87. [Google Scholar]
- Medicina, J.A. Pesca Artesanal En El Perú Artisanal Fishing in Peru. Ing. Ind. 2014, 32, 27–58. [Google Scholar] [CrossRef]
- Ministerio de la Producción. Anuario Estadístico Pesquero y Acuícola 2022; Ministerio de la Producción: Lima, Peru, 2022. [Google Scholar]
- Castagnino, F.; Estévez, R.A.; Caillaux, M.; Velez-Zuazo, X.; Gelcich, S. Local Ecological Knowledge (LEK) Suggests Overfishing and Sequential Depletion of Peruvian Coastal Groundfish. Mar. Coast. Fish. 2023, 15, 10272. [Google Scholar] [CrossRef]
- IMARPE. Pesquera y Perspectiva de Manejo de Chita Anisotremus scapularis en el Litoral Peruano; IMARPE: Lima, Peru, 2018. [Google Scholar]
- Laínez del Pozo, D.; Jones, P.J. Governance Analysis of Two Historical MPAs in Northern Peru: Isla Lobos de Tierra and Isla Lobos de Afuera. Mar. Policy 2021, 127, 104096. [Google Scholar] [CrossRef]
- Castro, A.; Cota, N.; Montes, M.; Carrera, L. Evaluación de La Densidad de Cultivo En El Crecimiento y Supervivencia de Larvas de Chita Anisotremus scapularis (TSCHUDI, 1846) En Laboratorio. Mar. Fish. Sci. (MAFIS) 2021, 35, 7–18. [Google Scholar] [CrossRef]
- Castro, A.; Cota, N.; Montes, M.; Flores, L.; Gaspar, W.; Carrera, L. Efecto de La Inclusión de Vitaminas En El Enriquecimiento Del Alimento Vivo Sobre Crecimiento y Supervivencia de Larvas de Chita Anisotremus scapularis (Tschudi, 1861). Bol. Inst. Mar Perú 2022, 37, 302–318. [Google Scholar] [CrossRef]
- Espinoza-Ramos, L.A.; Quispe-Mayta, J.M.; Chili-Layme, V.; Nande, M. Effect of Stocking Density on Growth, Feed Efficiency, and Survival in Peruvian Grunt Anisotremus scapularis (Tschudi, 1846): From Fingerlings to Juvenile. Aquac. J. 2022, 2, 13–22. [Google Scholar] [CrossRef]
- Carrera, L.J.; Fontes, J.G.; Dos Santos, G.R.C.; Padilha, M.C.; Opazo, R. Reproductive Cycle of the Female Anisotremus scapularis (Tschudi, 1846) on the Marine Coast of Callao, Basic Knowledge to Go towards Its Aquaculture. Front. Mar. Sci. 2022, 9, 1033718. [Google Scholar] [CrossRef]
- Pepe-Victoriano, R.; Huanacuni, J.I.; Presa, P.; Espinoza-Ramos, L.A. Reproductive Management: Conditioning, Spawning and Development of Peruvian Grunt Anisotremus scapularis in Southern Peru. PeerJ 2025, 13, e18655. [Google Scholar] [CrossRef]
- Mhalhel, K.; Levanti, M.; Abbate, F.; Laurà, R.; Guerrera, M.C.; Aragona, M.; Porcino, C.; Briglia, M.; Germanà, A.; Montalbano, G. Review on Gilthead Seabream (Sparus aurata) Aquaculture: Life Cycle, Growth, Aquaculture Practices and Challenges. J. Mar. Sci. Eng. 2023, 11, 2008. [Google Scholar] [CrossRef]
- Jeney, Z.; Bekh, V. Technical Manual on Broodstock Management of Common Carp and Chinese Herbivorous Fish; Fisheries and Aquaculture Circular No. 1188; FAO: Ankara, Turkey, 2020. [Google Scholar]
- Kincaid, H.L.; Stanley, J.C. Atlantic Salmon Brood Stock Management and Breeding Handbook; U.S. Department of the Interior, Fish and Wildlife Service: Falls Church, VA, USA, 1989; Volume 89, pp. 1–42.
- Espinoza-Ramos, L.A.; Chilli Layme, V.F.; Pepe Victoriano, R.G.; Pino Choqueapaza, J.; Contreras Mamani, Z. Captura, Acondicionamiento y Primer Desove de Sargo Anisotremus scapularis En La Región Tacna. Cienc. Desarro. 2019, 68–74. [Google Scholar] [CrossRef]
- Palacios-Fuentes, P.; Díaz-Astudillo, M.; Reculé, M.A.; Patricio Ojeda, F.; Landaeta, M.F. Presettlement Schooling Behaviour of a Rocky Fish in a Shallow Area. Is It Related to Local Environmental Conditions? Sci. Mar. 2020, 84, 243–252. [Google Scholar] [CrossRef]
- Lindeman, K.C.; Lee, T.N.; Wilson, W.D.; Claro, R.; Ault, J.S. Transport of Larvae Originating in Southwest Cuba and the Dry Tortugas: Evidence for Partial Retention in Grunts and Snappers. In 52nd Gulf and Caribbean Fisheries Institute; Creswell, R.L., Ed.; Gulf and Caribbean Fisheries Institute: Marathon, FL, USA, 2001; pp. 732–747. [Google Scholar]
- Zar, J.H. Biostatistical Analysis, 5th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 9780131008465. [Google Scholar]
- Ryan, M.; Harminto, H.; Amalia, A.R.; Agusta, R.; Yernawilis, Y. The Tiger Grouper Hatchery Techniques In The Lampung Marine Aquaculture Centre, Indonesia. Int. J. Progress. Sci. Technol. 2023, 41, 346. [Google Scholar] [CrossRef]
- Molnár, T.; Csuvár, A.; Benedek, I.; Molnár, M.; Kabai, P. Domestication Affects Exploratory Behaviour of Pikeperch (Sander Lucioperca L.) during the Transition to Pelleted Food. PLoS ONE 2018, 13, e0196118. [Google Scholar] [CrossRef]
- Teletchea, F. Fish Domestication in Aquaculture: Reassessment and Emerging Questions. Cybium 2019, 43, 7–15. [Google Scholar] [CrossRef]
- Schmidt, N.; Garate-Olaizola, M.; Laurila, A. Acclimatizing Laboratory-Reared Hatchling Cod (Gadus morhua) to Salinity Conditions in the Baltic Sea. Aquaculture 2024, 579, 740255. [Google Scholar] [CrossRef]
- De Silva, S.; Soto, D. El Cambio Climático y La Acuicultura: Repercusiones Potenciales, Mitigación y Adaptación; FAO Documento Técnico de Pesca y Acuicultura N° 530; FAO: Rome, Italy, 2009. [Google Scholar]
- Pepe-Victoriano, R.; Araya, M.; Faúndez, V. Efecto de La Temperatura En La Supervivencia Embrionaria y Primeros Estadios Larvales de Psetta maxima. Int. J. Morphol. 2012, 30, 1551–1557. [Google Scholar] [CrossRef]
- Albecker, M.A.; Wilkins, L.G.E.; Krueger-Hadfield, S.A.; Bashevkin, S.M.; Hahn, M.W.; Hare, M.P.; Kindsvater, H.K.; Sewell, M.A.; Lotterhos, K.E.; Reitzel, A.M. Does a complex life cycle affect adaptation to environmental change? Genome-informed insights for characterizing selection across complex life cycle. Proc. R. Soc. B Biol. Sci. 2021, 288, 1–10. [Google Scholar] [CrossRef]
- Holt, G.; Riley, C. Laboratory Spawning of Coral Reef Fishes: Effects of Temperature and Photoperiod. UJNR Tech. Rep. 2001, 28, 33–38. [Google Scholar]
- Pepe-Victoriano, R.; Miranda, L.; Ortega, A.; Merino, G. First Natural Spawning of Wild-Caught Premature South Pacific Bonito (Sarda Chiliensis Chiliensis, Cuvier 1832) Conditioned in Recirculating Aquaculture System and a Descriptive Characterization of Their Eggs Embryonic Development. Aquac. Rep. 2021, 19, 100563. [Google Scholar] [CrossRef]
- Kinoshita, M.; Murata, K.; Naruse, K.; Tanaka, M. Medaka: Biology, Management, and Experimental Protocols; Wiley: Hoboken, NJ, USA, 2009; ISBN 9780813808710. [Google Scholar]
- Liu, Z.; Jin, Y.; Yang, L.; Yuan, X.; Yan, L.; Zhang, Y.; Zhang, H.; Xu, M.; Song, X.; Tang, J.; et al. Improving Prediction for Potential Spawning Areas from a Two-Step Perspective: A Comparison of Multi-Model Approaches for Sparse Egg Distribution. J. Sea Res. 2024, 197, 102460. [Google Scholar] [CrossRef]
- Roo, J.; Fernández-Palacios, H.; Hernández-Cruz, C.M.; Mesa-Rodriguez, A.; Schuchardt, D.; Izquierdo, M. First Results of Spawning and Larval Rearing of Longfin Yellowtail Seriola rivoliana as a Fast-Growing Candidate for European Marine Finfish Aquaculture Diversification. Aquac. Res. 2014, 45, 689–700. [Google Scholar] [CrossRef]
- Castro, A.; Cota, N.; Montes, M.; Carrera, L. Protocolo Del Cultivo Larvario de Chita Anisotremus scapularis En Condiciones de Laboratorio. Inst. Mar. Perú 2021, 48, 20–24. [Google Scholar]
- Ilyasova, V.; Melchenkov, E.; Kanid’eva, T.; Vorob’ev, A.; Archibasov, A. Prognosis of an Interspawning Interval Duration in Sturgeons Reared at a Tank Uniflow Fish Farm. Rybovod. Rybn. Hozjajstvo (Fish Breed. Fish.) 2020, 6, 65–72. [Google Scholar] [CrossRef]
- Jordan, C.M.; Garside, E.T. Upper Lethal Temperatures of Threespine Stickleback, Gasterosteus aculeatus (L.), in Relation to Thermal and Osmotic Acclimation, Ambient Salinity, and Size. Can. J. Zool. 1972, 50, 1405–1411. [Google Scholar] [CrossRef]
- Sugiarto, H.; Sri Widodo, M.; Soeprijanto, A. The Effect of Temperature to Incubation Period, Hatching Rate, Normality and Larvae Size of Lutjanus johnii Bloch, 1792. J. Life Sci. Biomed. 2015, 5, 110–115. [Google Scholar]
- Viader-Guerrero, M.; Guzmán-Villanueva, L.T.; Spanopoulos-Zarco, M.; Estrada-Godínez, J.A.; Maldonado-García, D.; Gracia-López, V.; Omont, A.; Maldonado-García, M. Effects of Temperature on Hatching Rate and Early Larval Development of Longfin Yellowtail Seriola rivoliana. Aquac. Rep. 2021, 21, 100843. [Google Scholar] [CrossRef]
- Tucker, J.W. Marine Fish Culture; Springer: Boston, MA, USA, 1998; ISBN 978-1-4613-7227-1. [Google Scholar]
- El-Hakim, A.; El-Gamal, E. Effect of Temperature on Hatching and Larval Development and Mucin Secretion in Common Carp, Cyprinus carpio (Linnaeus, 1758). Glob. Vet. 2009, 3, 80–90. [Google Scholar]
- Neuheimer, A.B.; MacKenzie, B.R.; Payne, M.R. Temperature-Dependent Adaptation Allows Fish to Meet Their Food across Their Species’ Range. Sci. Adv. 2018, 4, aar4349. [Google Scholar] [CrossRef]
- Lazo, J.P.; Dinis, M.T.; Holt, G.J.; Faulk, C.; Arnold, C.R. Co-Feeding Microparticulate Diets with Algae: Toward Eliminating the Need of Zooplankton at First Feeding in Larval Red Drum (Sciaenops ocellatus). Aquaculture 2000, 188, 339–351. [Google Scholar] [CrossRef]
- Bobe, J.; Labbé, C. Egg and Sperm Quality in Fish. Gen. Comp. Endocrinol. 2010, 165, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.L. Reproductive Seasonality in Teleosts: Environmental Influences. In The Quarterly Review of Biology; University of Chicago Press: Chicago, IL, USA, 1992; Volume 67, p. 222. [Google Scholar]
- Benoît, H.P.; Pepin, P. Interaction of Rearing Temperature and Maternal Influence on Egg Development Rates and Larval Size at Hatch in Yellowtail Flounder (Pleuronectes ferrugineus). Can. J. Fish. Aquat. Sci. 1999, 56, 785–794. [Google Scholar] [CrossRef]
- Anita, N.S.; Dewi, N.N. Evaluation of Hatching Rate, Growth Performance, and Survival Rate of Cantang Grouper (Epinephelus fuscoguttatus × lanceolatus) in Concrete Pond at Situbondo, East Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2020, 441, 012019. [Google Scholar] [CrossRef]
- Reading, B.J.; Andersen, L.K.; Ryu, Y.-W.; Mushirobira, Y.; Todo, T.; Hiramatsu, N. Oogenesis and Egg Quality in Finfish: Yolk Formation and Other Factors Influencing Female Fertility. Fishes 2018, 3, 45. [Google Scholar] [CrossRef]
- Mlingi, F.T.; Puvanendran, V.; Burgerhout, E.; Mommens, M.; Hansen, Ø.J.; Míguez, M.F.; Presa, P.; Tveiten, H.; Tomkiewicz, J.; Kjørsvik, E. Influence of Short-to-Continuous and Continuous Photoperiods Combined with Elevated Temperatures on Sexual Maturation in Lumpfish (Cyclopterus lumpus, L. 1758). Aquaculture 2025, 598, 741981. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Farrell, A.P. Physiology and Climate Change. Science 2008, 322, 690–692. [Google Scholar] [CrossRef] [PubMed]
- Matusse, N.R.D.; Pita, A.; Peréz, M.; Inés Trucco, M.; Peleteiro, J.B.; Presa, P. First-Generation Genetic Drift and Inbreeding Risk in Hatchery Stocks of the Wreckfish Polyprion americanus. Aquaculture 2016, 451, 125–136. [Google Scholar] [CrossRef]
Spawning Season | S | D | L ± SD (cm) | W ± SD (g) | No. Egg | SS ± SD (×106 Eggs) | FE ± SD (×106 Eggs) | HR ± SD (%) | SR ± SD (%) |
---|---|---|---|---|---|---|---|---|---|
2016−2017 | 94 | 203 | 37.00 ± 5.21 | 1236.50 ± 745.73 | 23,280,055 | 3.33 ± 2.92 a | 3.02 ± 2.79 a | 79.07 ± 12.49 a | 75.09 ± 7.78 a |
2017−2018 | 54 | 155 | 37.50 ± 5.08 | 1310.25 ±788.36 | 9,476,836 | 1.58 ± 1.30 a | 1.06 ± 0.85 a | 66.25 ± 14.62 a | 58.38 ± 17.98 ab |
2018−2019 1 | 56 | 130 | - | - | 15,438,822 | 3.09 ± 1.29 a | 2.30 ± 0.90 a | 76.39 ± 16.37 a | 67.65 ± 21.02 abc |
2019−2020 | 57 | 157 | 41.53 ± 4.59 | 1439.75 ± 569.09 | 8,832,161 | 1.47 ± 0.75 a | 1.12 ± 0.77 a | 71.69 ± 11.17 a | 38.59 ± 7.72 bc |
2020−2021 | 58 | 153 | 42.81 ± 4.39 | 1481.23 ± 474.16 | 10,192,337 | 1.70 ± 1.35 a | 1.35 ± 1.21 a | 66.31 ± 19.72 a | 48.75 ± 27.27 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huanacuni, J.I.; Pepe-Victoriano, R.; Presa, P.; Espinoza-Ramos, L.A. Reproductive Management of Peruvian Grunt Anisotremus scapularis in Captivity: Spawning Dynamics, Hatching Rate, and Larval Survival. Animals 2025, 15, 1579. https://doi.org/10.3390/ani15111579
Huanacuni JI, Pepe-Victoriano R, Presa P, Espinoza-Ramos LA. Reproductive Management of Peruvian Grunt Anisotremus scapularis in Captivity: Spawning Dynamics, Hatching Rate, and Larval Survival. Animals. 2025; 15(11):1579. https://doi.org/10.3390/ani15111579
Chicago/Turabian StyleHuanacuni, Jordan I., Renzo Pepe-Victoriano, Pablo Presa, and Luis A. Espinoza-Ramos. 2025. "Reproductive Management of Peruvian Grunt Anisotremus scapularis in Captivity: Spawning Dynamics, Hatching Rate, and Larval Survival" Animals 15, no. 11: 1579. https://doi.org/10.3390/ani15111579
APA StyleHuanacuni, J. I., Pepe-Victoriano, R., Presa, P., & Espinoza-Ramos, L. A. (2025). Reproductive Management of Peruvian Grunt Anisotremus scapularis in Captivity: Spawning Dynamics, Hatching Rate, and Larval Survival. Animals, 15(11), 1579. https://doi.org/10.3390/ani15111579