Genetically Modified Animal-Derived Products: From Regulations to Applications
Simple Summary
Abstract
1. Introduction
2. Evolution and Status of the Legislation on GMOs
2.1. Definition of GMO
2.2. Intentional Genomic Alterations (IGAs)
2.3. FDA Criteria of Evaluation
3. GM Animals for Direct Human Consumption
3.1. AquAdvantage® Salmon (AAS)
3.1.1. The Regulatory Process
3.1.2. More than 20 Years of Regulatory Journey
3.1.3. Difference Between AAS and Other Fish
3.1.4. AAS Food Safety Assessment
3.1.5. Labeling
3.1.6. Risk Managing Assessment of AAS
Doble Barrier of Physical and Biological Containment
3.1.7. Evaluation of Environmental Effects
3.1.8. Consumer Acceptance and Public Perception of AAS
3.2. Slick Cattle
Risk Assessment of Slick Cattle
4. GM Animals for Multiple Purposes (Direct Human Consumption and Xenotransplantation)
4.1. GalSafe® Pig (GSP)
4.2. Environmental Risk Assessment as Food Product
4.3. Food Safety Assessment of GSP
4.4. Timeline of GSP Development
5. GM Animals as Bioreactors
5.1. Different Types of GM Animals Used as Bioreactors
5.2. GM Animals Used as Models for Human Diseases
6. GM Animals for Pest Control
6.1. Oxitec Mosquito
6.2. Risk Assessment of Oxitec Mosquito
6.3. Specific Regulation for GM Mosquitoes Related Products
7. Cases in Other Jurisdictions
7.1. Japan
7.2. Argentina
7.3. EU
7.4. China
8. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AAS | AquAdvantage® Salmon |
AGS | Alpha-Gal Syndrome |
BLA | Biologics License Application |
CAC | Codex Alimentarius Commission |
Cas9 | Caspase 9 |
CBER | Center for Biologics Evaluation and Research |
CDC | Center for Disease Control and Prevention |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeats |
CVM | Center for Veterinary Medicine |
DSB | Double Strand Break |
EC | European Commission |
ECCC | Environment and Climate Change Canada |
ECJ | European Court of Justice |
EFSA | European Food Safety Authority |
EPA | Environmental Protection Agency |
FD&C Act | Federal Food, Drug, and Cosmetic Act |
FDA | Food and Drug Administration |
FIFRA | Federal Insecticide, Fungicide, and Rodenticide Act |
FONSI | Findings of No Significant Impact |
GFP | Green Fluorescent Protein |
GGTA1 | Glycoprotein Galactosyl-Transferase Alpha-1,3 |
GH | Growth Hormone |
GM | Genetically Modified |
GMO | Genetically Modified Organism |
GSP | GalSafe® Pig |
IGAs | Intentional Genomic Alterations |
IGF1 | Insulin-Like Growth Factor 1 |
INAD | Investigational New Animal Drug Application |
LMO | Living Modified Organism |
NAD | New Animal Drug |
NADA | New Animal Drug Application |
NEPA | National Environmental Policy Act |
ODM | Oligonucleotide Directed Mutagenesis |
op5a | Anti-Freeze Protein |
opAFP | Anti-Freeze Protein Gene Promoter |
PRLR | Prolactin Receptor Gene |
RAS | Recirculating Aquaculture Systems |
rDNA | Recombinant DNA |
RFP | Red Fluorescent Protein |
rhFVII | Recombinant Human Factor VII |
rhLAL | Recombinant Human Lysosomal Acid Lipase |
SDN | Site-Directed Nucleases |
SITs | Sterile Insect Techniques |
TALENs | Transcription Activator-Like Effector Nucleases |
tTAV | Tetracycline Repressible Trans-Activator Protein |
UNOS | United Network for Organ Sharing |
USDA AMS | U.S. Department of Agriculture’s Agricultural Marketing Service |
USDA | U.S. Department of Agriculture |
VMAC | Veterinary Medical Advisory Committee |
ZFNs | Zinc Finger Nucleases |
References
- Diamond, J. Evolution, Consequences and Future of Plant and Animal Domestication. Nature 2002, 418, 700–707. [Google Scholar] [CrossRef]
- Lawrence, T.L.J.; Fowler, V.R.; Novakofski, J.E. General Aspects of Growth; CABI: Wallingford, UK, 2012; pp. 1–5. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sakhrani, D.; Tymchuk, W.E.; Rise, M.L.; Goh, B. Domestication and Growth Hormone Transgenesis Cause Similar Changes in Gene Expression in Coho Salmon (Oncorhynchus kisutch). Proc. Natl. Acad. Sci. USA 2009, 106, 3047–3052. [Google Scholar] [CrossRef] [PubMed]
- Houston, R.D.; Bean, T.P.; Macqueen, D.J.; Gundappa, M.K.; Jin, Y.H.; Jenkins, T.L.; Selly, S.L.C.; Martin, S.A.M.; Stevens, J.R.; Santos, E.M.; et al. Harnessing Genomics to Fast-Track Genetic Improvement in Aquaculture. Nat. Rev. Genet. 2020, 21, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, N.; Benfey, T.; Giddings, L.V.; Jackson, J.; Lichatowich, J.; Lovejoy, T.; Stanford, J.; Thurow, R.F.; Williams, R.N. Biotechnology Can Help Us Save the Genetic Heritage of Salmon and Other Aquatic Species. Proc. Natl. Acad. Sci. USA 2022, 119, 2–5. [Google Scholar] [CrossRef]
- Turnbull, C.; Lillemo, M.; Hvoslef-Eide, T.A.K. Global Regulation of Genetically Modified Crops Amid the Gene Edited Crop Boom—A Review. Front. Plant Sci. 2021, 12, 630396. [Google Scholar] [CrossRef]
- Brookes, G.; Barfoot, P. The Global Income and Production Effects of Genetically Modified (GM) Crops 1996-2011. GM Crops Food 2013, 4, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Mathur, V.; Javid, L.; Kulshrestha, S.; Mandal, A.; Reddy, A.A. World Cultivation of Genetically Modified Crops: Opportunities and Risks BT—Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 45–87. ISBN 978-3-319-58679-3. [Google Scholar]
- ISAAA. Executive Summary Biotech Crops Drive Socio-Economic Development and Sustainable Environment in the New Frontier. ISAAA Brief No. 55 2019, 22. Available online: https://www.isaaa.org/resources/publications/briefs/55/executivesummary/default.asp (accessed on 15 May 2025).
- ISAAA. Global Status of Commercialized Biotech/GM Crops in 2018. ISAAA Brief No. 54. ISAAA: Ithaca NY 2018. Available online: https://www.isaaa.org/resources/publications/briefs/54/ (accessed on 15 May 2025).
- Lievens, A.; Petrillo, M.; Querci, M.; Patak, A. Genetically Modified Animals: Options and Issues for Traceability and Enforcement. Trends Food Sci. Technol. 2015, 44, 159–176. [Google Scholar] [CrossRef]
- Hammer, R.E.; Pursel, V.G.; Rexroad, C.E.; Wall, R.J.; Bolt, D.J.; Ebert, K.M.; Palmiter, R.D.; Brinster, R.L. Production of Transgenic Rabbits, Sheep and Pigs by Microinjection. Nature 1985, 315, 680–683. [Google Scholar] [CrossRef]
- Denning, C.; Burl, S.; Ainslie, A.; Bracken, J.; Dinnyes, A.; Fletcher, J.; King, T.; Ritchie, M.; Ritchie, W.A.; Rollo, M.; et al. Deletion of the Alpha(1,3)Galactosyl Transferase (GGTA1) Gene and the Prion Protein (PrP) Gene in Sheep. Nat. Biotechnol. 2001, 19, 559–562. [Google Scholar] [CrossRef]
- Lyall, J.; Irvine, R.M.; Sherman, A.; McKinley, T.J.; Núñez, A.; Purdie, A.; Outtrim, L.; Brown, I.H.; Rolleston-Smith, G.; Sang, H.; et al. Suppression of Avian Influenza Transmission in Genetically Modified Chickens. Science 2011, 331, 223–226. [Google Scholar] [CrossRef]
- Richt, J.A.; Kasinathan, P.; Hamir, A.N.; Castilla, J.; Sathiyaseelan, T.; Vargas, F.; Sathiyaseelan, J.; Wu, H.; Matsushita, H.; Koster, J.; et al. Production of Cattle Lacking Prion Protein. Nat. Biotechnol. 2007, 25, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Lai, L.; Kang, J.X.; Li, R.; Wang, J.; Witt, W.T.; Yong, H.Y.; Hao, Y.; Wax, D.M.; Murphy, C.N.; Rieke, A.; et al. Generation of Cloned Transgenic Pigs Rich in Omega-3 Fatty Acids. Nat. Biotechnol. 2006, 24, 435–436. [Google Scholar] [CrossRef]
- Saeki, K.; Matsumoto, K.; Kinoshita, M.; Suzuki, I.; Tasaka, Y.; Kano, K.; Taguchi, Y.; Mikami, K.; Hirabayashi, M.; Kashiwazaki, N.; et al. Functional Expression of a Delta12 Fatty Acid Desaturase Gene from Spinach in Transgenic Pigs. Proc. Natl. Acad. Sci. USA 2004, 101, 6361–6366. [Google Scholar] [CrossRef] [PubMed]
- Bawden, C.S.; Sivaprasad, A.V.; Verma, P.J.; Walker, S.K.; Rogers, G.E. Expression of Bacterial Cysteine Biosynthesis Genes in Transgenic Mice and Sheep: Toward a New in Vivo Amino Acid Biosynthesis Pathway and Improved Wool Growth. Transgenic Res. 1995, 4, 87–104. [Google Scholar] [CrossRef]
- Brophy, B.; Smolenski, G.; Wheeler, T.; Wells, D.; L’Huillier, P.; Laible, G. Cloned Transgenic Cattle Produce Milk with Higher Levels of Beta-Casein and Kappa-Casein. Nat. Biotechnol. 2003, 21, 157–162. [Google Scholar] [CrossRef]
- Wu, X.; Ouyang, H.; Duan, B.; Pang, D.; Zhang, L.; Yuan, T.; Xue, L.; Ni, D.; Cheng, L.; Dong, S.; et al. Production of Cloned Transgenic Cow Expressing Omega-3 Fatty Acids. Transgenic Res. 2012, 21, 537–543. [Google Scholar] [CrossRef]
- Saunders, R.L.; Fletcher, G.L.; Hew, C.L. Smolt Development in Growth Hormone Transgenic Atlantic Salmon1For the Department of Fisheries and Oceans, Government of Canada.1. Aquaculture 1998, 168, 177–193. [Google Scholar] [CrossRef]
- Bleck, G.T.; White, B.R.; Miller, D.J.; Wheeler, M.B. Production of Bovine α-Lactalbumin in the Milk of Transgenic Pigs1. J. Anim. Sci. 1998, 76, 3072–3078. [Google Scholar] [CrossRef]
- Tong, J.; Wei, H.; Liu, X.; Hu, W.; Bi, M.; Wang, Y.; Li, Q.; Li, N. Production of Recombinant Human Lysozyme in the Milk of Transgenic Pigs. Transgenic Res. 2011, 20, 417–419. [Google Scholar] [CrossRef]
- Wheeler, M.B.; Bleck, G.T.; Donovan, S.M. Transgenic Alteration of Sow Milk to Improve Piglet Growth and Health. Reprod. Suppl. 2001, 58, 313–324. [Google Scholar] [CrossRef]
- Whyte, J.J.; Prather, R.S. Genetic Modifications of Pigs for Medicine and Agriculture. Mol. Reprod. Dev. 2011, 78, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.H.; Sundström, L.F.; Leggatt, R.A. Assessing Ecological and Evolutionary Consequences of Growth-Accelerated Genetically Engineered Fishes. Bioscience 2015, 65, 685–700. [Google Scholar] [CrossRef]
- Ormandy, E.H.; Dale, J.; Griffin, G. Genetic Engineering of Animals: Ethical Issues, Including Welfare Concerns. Can. Vet. J. 2011, 5, 544–550. [Google Scholar]
- Frewer, L. PEGASUS (Public Perception of Genetically Modified Animals—Science, Utility and Society). Available online: https://cordis.europa.eu/project/id/226465/reporting (accessed on 5 May 2025).
- Wells, D.J. Genetically Modified Animals and Pharmacological Research. In Comparative and Veterinary Pharmacology; Cunningham, F., Elliott, J., Lees, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 213–226. ISBN 978-3-642-10324-7. [Google Scholar]
- Eriksson, D.; Custers, R.; Edvardsson Björnberg, K.; Hansson, S.O.; Purnhagen, K.; Qaim, M.; Romeis, J.; Schiemann, J.; Schleissing, S.; Tosun, J.; et al. Options to Reform the European Union Legislation on GMOs: Post-Authorization and Beyond. Trends Biotechnol. 2020, 38, 465–467. [Google Scholar] [CrossRef]
- Bratlie, S.; Halvorsen, K.; Myskja, B.K.; Mellegård, H.; Bjorvatn, C.; Frost, P.; Heiene, G.; Hofmann, B.; Holst-Jensen, A.; Holst-Larsen, T.; et al. A Novel Governance Framework for GMO. EMBO Rep. 2019, 20, e47812. [Google Scholar] [CrossRef]
- Aven, T. Risk Assessment and Risk Management: Review of Recent Advances on Their Foundation. Eur. J. Oper. Res. 2016, 253, 1–13. [Google Scholar] [CrossRef]
- Tim, L. Outside Looking In: Understanding the Role of Science in Regulation. Environ. Health Perspect. 2009, 117, A104–A110. [Google Scholar] [CrossRef]
- Eckerstorfer, M.F.; Engelhard, M.; Heissenberger, A.; Simon, S.; Teichmann, H. Plants Developed by New Genetic Modification Techniques-Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries. Front. Bioeng Biotechnol 2019, 7, 26. [Google Scholar] [CrossRef]
- Mackenzie, R.; Burhenne-Guilmin, F.; La Viña, A.G.M.; Werksman, J.D.; Ascencio, A.; Kinderlerer, J.; Kummer, K.; Tapper, R. An Explanatory Guide to the Cartagena Protocol on Biosafety; IUCN: Gland, Switzerland; Cambridge, UK, 2003; ISBN 2831706718. [Google Scholar]
- Metje-Sprink, J.; Menz, J.; Modrzejewski, D.; Sprink, T. DNA-Free Genome Editing: Past, Present and Future. Front. Plant Sci. 2018, 9, 1957. [Google Scholar] [CrossRef]
- Bruce Wallace, R.; Schold, M.; Johnson, M.J.; Dembek, P.; Itakura, K. Oligonucleotide Directed Mutagenesis of the Human β-Globin Gene: A General Method for Producing Specific Point Mutations in Cloned DNA. Nucleic Acids Res. 1981, 9, 3647–3656. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome Editing with Engineered Zinc Finger Nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Poirot, L.; Galetto, R.; Smith, J.; Montoya, G.; Duchateau, P.; Pâques, F. Meganucleases and Other Tools for Targeted Genome Engineering: Perspectives and Challenges for Gene Therapy. Curr. Gene Ther. 2011, 11, 11–27. [Google Scholar] [CrossRef]
- Sun, N.; Zhao, H. Transcription Activator-like Effector Nucleases (TALENs): A Highly Efficient and Versatile Tool for Genome Editing. Biotechnol. Bioeng. 2013, 110, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Pacher, M.; Puchta, H. From Classical Mutagenesis to Nuclease-Based Breeding—Directing Natural DNA Repair for a Natural End-Product. Plant J. 2017, 90, 819–833. [Google Scholar] [CrossRef]
- Lusser, M.; Parisi, C.; Plan, D.; Rodríguez-Cerezo, E. Deployment of New Biotechnologies in Plant Breeding. Nat. Biotechnol. 2012, 30, 231–239. [Google Scholar] [CrossRef]
- Podevin, N.; Davies, H.V.; Hartung, F.; Nogué, F.; Casacuberta, J.M. Site-Directed Nucleases: A Paradigm Shift in Predictable, Knowledge-Based Plant Breeding. Trends Biotechnol. 2013, 31, 375–383. [Google Scholar] [CrossRef]
- Holme, I.B.; Gregersen, P.L.; Brinch-Pedersen, H. Induced Genetic Variation in Crop Plants by Random or Targeted Mutagenesis: Convergence and Differences. Front. Plant Sci. 2019, 10, 1468. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.R.; Lee, S.S.; Miller, M.F.; Lombardi, H.A. CRISPR, Animals, and FDA Oversight: Building a Path to Success. Proc. Natl. Acad. Sci. USA 2021, 118, e2004831117. [Google Scholar] [CrossRef]
- Slaymaker, I.M.; Gao, L.; Zetsche, B.; Scott, D.A.; Yan, W.X.; Zhang, F. Rationally Engineered Cas9 Nucleases with Improved Specificity. Science 2016, 351, 84–88. [Google Scholar] [CrossRef]
- Kleinstiver, B.P.; Pattanayak, V.; Prew, M.S.; Tsai, S.Q.; Nguyen, N.T.; Zheng, Z.; Joung, J.K. High-Fidelity CRISPR–Cas9 Nucleases with No Detectable Genome-Wide off-Target Effects. Nature 2016, 529, 490–495. [Google Scholar] [CrossRef]
- Chen, J.S.; Dagdas, Y.S.; Kleinstiver, B.P.; Welch, M.M.; Sousa, A.A.; Harrington, L.B.; Sternberg, S.H.; Joung, J.K.; Yildiz, A.; Doudna, J.A. Enhanced Proofreading Governs CRISPR–Cas9 Targeting Accuracy. Nature 2017, 550, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.K.; Jeong, E.; Lee, J.; Jung, M.; Shin, E.; Kim, Y.; Lee, K.; Jung, I.; Kim, D.; Kim, S.; et al. Directed Evolution of CRISPR-Cas9 to Increase Its Specificity. Nat. Commun. 2018, 9, 3048. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 Is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Abudayyeh, O.O.; Gootenberg, J.S.; Essletzbichler, P.; Han, S.; Joung, J.; Belanto, J.J.; Verdine, V.; Cox, D.B.T.; Kellner, M.J.; Regev, A.; et al. RNA Targeting with CRISPR–Cas13. Nature 2017, 550, 280–284. [Google Scholar] [CrossRef]
- Strecker, J.; Ladha, A.; Gardner, Z.; Schmid-Burgk, J.L.; Makarova, K.S.; Koonin, E.V.; Zhang, F. RNA-Guided DNA Insertion with CRISPR-Associated Transposases. Science 2019, 365, 48–53. [Google Scholar] [CrossRef]
- Klompe, S.E.; Vo, P.L.H.; Halpin-Healy, T.S.; Sternberg, S.H. Transposon-Encoded CRISPR–Cas Systems Direct RNA-Guided DNA Integration. Nature 2019, 571, 219–225. [Google Scholar] [CrossRef]
- Kim, E.; Koo, T.; Park, S.W.; Kim, D.; Kim, K.; Cho, H.-Y.; Song, D.W.; Lee, K.J.; Jung, M.H.; Kim, S.; et al. In Vivo Genome Editing with a Small Cas9 Orthologue Derived from Campylobacter Jejuni. Nat. Commun. 2017, 8, 14500. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Chu, A.H.Y.; Bao, S.; Hoang, D.A.; Kebede, F.T.; Xiong, W.; Ji, M.; Shi, J.; Zheng, Z. Rationally Engineered Staphylococcus Aureus Cas9 Nucleases with High Genome-Wide Specificity. Proc. Natl. Acad. Sci. USA 2019, 116, 20969–20976. [Google Scholar] [CrossRef] [PubMed]
- Rees, H.A.; Liu, D.R. Base Editing: Precision Chemistry on the Genome and Transcriptome of Living Cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef]
- Hess, G.T.; Tycko, J.; Yao, D.; Bassik, M.C. Methods and Applications of CRISPR-Mediated Base Editing in Eukaryotic Genomes. Mol. Cell 2017, 68, 26–43. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Randolph, P.B.; Davis, J.R.; Sousa, A.A.; Koblan, L.W.; Levy, J.M.; Chen, P.J.; Wilson, C.; Newby, G.A.; Raguram, A.; et al. Search-and-Replace Genome Editing without Double-Strand Breaks or Donor DNA. Nature 2019, 576, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Kumlehn, J.; Pietralla, J.; Hensel, G.; Pacher, M.; Puchta, H. The CRISPR/Cas Revolution Continues: From Efficient Gene Editing for Crop Breeding to Plant Synthetic Biology. J. Integr. Plant Biol. 2018, 60, 1127–1153. [Google Scholar] [CrossRef]
- Sedeek, K.E.M.; Mahas, A.; Mahfouz, M. Plant Genome Engineering for Targeted Improvement of Crop Traits. Front. Plant Sci. 2019, 10, 114. [Google Scholar] [CrossRef] [PubMed]
- Copper, S. Following the Framework: Intentional Genomic Alterations in Animals. J. Food Law. Policy 2023, 18, 117–138. [Google Scholar]
- Solomon, S.M. Genome Editing in Animals: Why FDA Regulation Matters. Nat. Biotechnol. 2020, 38, 142–143. [Google Scholar] [CrossRef]
- FDA/CVM Heritable Intentional Genomic Alterations in Animals: Risk-Based Approach. Guidance for Industry #187A. Available online: https://www.fda.gov/media/74614/download (accessed on 24 July 2024).
- Pozzebon, M.; Guldbrandtsen, B.; Sandøe, P. Gene Editing Cattle for Enhancing Heat Tolerance: A Welfare Review of the “PRLR-SLICK Cattle” Case. Nanoethics 2024, 18, 6. [Google Scholar] [CrossRef]
- FDA/CVM. Heritable Intentional Genomic Alterations in Animals: The Approval Process Draft Guidance for Industry #187B. Available online: https://www.fda.gov/media/150658/download (accessed on 30 September 2024).
- EPA/FDA/USDA. The Coordinated Framework for the Regulation of Biotechnology. Available online: https://www.epa.gov/sites/default/files/2017-01/documents/2017_coordinated_framework_update.pdf (accessed on 23 July 2024).
- Lee, S.S. FDA’s Regulation of Intentional Genomic Alterations in Animals Using Genome Editing. Available online: https://www.nist.gov/system/files/documents/2018/05/21/5_stella_lee_cvm_april_2018.pdf (accessed on 1 October 2024).
- Fletcher, G.L.; Shears, M.A.; Yaskowiak, E.S.; King, M.J.; Goddard, S.V. Gene Transfer: Potential to Enhance the Genome of Atlantic Salmon for Aquaculture. Aust. J. Exp. Agric. 2004, 44, 1095–1100. [Google Scholar] [CrossRef]
- Tibbetts, S.M.; Wall, C.L.; Barbosa-Solomieu, V.; Bryenton, M.D.; Plouffe, D.A.; Buchanan, J.T.; Lall, S.P. Effects of Combined ‘All-Fish’ Growth Hormone Transgenics and Triploidy on Growth and Nutrient Utilization of Atlantic Salmon (Salmo salar L.) Fed a Practical Grower Diet of Known Composition. Aquaculture 2013, 406–407, 141–152. [Google Scholar] [CrossRef]
- Clifford, H. AquAdvantage® Salmon—A Pioneering Application of Biotechnology in Aquaculture. BMC Proc. 2014, 8, O31. [Google Scholar] [CrossRef]
- FDA. AquAdvantage Salmon Fact Sheet. Available online: https://www.fda.gov/animal-veterinary/aquadvantage-salmon/aquadvantage-salmon-fact-sheet (accessed on 30 September 2024).
- Walton, M.; Beattie, C.; March, C. AquAdvantage Salmon: The Regulatory Journey. In Proceedings of the 4th International Workshop—Regulatory Approaches for Agricultural Applications of Animal Biotechnologies, São Paulo, Brazil, 12–16 September 2022; ISAAA Inc: São Paulo, Brazil, 2022; pp. 1–9. [Google Scholar]
- Board of Directors of AquaBounty Technologies Inc. AquaBounty Announces Plans to Cease Fish Farming Operations. Available online: https://investors.aquabounty.com/news-releases/news-release-details/aquabounty-announces-plans-cease-fish-farming-operations (accessed on 5 May 2025).
- FDA. Freedom of Information Summary Original New Animal Drug Application NADA 141-454 OpAFP-GHc2 RDNA Construct in EO-1α Lineage Atlantic Salmon (AquAdvantage Salmon). Available online: https://www.fda.gov/files/animal%20&%20veterinary/published/AquAdvantage-Salmon-FOI-Summary.pdf (accessed on 2 October 2024).
- FDA/CVM. Appendix A to Aquabounty Salmon Approval. Available online: https://www.fda.gov/media/112646/download (accessed on 30 September 2024).
- AquaBounty Technologies Inc. Environmental Assessment Supplement to NADA 141-454 to Allow the Grow-out of AquAdvantage Salmon at AquaBounty Technologies, Inc.’s Indiana Facility. Available online: https://www.fda.gov/media/112655/download (accessed on 1 October 2024).
- FDA. Finding of No Significant Impact (FONSI)—AquAdvantage Salmon. Available online: https://aglaw.psu.edu/wp-content/uploads/2020/06/AquAdvantage-Salmon-FONSI.pdf (accessed on 30 September 2024).
- Hew, C.L.; Fletcher, G.L.; Davies, P.L. Transgenic Salmon: Tailoring the Genome for Food Production. J. Fish Biol. 1995, 47, 1–19. [Google Scholar] [CrossRef]
- FDA/CVM. Finding of No Significant Impact (FONSI)—AquaBounty Technologies, Inc.’s Indiana Facility. Supplemental NADA 141–454. Available online: https://www.fda.gov/media/112663/download (accessed on 30 September 2024).
- Yaskowiak, E.S.; Shears, M.A.; Agarwal-Mawal, A.; Fletcher, G.L. Characterization and Multi-Generational Stability of the Growth Hormone Transgene (EO-1alpha) Responsible for Enhanced Growth Rates in Atlantic Salmon. Transgenic Res. 2006, 15, 465–480. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H.; Kues, W.A. Transgenic Farm Animals: An Update. Reprod. Fertil. Dev. 2007, 19, 762–770. [Google Scholar] [CrossRef]
- Butler, T.M.; Fletcher, G.L. Promoter Analysis of a Growth Hormone Transgene in Atlantic Salmon. Theriogenology 2009, 72, 62–71. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sundström, L.F.; Muir, W.M. Interface of Biotechnology and Ecology for Environmental Risk Assessments of Transgenic Fish. Trends Biotechnol. 2006, 24, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Devlin, R.H.; Biagi, C.A.; Yesaki, T.Y. Growth, Viability and Genetic Characteristics of GH Transgenic Coho Salmon Strains. Aquaculture 2004, 236, 607–632. [Google Scholar] [CrossRef]
- Du, S.J.; Gong, Z.Y.; Fletcher, G.L.; Shears, M.A.; King, M.J.; Idler, D.R.; Hew, C.L. Growth Enhancement in Transgenic Atlantic Salmon by the Use of an “All Fish” Chimeric Growth Hormone Gene Construct. Nat. Biotechnol. 1992, 10, 176–181. [Google Scholar] [CrossRef]
- Devlin, R.H.; Yesaki, T.Y.; Biagi, C.A.; Donaldson, E.M.; Swanson, P.; Chan, W.-K. Extraordinary Salmon Growth. Nature 1994, 371, 209–210. [Google Scholar] [CrossRef]
- Ben Hafsa, A.; Nabi, N.; Zellama, M.S.; Said, K.; Chaouachi, M. A New Specific Reference Gene Based on Growth Hormone Gene (GH1) Used for Detection and Relative Quantification of Aquadvantage® GM Salmon (Salmo salar L.) in Food Products. Food Chem. 2016, 190, 1040–1045. [Google Scholar] [CrossRef]
- Debode, F.; Janssen, E.; Marien, A.; Devlin, R.H.; Lieske, K.; Mankertz, J.; Berben, G. Detection of Transgenic Atlantic and Coho Salmon by Real-Time PCR. Food Anal. Methods 2018, 11, 2396–2406. [Google Scholar] [CrossRef]
- Castro, C.; Amorim, M.; Moreira, F.; Pereira, F. A Method to Assemble DNA Fragments Mimicking Junctions of Transgenic Elements: Application to the AquAdvantage Salmon. Food Control 2017, 82, 179–183. [Google Scholar] [CrossRef]
- Godefroy, S. Codex Guidance on Assessment of Food Derived from Biotechnology. Available online: https://gforss.org/wp-content/uploads/2024/09/1-2024_uaebiotechworkshop_FAOGMFSAssessment_vf.pdf (accessed on 5 May 2025).
- Hayes, K.R.; Kapuscinski, A.R.; Dana, G.; Li, S.; Devlin, R.H. Introduction to Environmental Risk Assessment for Transgenic Fish. CABI 2007, 1–28. [Google Scholar] [CrossRef]
- Wong, A.C.; Van Eenennaam, A.L. Transgenic Approaches for the Reproductive Containment of Genetically Engineered Fish. Aquaculture 2008, 275, 1–12. [Google Scholar] [CrossRef]
- Devlin, R.H.; Donaldson, E.M. Containment of Genetically Altered Fish with Emphasis on Salmonids. Transgenic Fish 1992, 229–265. [Google Scholar]
- Britton, J.R.; Gozlan, R.E.; Copp, G.H. Managing Non-Native Fish in the Environment. Fish Fish. 2011, 12, 256–274. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating Aquaculture Systems (RAS): Environmental Solution and Climate Change Adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Garside, E.T. Ultimate Upper Lethal Temperature of Atlantic Salmon Salmo salar L. Can. J. Zool. 1973, 51, 898–900. [Google Scholar] [CrossRef]
- Elliott, J.M. Tolerance and Resistance to Thermal Stress in Juvenile Atlantic Salmon, Salmo salar. Freshw. Biol. 1991, 25, 61–70. [Google Scholar] [CrossRef]
- Jensen, A.J.; Johnsen, B.O.; Saksgård, L. Temperature Requirements in Atlantic Salmon (Salmo salar), Brown trout (Salmo trutta), and Arctic Char (Salvelinus alpinus) from Hatching to Initial Feeding Compared with Geographic Distribution. Can. J. Fish. Aquat. Sci. 1989, 46, 786–789. [Google Scholar] [CrossRef]
- Elliott, J.M.; Hurley, M.A. A Functional Model for Maximum Growth of Atlantic Salmon Parr, Salmo salar, from Two Populations in Northwest England. Funct. Ecol. 1997, 11, 592–603. [Google Scholar] [CrossRef]
- Harvey-Samuel, T.; Ant, T.; Alphey, L. Towards the Genetic Control of Invasive Species. Biol. Invasions 2017, 19, 1683–1703. [Google Scholar] [CrossRef]
- Benfey, T.J. 5—Producing Sterile and Single-Sex Populations of Fish for Aquaculture. In New Technologies in Aquaculture; Burnell, G., Allan, G., Eds.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2009; pp. 143–164. ISBN 978-1-84569-384-8. [Google Scholar]
- Benfey, T.J. Effectiveness of Triploidy as a Management Tool for Reproductive Containment of Farmed Fish: Atlantic Salmon (Salmo salar) as a Case Study. Rev. Aquac. 2016, 8, 264–282. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sakhrani, D.; Biagi, C.A.; Eom, K.-W. Occurrence of Incomplete Paternal-Chromosome Retention in GH-Transgenic Coho Salmon Being Assessed for Reproductive Containment by Pressure-Shock-Induced Triploidy. Aquaculture 2010, 304, 66–78. [Google Scholar] [CrossRef]
- Fitzpatrick, J.L.; Akbarashandiz, H.; Sakhrani, D.; Biagi, C.A.; Pitcher, T.E.; Devlin, R.H. Cultured Growth Hormone Transgenic Salmon Are Reproductively Out-Competed by Wild-Reared Salmon in Semi-Natural Mating Arenas. Aquaculture 2011, 312, 185–191. [Google Scholar] [CrossRef]
- Cows, I.G.; Bolland, J.D.; Nunn, A.D.; Kerins, G.; Stein, J.; Blackburn, J.; Hart, A.; Henry, C.; Britton, J.R.; Coop, G.; et al. Defining Environmental Risk Assessment Criteria for Genetically Modified Fishes to Be Placed on the EU Market. EFSA Support. Publ. 2010, 7, 69E. [Google Scholar] [CrossRef]
- EFSA Panel on Genetically Modified Organisms (GMO). Guidance on the Environmental Risk Assessment of Genetically Modified Animals. EFSA J. 2013, 11, 3200. [Google Scholar] [CrossRef]
- Apel, A. The Costly Benefits of Opposing Agricultural Biotechnology. New Biotechnol. 2010, 27, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Funk, C. About Half of U.S. Adults Are Wary of Health Effects of Genetically Modified Foods, but Many Also See Advantages. Available online: https://www.pewresearch.org/short-reads/2020/03/18/about-half-of-u-s-adults-are-wary-of-health-effects-of-genetically-modified-foods-but-many-also-see-advantages/ (accessed on 30 September 2024).
- Ortega, D.L.; Lin, W.; Ward, P.S. Consumer Acceptance of Gene-Edited Food Products in China. Food Qual. Prefer. 2022, 95, 104374. [Google Scholar] [CrossRef]
- Rickertsen, K.; Gustavsen, G.W.; Nayga, R.M. Consumer Willingness to Pay for Genetically Modified Vegetable Oil and Salmon in the United States and Norway. AgBioForum 2017, 20, 94–104. [Google Scholar]
- Porto-Neto, L.R.; Bickhart, D.M.; Landaeta-Hernandez, A.J.; Utsunomiya, Y.T.; Pagan, M.; Jimenez, E.; Hansen, P.J.; Dikmen, S.; Schroeder, S.G.; Kim, E.S.; et al. Convergent Evolution of Slick Coat in Cattle through Truncation Mutations in the Prolactin Receptor. Front. Genet. 2018, 9, 57. [Google Scholar] [CrossRef]
- Norris, A.L.; Lee, S.S.; Greenlees, K.J.; Tadesse, D.A.; Miller, M.F.; Lombardi, H.A. Template Plasmid Integration in Germline Genome-Edited Cattle. Nat. Biotechnol. 2020, 38, 163–164. [Google Scholar] [CrossRef]
- FDA/CVM. Risk Assessment Summary-V-006378 PRLR-SLICK Cattle. Available online: https://www.fda.gov/media/155706/download (accessed on 30 September 2024).
- Dikmen, S.; Alava, E.; Pontes, E.; Fear, J.M.; Dikmen, B.Y.; Olson, T.A.; Hansen, P.J. Differences in Thermoregulatory Ability between Slick-Haired and Wild-Type Lactating Holstein Cows in Response to Acute Heat Stress. J. Dairy. Sci. 2008, 91, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Khan, F.A.; Huson, H.J.; Sonstegard, T.S.; Moss, J.I.; Dahl, G.E.; Hansen, P.J. The SLICK Hair Locus Derived from Senepol Cattle Confers Thermotolerance to Intensively Managed Lactating Holstein Cows. J. Dairy. Sci. 2014, 97, 5508–5520. [Google Scholar] [CrossRef]
- Hammond, A.C.; Olson, T.A.; Chase, C.C.J.; Bowers, E.J.; Randel, R.D.; Murphy, C.N.; Vogt, D.W.; Tewolde, A. Heat Tolerance in Two Tropically Adapted Bos Taurus Breeds, Senepol and Romosinuano, Compared with Brahman, Angus, and Hereford Cattle in Florida. J. Anim. Sci. 1996, 74, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Hammond, A.C.; Chase, C.C.J.; Bowers, E.J.; Olson, T.A.; Randel, R.D. Heat Tolerance in Tuli-, Senepol-, and Brahman-Sired F1 Angus Heifers in Florida. J. Anim. Sci. 1998, 76, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, M.D.; Henty, K.M.; Tiplady, K.; Johnson, T.; Harland, C.; Lopdell, T.; Sherlock, R.G.; Li, W.; Lukefahr, S.D.; Shanks, B.C.; et al. Functionally Reciprocal Mutations of the Prolactin Signalling Pathway Define Hairy and Slick Cattle. Nat. Commun. 2014, 5, 5861. [Google Scholar] [CrossRef]
- Olson, T.A.; Lucena, C.; Chase, C.C.J.; Hammond, A.C. Evidence of a Major Gene Influencing Hair Length and Heat Tolerance in Bos Taurus Cattle. J. Anim. Sci. 2003, 81, 80–90. [Google Scholar] [CrossRef]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, I. A Review of the Global Climate Change Impacts, Adaptation, and Sustainable Mitigation Measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Flórez Murillo, J.M.; Landaeta-Hernández, A.J.; Kim, E.-S.; Bostrom, J.R.; Larson, S.A.; Pérez O’Brien, A.M.; Montero-Urdaneta, M.A.; Garcia, J.F.; Sonstegard, T.S. Three Novel Nonsense Mutations of Prolactin Receptor Found in Heat-Tolerant Bos Taurus Breeds of the Caribbean Basin. Anim. Genet. 2021, 52, 132–134. [Google Scholar] [CrossRef]
- CRISPR Beef Cattle Get FDA Green Light. Nat. Biotechnol. 2022, 40, 448. [CrossRef]
- Luo, Y.; Lin, L.; Bolund, L.; Jensen, T.G.; Sørensen, C.B. Genetically Modified Pigs for Biomedical Research. J. Inherit. Metab. Dis. 2012, 35, 695–713. [Google Scholar] [CrossRef]
- FDA/CVM. Freedom of Information Summary Original New Drug Application NADA 141-542 PPL657 rDNA Construct in Domestic Pigs. Available online: https://www.federalregister.gov/documents/2021/04/01/2021-06704/new-animal-drugs-approval-of-new-animal-drug-applications (accessed on 15 May 2025).
- Hawthorne, W.J. Ethical and Legislative Advances in Xenotransplantation for Clinical Translation: Focusing on Cardiac, Kidney and Islet Cell Xenotransplantation. Front. Immunol. 2024, 15, 1355609. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.; Yacoub, M.; Ayares, D.; Yamada, K.; Eisenson, D.; Griffith, B.P.; Mohiuddin, M.; Eyestone, W.; Venter, J.C.; Smolenski, R.T.; et al. Physiological Basis for Xenotransplantation from Genetically-Modified Pigs to Humans: A Review. Physiol. Rev. 2024, 104, 1409–1459. [Google Scholar] [CrossRef] [PubMed]
- Farm Journal’s Pork. FDA Approves First-of-Its-Kind Intentional Genomic Alteration in Line of Domestic Pigs for Both Human Food, Potential Therapeutic Uses. Available online: https://www.porkbusiness.com/news/industry/fda-approves-first-its-kind-intentional-genomic-alteration-pigs (accessed on 15 May 2025).
- Kuravi, K.V.; Sorrells, L.T.; Nellis, J.R.; Rahman, F.; Walters, A.H.; Matheny, R.G.; Choudhary, S.K.; Ayares, D.L.; Commins, S.P.; Bianchi, J.R.; et al. Allergic Response to Medical Products in Patients with Alpha-Gal Syndrome. J. Thorac. Cardiovasc. Surg. 2022, 164, e411–e424. [Google Scholar] [CrossRef]
- Cleveland, D.C.; Jagdale, A.; Carlo, W.F.; Iwase, H.; Crawford, J.; Walcott, G.P.; Dabal, R.J.; Sorabella, R.A.; Rhodes, L.; Timpa, J.; et al. The Genetically Engineered Heart as a Bridge to Allotransplantation in Infants Just Around the Corner? Ann. Thorac. Surg. 2022, 114, 536–544. [Google Scholar] [CrossRef]
- Goerlich, C.E.; DiChiacchio, L.; Zhang, T.; Singh, A.K.; Lewis, B.; Tatarov, I.; Hershfeld, A.; Sentz, F.; Ayares, D.; Corcoran, P.; et al. Heterotopic Porcine Cardiac Xenotransplantation in the Intra-Abdominal Position in a Non-Human Primate Model. Sci. Rep. 2020, 10, 10709. [Google Scholar] [CrossRef]
- Eisenson, D.; Hisadome, Y.; Santillan, M.; Iwase, H.; Chen, W.L.; Shimizu, A.; Schulick, A.; Gu, D.; Akbar, A.; Zhou, A.; et al. Consistent Survival in Consecutive Cases of Life-Supporting Porcine Kidney Xenotransplantation Using 10GE Source Pigs. Nat. Commun. 2024, 15, 3361. [Google Scholar] [CrossRef]
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A Single Number for Advocacy and Communication-Worldwide More than 850 Million Individuals Have Kidney Diseases. Nephrol. Dial. Transplant. 2019, 34, 1803–1805. [Google Scholar] [CrossRef]
- Bikbov, B.; Purcell, C.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; et al. Global, Regional, and National Burden of Chronic Kidney Disease, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Judd, E.; Kumar, V.; Porrett, P.M.; Hyndman, K.A.; Anderson, D.J.; Jones-Carr, M.E.; Shunk, A.; Epstein, D.R.; Fatima, H.; Katsurada, A.; et al. Physiologic Homeostasis after Pig-to-Human Kidney Xenotransplantation. Kidney Int. 2024, 105, 971–979. [Google Scholar] [CrossRef]
- Montgomery, R.A.; Stern, J.M.; Lonze, B.E.; Tatapudi, V.S.; Mangiola, M.; Wu, M.; Weldon, E.; Lawson, N.; Deterville, C.; Dieter, R.A.; et al. Results of Two Cases of Pig-to-Human Kidney Xenotransplantation. N. Engl. J. Med. 2022, 386, 1889–1898. [Google Scholar] [CrossRef]
- Locke, J.E.; Kumar, V.; Anderson, D.; Porrett, P.M. Normal Graft Function After Pig-to-Human Kidney Xenotransplant. JAMA Surg. 2023, 158, 1106–1108. [Google Scholar] [CrossRef] [PubMed]
- Revivicor GalSafe®. Pigs Environmental Assessment. Available online: https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadEA/2962 (accessed on 19 July 2024).
- FDA/CVM. Finding of No Significant Impact (FONSI) in Support of an Approval of a New Animal Drug Application NADA 141-542 PPL657 rDNA Construct in the Glycoprotein Galactosyltransferase Alpha 1,3 Gene (GGTA1) in the Hemizygous and Homozygous GalSafe® Lineage of Domestic Pigs (Sus Scrofa Domesticus). Available online: https://public-inspection.federalregister.gov/2021-06704.pdf?1617194732 (accessed on 19 July 2024).
- Polejaeva, I.A.; Chen, S.H.; Vaught, T.D.; Page, R.L.; Mullins, J.; Ball, S.; Dai, Y.; Boone, J.; Walker, S.; Ayares, D.L.; et al. Cloned Pigs Produced by Nuclear Transfer from Adult Somatic Cells. Nature 2000, 407, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Phelps, C.J.; Koike, C.; Vaught, T.D.; Boone, J.; Wells, K.D.; Chen, S.-H.; Ball, S.; Specht, S.M.; Polejaeva, I.A.; Monahan, J.A.; et al. Production of Alpha 1,3-Galactosyltransferase-Deficient Pigs. Science 2003, 299, 411–414. [Google Scholar] [CrossRef]
- Porrett, P.M.; Orandi, B.J.; Kumar, V.; Houp, J.; Anderson, D.; Cozette Killian, A.; Hauptfeld-Dolejsek, V.; Martin, D.E.; Macedon, S.; Budd, N.; et al. First Clinical-Grade Porcine Kidney Xenotransplant Using a Human Decedent Model. Am. J. Transplant. 2022, 22, 1037–1053. [Google Scholar] [CrossRef] [PubMed]
- Griffith, B.P.; Goerlich, C.E.; Singh, A.K.; Rothblatt, M.; Lau, C.L.; Shah, A.; Lorber, M.; Grazioli, A.; Saharia, K.K.; Hong, S.N.; et al. Genetically Modified Porcine-to-Human Cardiac Xenotransplantation. N. Engl. J. Med. 2022, 387, 35–44. [Google Scholar] [CrossRef]
- Kind, A.; Schnieke, A. Animal Pharming, Two Decades On. Transgenic Res. 2008, 17, 1025–1033. [Google Scholar] [CrossRef]
- Dyck, M.K.; Lacroix, D.; Pothier, F.; Sirard, M.-A. Making Recombinant Proteins in Animals—Different Systems, Different Applications. Trends Biotechnol. 2003, 21, 394–399. [Google Scholar] [CrossRef]
- Houdebine, L.-M. Production of Pharmaceutical Proteins by Transgenic Animals. Comp. Immunol. Microbiol. Infect. Dis. 2009, 32, 107–121. [Google Scholar] [CrossRef]
- FDA/CVM. Freedom of Information Summary Original New Animal Drug Application NADA 141-511 Bc2371 rDNA Construct in R69 New Zealand White Rabbits Heritable Construct Domesticated Rabbits. Available online: https://www.fda.gov/animal-veterinary/biotechnology-products-cvm-animals-and-animal-food/intentional-genomic-alterations-igas-animals (accessed on 19 July 2024).
- Lavine, G. FDA Approves First Biological Product Derived from Transgenic Animal. Am. J. Health-Syst. Pharm. 2009, 66, 518. [Google Scholar] [CrossRef]
- FDA/CVM. Freedom of Information Summary Original New Animal Drug Application NADA 141-294 Bc6 rDNA Construct in GTC 155-92 Goats. Available online: https://www.federalregister.gov/documents/2009/02/11/E9-2881/new-animal-drugs-bc6-recombinant-deoxyribonucleic-acid-construct (accessed on 19 July 2024).
- FDA/CVM. Freedom of Information Summary Original New Animal Drug Application NADA 141-453 HLAL rDNA Construct in SBC LAL-C Chickens Heritable Construct Domesticated Chickens. Available online: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm?setid=cc36144d-c62f-432d-bdac-10c0366a0866 (accessed on 19 July 2024).
- Doughman, E. A Multi-Animal Model Collaboration to Speed up Rare Disease Research. Lab Anim. 2019, 48, 271. [Google Scholar] [CrossRef]
- Berube, D.M. Oxitec. In Pandemics and Resilience: Lessons We Should Have Learned from Zika; Berube, D.M., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 413–479. ISBN 978-3-031-25370-6. [Google Scholar]
- Souza-Neto, J.A.; Powell, J.R.; Bonizzoni, M. Aedes aegypti Vector Competence Studies: A Review. Infect. Genet. Evol. 2019, 67, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Iwamura, T.; Guzman-Holst, A.; Murray, K.A. Accelerating Invasion Potential of Disease Vector Aedes aegypti under Climate Change. Nat. Commun. 2020, 11, 2130. [Google Scholar] [CrossRef] [PubMed]
- Ummu, H.A.; Vasan, S.S.; Shamala Devi, S.; Alphey, L. Similar Vertical Transmission Rates of Dengue and Chikungunya Viruses in a Transgenic and a Non-Transformed Aedes aegypti (L.) Laboratory Strain. Trop. Biomed. 2016, 33, 120–134. [Google Scholar]
- Glandorf, D.C.M. Technical Evaluation of a Potential Release of OX513A Aedes aegypti Mosquitoes on the Island of Saba. Available online: https://www.rivm.nl/bibliotheek/rapporten/2017-0087.pdf (accessed on 1 October 2024).
- Araújo, H.R.C.; Carvalho, D.O.; Capurro, M.L. Area-Wide Integrated Pest Management: Development and Field Application, 1st ed.; Hendrichs, J., Pereira, R., Vreysen, M.J.B., Eds.; CRC Press: Boca Raton, FL, USA, 2021; ISBN 9781003169239. [Google Scholar]
- HHS/FDA/CVM. Environmental Assessment for Investigational Use of Aedes aegypti OX513A. Available online: https://www.fda.gov/downloads/AnimalVeterinary/DevelopmentApprovalProcess/GeneticEngineering/GeneticallyEngineeredAnimals/UCM514698.pdf (accessed on 19 July 2024).
- Finkel, A.M.; Trump, B.D.; Bowman, D.; Maynard, A. A “Solution-Focused” Comparative Risk Assessment of Conventional and Synthetic Biology Approaches to Control Mosquitoes Carrying the Dengue Fever Virus. Environ. Syst. Decis. 2018, 38, 177–197. [Google Scholar] [CrossRef]
- HHS/FDA/CVM. Finding of No Significant Impact (FONSI) in Support of a Proposed Field Trial of Genetically Engineered (GE) Male Aedes aegypti Mosquitoes of the Line OX513A in Key Haven, Monroe County, Florida under an Investigational New Animal Drug Exemption. Available online: https://www.fda.gov/media/133802/download (accessed on 20 July 2024).
- Bryk, J.; Reeves, R.G.; Reed, F.A.; Denton, J.A. Transcriptional Effects of a Positive Feedback Circuit in Drosophila Melanogaster. BMC Genom. 2017, 18, 990. [Google Scholar] [CrossRef]
- Bourtzis, K.; Vreysen, M.J.B. Sterile Insect Technique (SIT) and Its Applications. Insects 2021, 12, 638. [Google Scholar] [CrossRef]
- Marec, F.; Vreysen, M.J.B. Advances and Challenges of Using the Sterile Insect Technique for the Management of Pest Lepidoptera. Insects 2019, 10, 371. [Google Scholar] [CrossRef]
- HHS/FDA/CVM. Guidance for Industry #236 Clarification of FDA and EPA Jurisdiction Over Mosquito-Related Products. Available online: https://www.fda.gov/media/102158/download (accessed on 30 September 2024).
- Japan Embraces CRISPR-Edited Fish. Nat. Biotechnol. 2022, 40, 10. [CrossRef]
- Dionglay, C. Japan’s Three Genome-Edited Food Products Reach Consumers. Available online: https://www.isaaa.org/blog/entry/default.asp?BlogDate=1/19/2022 (accessed on 4 April 2025).
- Marsden, H. In Global First, Argentina Gallops Ahead of Other Western Countries in Producing CRISPR Horses and Other Animals. Available online: https://geneticliteracyproject.org/2025/02/12/in-global-first-argentina-gallops-ahead-of-other-western-countries-in-producing-crispr-horses-and-other-animals/ (accessed on 10 March 2025).
- Araki, M.; Nojima, K.; Ishii, T. Caution Required for Handling Genome Editing Technology. Trends Biotechnol. 2014, 32, 234–237. [Google Scholar] [CrossRef]
- Fini, J.-B.; Le Mével, S.; Turque, N.; Palmier, K.; Zalko, D.; Cravedi, J.-P.; Demeneix, B.A. An In Vivo Multiwell-Based Fluorescent Screen for Monitoring Vertebrate Thyroid Hormone Disruption. Environ. Sci. Technol. 2007, 41, 5908–5914. [Google Scholar] [CrossRef]
- Thienpont, B.; Tingaud-Sequeira, A.; Prats, E.; Barata, C.; Babin, P.J.; Raldúa, D. Zebrafish Eleutheroembryos Provide a Suitable Vertebrate Model for Screening Chemicals That Impair Thyroid Hormone Synthesis. Environ. Sci. Technol. 2011, 45, 7525–7532. [Google Scholar] [CrossRef]
- Swett Walker, M. Meet Watchfrogs: GM Frogs and Fish Detect Endocrine Disrupting Chemicals in Wastewater. Available online: https://geneticliteracyproject.org/2015/06/11/meet-watchfrogs-gm-frogs-and-fish-detect-endocrine-disrupting-chemicals-in-wastewater/ (accessed on 11 March 2025).
- Ruan, J.; Xu, J.; Chen-Tsai, R.Y.; Li, K. Genome Editing in Livestock: Are We Ready for a Revolution in Animal Breeding Industry? Transgenic Res. 2017, 26, 715–726. [Google Scholar] [CrossRef]
- Mestdagh, S.; Devos, Y.; Ehlert, C.; Liu, Y.; Podevin, N.; Rodighiero, S.; Waigmann, E.; Kiss, J.; Perry, J.N.; Sweet, J.B. EFSA Guidelines on the Environmental Risk Assessment of Genetically Modified Animals in the EU: The Process and Risk Assessment Considerations. J. Verbraucherschutz Leb. 2014, 9, 85–91. [Google Scholar] [CrossRef]
- Van Eenennaam, A.L. New Genomic Techniques (NGT) in Animals and Their Agri/Food/Feed Products. EFSA Support. Public 2023, 20, 8311E. [Google Scholar] [CrossRef]
- EFSA. Genetically Modified Organisms. Available online: https://www.efsa.europa.eu/en/topics/genetically-modified-organisms#latest (accessed on 7 May 2025).
- EFSA. Genetically Modified Animals. Available online: https://www.efsa.europa.eu/en/topics/topic/genetically-modified-animals (accessed on 7 May 2025).
- EFSA Panels on Genetically Modified Organisms (GMO); Animal Health and Welfare (AHAW). Guidance on the Risk Assessment of Food and Feed from Genetically Modified Animals and on Animal Health and Welfare Aspects. EFSA J. 2012, 10, 2501. [Google Scholar] [CrossRef]
- ISAAA. Spineless Fish Developed Through Genome Editing in China. Available online: https://www.isaaa.org/kc/cropbiotechupdate/ged/article/default.asp?ID=19352 (accessed on 10 March 2025).
- Cohen, J. China’s CRISPR Revolution. Science 2019, 365, 420–421. [Google Scholar] [CrossRef] [PubMed]
- Martin-Laffon, J.; Kuntz, M.; Ricroch, A.E. Worldwide CRISPR Patent Landscape Shows Strong Geographical Biases. Nat. Biotechnol. 2019, 37, 613–620. [Google Scholar] [CrossRef]
- Cohen, J. To Feed Its 1.4 Billion, China Bets Big on Genome Editing of Crops. Available online: https://www.science.org/content/article/feed-its-14-billion-china-bets-big-genome-editing-crops (accessed on 22 March 2025).
- Zhang, Y.; Pribil, M.; Palmgren, M.; Gao, C. A CRISPR Way for Accelerating Improvement of Food Crops. Nat. Food 2020, 1, 200–205. [Google Scholar] [CrossRef]
- Ventura, L. As the CRISPR Revolution Advances, Here’s How Gene Editing Will Actually Help Farmers and Consumers. Available online: https://geneticliteracyproject.org/2020/12/15/as-the-crispr-revolution-proceeds-heres-how-gene-editing-will-actually-help-farmers-and-consumers/ (accessed on 12 March 2025).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo, C.; Macedo, M.; Buha, T.; De Donato, M.; Costas, B.; Mancera, J.M. Genetically Modified Animal-Derived Products: From Regulations to Applications. Animals 2025, 15, 1570. https://doi.org/10.3390/ani15111570
Fajardo C, Macedo M, Buha T, De Donato M, Costas B, Mancera JM. Genetically Modified Animal-Derived Products: From Regulations to Applications. Animals. 2025; 15(11):1570. https://doi.org/10.3390/ani15111570
Chicago/Turabian StyleFajardo, Carlos, Marta Macedo, Tonka Buha, Marcos De Donato, Benjamin Costas, and Juan Miguel Mancera. 2025. "Genetically Modified Animal-Derived Products: From Regulations to Applications" Animals 15, no. 11: 1570. https://doi.org/10.3390/ani15111570
APA StyleFajardo, C., Macedo, M., Buha, T., De Donato, M., Costas, B., & Mancera, J. M. (2025). Genetically Modified Animal-Derived Products: From Regulations to Applications. Animals, 15(11), 1570. https://doi.org/10.3390/ani15111570