Polymorphism in the Calpastatin Gene Alters Beef Tenderization in Excitable Cattle: A Preliminary Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunocastration
2.3. Animal Temperament Evaluation and Groups Formation
2.4. DNA Extraction and Genotyping
2.5. Slaughter and Sampling
2.5.1. Plasma Lactate
2.5.2. pH and Temperature Decline
2.5.3. Muscle Samples
2.6. Meat Quality Analysis
2.6.1. Color
2.6.2. Cooking Loss and Warner–Bratzler Shear Force
2.6.3. Myofibrillar Fragmentation Index
2.6.4. Caseinolytic Inhibitory Calpastatin Activity
2.7. Statistical Analysis
3. Results
3.1. Genotypic Frequencies
3.2. Plasma Lactate Concentration
3.3. Muscle pH and Temperature Decline
3.4. Beef Color
3.5. Cooking Loss, WBSF, and MFI
3.6. Calpastatin Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAST | Calpastatin gene |
CS | Chute score |
DNA | Deoxyribonucleic acid |
EV | Exit velocity |
IM | Immunocastrated |
LTL | Longissimus thoracis et lumborum muscle |
MFI | Myofibrillar fragmentation index |
N | Newtons |
NC | Non-catrated |
PCR | Polymerase chain reaction |
SNP | Single nucleotide polymorphism |
TI | Temperament index |
WBSF | Warner–Bratzler shear force |
References
- Ramos, P.M.; Wright, S.A.; Delgado, E.F.; van Santen, E.; Johnson, D.D.; Scheffler, J.M.; Elzo, M.A.; Carr, C.C.; Scheffler, T.L. Resistance to PH Decline and Slower Calpain-1 Autolysis Are Associated with Higher Energy Availability Early Postmortem in Bos Taurus Indicus Cattle. Meat Sci. 2020, 159, 107925. [Google Scholar] [CrossRef]
- Maltin, C.; Balcerzak, D.; Tilley, R.; Delday, M. Determinants of Meat Quality: Tenderness. Proc. Nutr. Soc. 2003, 62, 337–347. [Google Scholar] [CrossRef]
- Hwang, I.H.; Polkinghorne, R.; Lee, J.M.; Thompson, J.M. Demographic and Design Effects on Beef Sensory Scores given by Korean and Australian Consumers. Aust. J. Exp. Agric. 2008, 48, 1387–1395. [Google Scholar] [CrossRef]
- O’Quinn, T.G.; Legako, J.F.; Brooks, J.C.; Miller, M.F. Evaluation of the Contribution of Tenderness, Juiciness, and Flavor to the Overall Consumer Beef Eating Experience. Transl. Anim. Sci. 2018, 2, 26–36. [Google Scholar] [CrossRef]
- Geesink, G.H.; Kuchay, S.; Chishti, A.H.; Koohmaraie, M. Calpain-1 Is Essential for Postmortem Proteolysis of Muscle Proteins. J. Anim. Sci. 2006, 84, 2834–2840. [Google Scholar] [CrossRef]
- Goll, D.E.; Thompson, V.F.; Li, H.; Wei, W.; Cong, J. The Calpain System. Physiol. Rev. 2003, 83, 731–801. [Google Scholar] [CrossRef]
- Kemp, C.M.; Sensky, P.L.; Bardsley, R.G.; Buttery, P.J.; Parr, T. Tenderness—An Enzymatic View. Meat Sci. 2010, 84, 248–256. [Google Scholar] [CrossRef]
- King, D.A.; Schuehle Pfeiffer, C.E.; Randel, R.D.; Welsh, T.H.; Oliphint, R.A.; Baird, B.E.; Curley, K.O.; Vann, R.C.; Hale, D.S.; Savell, J.W. Influence of Animal Temperament and Stress Responsiveness on the Carcass Quality and Beef Tenderness of Feedlot Cattle. Meat Sci. 2006, 74, 546–556. [Google Scholar] [CrossRef]
- Gruber, S.L.; Tatum, J.D.; Engle, T.E.; Chapman, P.L.; Belk, K.E.; Smith, G.C. Relationships of Behavioral and Physiological Symptoms of Preslaughter Stress to Beef Longissimus Muscle Tenderness1. J. Anim. Sci. 2010, 88, 1148–1159. [Google Scholar] [CrossRef]
- Navegantes, L.C.C.; Baviera, A.M.; Kettelhut, I.C. The Inhibitory Role of Sympathetic Nervous System in the Ca2+-Dependent Proteolysis of Skeletal Muscle. Brazilian J. Med. Biol. Res. 2009, 42, 21–28. [Google Scholar] [CrossRef]
- Cong, M.; Thompson, V.F.; Goll, D.E.; Antin, P.B. The Bovine Calpastatin Gene Promoter and a New N-Terminal Region of the Protein Are Targets for CAMP-Dependent Protein Kinase Activity. J. Biol. Chem. 1998, 273, 660–666. [Google Scholar] [CrossRef]
- USDA. Livestock and Poultry: World Markets and Trade; United States Department of Agriculture Foreign Agricultural Servic: Washington, DC, USA, 2023; Volume 31.
- Avilés, C.; Peña, F.; Polvillo, O.; Barahona, M.; Campo, M.M.; Sañudo, C.; Juárez, M.; Horcada, A.; Alcalde, M.J.; Molina, A. Association between Functional Candidate Genes and Organoleptic Meat Traits in Intensively-Fed Beef. Meat Sci. 2015, 107, 33–38. [Google Scholar] [CrossRef]
- Schenkel, F.S.; Miller, S.P.; Jiang, Z.; Mandell, I.B.; Ye, X.; Li, H.; Wilton, J.W. Association of a Single Nucleotide Polymorphism in the Calpastatin Gene with Carcass and Meat Quality Traits of Beef Cattle1. J. Anim. Sci. 2006, 84, 291–299. [Google Scholar] [CrossRef]
- White, S.N.; Casas, E.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Keele, J.W.; Smith, T.P.L. A New Single Nucleotide Polymorphism in CAPN1 Extends the Current Tenderness Marker Test to Include Cattle of Bos Indicus, Bos Taurus, and Crossbred Descent1. J. Anim. Sci. 2005, 83, 2001–2008. [Google Scholar] [CrossRef]
- Allais, S.; Journaux, L.; Levéziel, H.; Payet-Duprat, N.; Raynaud, P.; Hocquette, J.F.; Lepetit, J.; Rousset, S.; Denoyelle, C.; Bernard-Capel, C.; et al. Effects of Polymorphisms in the Calpastatin and Μ-Calpain Genes on Meat Tenderness in 3 French Beef Breeds1. J. Anim. Sci. 2011, 89, 1–11. [Google Scholar] [CrossRef]
- Pinto, L.F.B.; Ferraz, J.B.S.; Meirelles, F.V.; Eler, J.P.; Rezende, F.M.; Carvalho, M.E.; Almeida, H.B.; Silva, R.C.G. Association of SNPs on CAPN1 and CAST Genes with Tenderness in Nellore Cattle. Genet. Mol. Res. 2010, 9, 1431–1442. [Google Scholar] [CrossRef]
- da Silva Coutinho, M.A.; Ramos, P.M.; da Luz e Silva, S.; Martello, L.S.; Pereira, A.S.C.; Delgado, E.F. Divergent Temperaments Are Associated with Beef Tenderness and the Inhibitory Activity of Calpastatin. Meat Sci. 2017, 134, 61–67. [Google Scholar] [CrossRef]
- de Moura Souza, G.; da Silva Coutinho, M.A.; Ramos, P.M.; de Oliveira, G.M.; Lonergan, S.M.; Delgado, E.F. Tough Aged Meat Presents Greater Expression of Calpastatin, Which Presents Postmortem Protein Profile and Tenderization Related to Nellore Steer Temperament. Meat Sci. 2019, 156, 131–138. [Google Scholar] [CrossRef]
- Hearnshaw, H.; Morris, C.A. Genetic and Environmental Effects on a Temperament Score in Beef Cattle. Aust. J. Agric. Res. 1984, 35, 723–733. [Google Scholar] [CrossRef]
- Burrow, H.M.; Seifert, G.W.; Corbet, N.J. A New Technique for Measuring Temperament in Cattle. Aust. Soc. Anim. Prod. 1988, 17, 154–157. [Google Scholar]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Brad Kim, Y.H.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association Guidelines for Meat Color Measurement. Meat Muscle Biol. 2022, 6, 1–81. [Google Scholar] [CrossRef]
- Bass, P.; Belk, K.E.; Dikeman, M.E.; Calkins, C.R.; King, D.A.; Miller, M.F.; Shackelford, S.D.; Wasser, B.; Yates, L.D. Research Guidelines for Cookery, Sensory Evaluation, and Instrumental Tenderness Measurements of Meat; American Meat Science Association: Savoy, IL, USA, 2015. [Google Scholar]
- Culler, R.D.; Parrish Jr, F.C.; Smith, G.C.; Cross, H.R. Relationship of Myofibril Fragmentation Index to Certain Chemical, Physical and Sensory Characteristics of Bovine Longissimus Muscle. J. Food Sci. 1978, 43, 1177–1180. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Shackelford, S.D.; Wheeler, T.L.; Lonergan, S.M.; Doumit, M.E. A Muscle Hypertrophy Condition in Lamb (Callipyge): Characterization of Effects on Muscle Growth and Meat Quality Traits. J. Anim. Sci. 1995, 73, 3596. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Ponnampalam, E.N.; Van De Ven, R.J.; Warner, R.D. The Effect of PH Decline Rate on the Meat and Eating Quality of Beef Carcasses. Anim. Prod. Sci. 2014, 54, 407–413. [Google Scholar] [CrossRef]
- Destefanis, G.; Brugiapaglia, A.; Barge, M.T.; Dal Molin, E. Relationship between Beef Consumer Tenderness Perception and Warner–Bratzler Shear Force. Meat Sci. 2008, 78, 153–156. [Google Scholar] [CrossRef]
- Francisco, C.L.; Resende, F.D.; Benatti, J.M.B.; Castilhos, A.M.; Cooke, R.F.; Jorge, A.M. Impacts of Temperament on Nellore Cattle: Physiological Responses, Feedlot Performance, and Carcass Characteristics1. J. Anim. Sci. 2015, 93, 5419–5429. [Google Scholar] [CrossRef]
- Cafe, L.M.; McIntyre, B.L.; Robinson, D.L.; Geesink, G.H.; Barendse, W.; Greenwood, P.L. Production and Processing Studies on Calpain-System Gene Markers for Tenderness in Brahman Cattle: 1. Growth, Efficiency, Temperament, and Carcass Characteristics1. J. Anim. Sci. 2010, 88, 3047–3058. [Google Scholar] [CrossRef]
- Knowles, T.G.; Warriss, P.D. Stress Physiology of Animals during Transport. In Livestock Handling and Transport; Grandin, T., Ed.; CAB Int: Cambridge, MA, USA, 2007; pp. 312–328. [Google Scholar]
- Bakker, J.; Nijsten, M.W.; Jansen, T.C. Clinical Use of Lactate Monitoring in Critically Ill Patients. Ann. Intensive Care 2013, 3, 12. [Google Scholar] [CrossRef]
- Pang, D.S.; Boysen, S. Lactate in Veterinary Critical Care: Pathophysiology and Management. J. Am. Anim. Hosp. Assoc. 2007, 43, 270–279. [Google Scholar] [CrossRef]
- Sant’anna, A.C.; Valente, T.D.S.; Magalhães, A.F.B.; Espigolan, R.; Ceballos, M.C.; de Albuquerque, L.G.; Paranhos da Costa, M.J.R. Relationships between Temperament, Meat Quality, and Carcass Traits in Nellore Cattle1. J. Anim. Sci. 2019, 97, 4721–4731. [Google Scholar] [CrossRef]
- Hwang, I.H.; Thompson, J.M. The Interaction between PH and Temperature Decline Early Postmortem on the Calpain System and Objective Tenderness in Electrically Stimulated Beef Longissimus Dorsi Muscle. Meat Sci. 2001, 58, 167–174. [Google Scholar] [CrossRef]
- Voisinet, B.D.; Grandin, T.; O’Connor, S.F.; Tatum, J.D.; Deesing, M.J. Bos Indicus-Cross Feedlot Cattle with Excitable Temperaments Have Tougher Meat and a Higher Incidence of Borderline Dark Cutters. Meat Sci. 1997, 46, 367–377. [Google Scholar] [CrossRef]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Strydom, P.E.; Hugo, A.; Raats, J.G. Some Biochemical Aspects Pertaining to Beef Eating Quality and Consumer Health: A Review. Food Chem. 2009, 112, 279–289. [Google Scholar] [CrossRef]
- Huff-Lonergan, E.; Zhang, W.; Lonergan, S.M. Biochemistry of Postmortem Muscle—Lessons on Mechanisms of Meat Tenderization. Meat Sci. 2010, 86, 184–195. [Google Scholar] [CrossRef]
- Cafe, L.M.; Robinson, D.L.; Ferguson, D.M.; Geesink, G.H.; Greenwood, P.L. Temperament and Hypothalamic-Pituitary-Adrenal Axis Function Are Related and Combine to Affect Growth, Efficiency, Carcass, and Meat Quality Traits in Brahman Steers. Domest. Anim. Endocrinol. 2011, 40, 230–240. [Google Scholar] [CrossRef]
- Warner, R.D. The Eating Quality of Meat: IV—Water Holding Capacity and Juiciness, 9th ed.; Toldra, F., Ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2022; ISBN 9780323854085. [Google Scholar]
- Sensky, P.L.; Parr, T.; Bardsley, R.G.; Buttery, P.J. The Relationship between Plasma Epinephrine Concentration and the Activity of the Calpain Enzyme System in Porcine Longissimus Muscle. J. Anim. Sci. 1996, 74, 380. [Google Scholar] [CrossRef]
- Casas, E.; White, S.N.; Wheeler, T.L.; Shackelford, S.D.; Koohmaraie, M.; Riley, D.G.; Chase, C.C.; Johnson, D.D.; Smith, T.P.L. Effects of Calpastatin and μ-Calpain Markers in Beef Cattle on Tenderness Traits. J. Anim. Sci. 2006, 84, 520–525. [Google Scholar] [CrossRef]
- Curi, R.A.; Chardulo, L.A.L.; Giusti, J.; Silveira, A.C.; Martins, C.L.; de Oliveira, H.N. Assessment of GH1, CAPN1 and CAST Polymorphisms as Markers of Carcass and Meat Traits in Bos Indicus and Bos Taurus—Bos Indicus Cross Beef Cattle. Meat Sci. 2010, 86, 915–920. [Google Scholar] [CrossRef]
- Koohmaraie, M.; Seideman, S.C.; Schollmeyer, J.E.; Dutson, T.R.; Babiker, A.S. Factors Associated with the Tenderness of Three Bovine Muscles. J. Food Sci. 1988, 53, 407–410. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, A.C.; Maloso Ramos, P.; Silva Mello César, A.; do Vale, J.P.S.; da Luz e Silva, S.; Francisquine Delgado, E. Polymorphism in the Calpastatin Gene Alters Beef Tenderization in Excitable Cattle: A Preliminary Study. Animals 2025, 15, 1568. https://doi.org/10.3390/ani15111568
da Silva AC, Maloso Ramos P, Silva Mello César A, do Vale JPS, da Luz e Silva S, Francisquine Delgado E. Polymorphism in the Calpastatin Gene Alters Beef Tenderization in Excitable Cattle: A Preliminary Study. Animals. 2025; 15(11):1568. https://doi.org/10.3390/ani15111568
Chicago/Turabian Styleda Silva, Ana Cláudia, Patricia Maloso Ramos, Aline Silva Mello César, João Pedro Sousa do Vale, Saulo da Luz e Silva, and Eduardo Francisquine Delgado. 2025. "Polymorphism in the Calpastatin Gene Alters Beef Tenderization in Excitable Cattle: A Preliminary Study" Animals 15, no. 11: 1568. https://doi.org/10.3390/ani15111568
APA Styleda Silva, A. C., Maloso Ramos, P., Silva Mello César, A., do Vale, J. P. S., da Luz e Silva, S., & Francisquine Delgado, E. (2025). Polymorphism in the Calpastatin Gene Alters Beef Tenderization in Excitable Cattle: A Preliminary Study. Animals, 15(11), 1568. https://doi.org/10.3390/ani15111568