Antimicrobial Resistance in Companion Animals: A 30-Month Analysis on Clinical Isolates from Urinary Tract Infections in a Veterinary Hospital
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Bacterial Identification and Data Collection Results
3.2. AST Results
3.3. Temporal Trend and Multivariate Analysis Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
UTIs | Urinary tract infections |
AMR | Antimicrobial resistance |
ISCAID | International Society for Companion Animals Infectious Disease |
MDR | Multi-drug resistance |
VUH | Veterinary University Hospital |
MALDI-TOF | Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry |
ID | Identification |
SBC | Sporadic bacterial cystitis |
RBC | Recurrent bacterial cystitis |
uUTI | Upper urinary tract infection |
BP | Bacterial prostatitis |
SUB | Subclinical bacteriuria |
CAUTI | Catheter-associated urinary tract infection |
AST | Antimicrobial susceptibility testing |
CLSI | Clinical and Laboratory Standard Institute |
CI | Confidence Interval |
OR | Odds Ratio |
CoNS | Coagulase-negative Staphylococci other than Staphylococcus felis |
EUCAST | European Committee for Antimicrobial Susceptibility Testing |
SIG | Staphylococcus intermedius group |
EMA | European Medicine Agency |
WHO | World Health Organization |
HPCIAs | Highest priority critically important antimicrobials |
Appendix A
Specimen Type | Media a | Incubation |
---|---|---|
Urine b, bladder stone, ureteral stent | Blood Agar, Cled, Mac Conkey | Aerobic conditions |
Bladder biopsy | Blood Agar, Cled, Mac Conkey Columbia Agar Columbia Agar | Aerobic conditions |
Capnophilic conditions | ||
Anaerobic conditions |
Antimicrobial Class | Antimicrobial Drug |
---|---|
Aminoglycosides | Amikacin 30 μg Gentamicin 10 μg (120 μg for Enterococcus spp. Isolates) |
Penicillins ± beta-lactamase inhibitors | Ampicillin 10 μg Amoxicillin-clavulanate 30 μg Piperacillin-tazobactam 110 μg |
Cephalosporins | Cephazolin/cephalotin 30 μg Ceftiofur 30 μg |
Tetracyclines | Tetracycline 30 μg |
Macrolides | Erythromicin 15 μg |
Lincosamides | Clindamycin 2 μg |
Fluoroquinolones | Enrofloxacin 5 μg |
Sulfonamides + dihydrofolate reductase inhibitors | Trimethoprim-sulfamethoxazole 1.25/23.7 μg |
References
- WHO. WHO List of Critically Important Antimicrobials for Human Medicine (WHO CIA List); World Health Organization: Geneve, Switzerland, 2019.
- Pomba, C.; Rantala, M.; Greko, C.; Baptiste, K.E.; Catry, B.; van Duijkeren, E.; Mateus, A.; Moreno, M.A.; Pyörälä, S.; Ružauskas, M.; et al. Public Health Risk of Antimicrobial Resistance Transfer from Companion Animals. J. Antimicrob. Chemother. 2016, 72, 957–968. [Google Scholar] [CrossRef] [PubMed]
- De Briyne, N.; Atkinson, J.; Borriello, S.P.; Pokludová, L. Antibiotics Used Most Commonly to Treat Animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed]
- Aurich, S.; Prenger-Berninghoff, E.; Ewers, C. Prevalence and Antimicrobial Resistance of Bacterial Uropathogens Isolated from Dogs and Cats. Antibiotics 2022, 11, 1730. [Google Scholar] [CrossRef]
- Wong, C.; Epstein, S.E.; Westropp, J.L. Antimicrobial Susceptibility Patterns in Urinary Tract Infections in Dogs (2010–2013). Vet. Intern. Medicne 2015, 29, 1045–1052. [Google Scholar] [CrossRef]
- Bloch, R.A.; Papich, M.G.; Stürmer, T. Veterinary Antimicrobial Prescribing Practices for Treatment of Presumptive Sporadic Urinary Tract Infections in Dogs Examined at Primary Care Practices in the United States (2010–2019). J. Am. Vet. Med. Assoc. 2022, 260, S21–S27. [Google Scholar] [CrossRef]
- Marques, C.; Gama, L.T.; Belas, A.; Bergström, K.; Beurlet, S.; Briend-Marchal, A.; Broens, E.M.; Costa, M.; Criel, D.; Damborg, P.; et al. European Multicenter Study on Antimicrobial Resistance in Bacteria Isolated from Companion Animal Urinary Tract Infections. BMC Vet. Res. 2016, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Teh, H. A Review of the Current Concepts in Canine Urinary Tract Infections. Aust. Vet. J. 2022, 100, 56–62. [Google Scholar] [CrossRef]
- Tompson, A.C.; Mateus, A.L.P.; Brodbelt, D.C.; Chandler, C.I.R. Understanding Antibiotic Use in Companion Animals: A Literature Review Identifying Avenues for Future Efforts. Front. Vet. Sci. 2021, 8, 719547. [Google Scholar] [CrossRef]
- Pujades-Rodriguez, M.; West, R.M.; Wilcox, M.H.; Sandoe, J. Lower Urinary Tract Infections: Management, Outcomes and Risk Factors for Antibiotic Re-Prescription in Primary Care. eClinicalMedicine 2019, 14, 23–31. [Google Scholar] [CrossRef]
- Schmiemann, G.; Kniehl, E.; Gebhardt, K.; Matejczyk, M.M.; Hummers-Pradier, E. The Diagnosis of Urinary Tract Infection. Dtsch. Ärzteblatt Int. 2010, 107, 361–367. [Google Scholar] [CrossRef]
- Weese, J.S.; Webb, J.; Ballance, D.; McKee, T.; Stull, J.W.; Bergman, P.J. Evaluation of Antimicrobial Prescriptions in Dogs with Suspected Bacterial Urinary Tract Disease. Vet. Intern. Med. 2021, 35, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Stull, J.W.; Evason, M.; Webb, J.; Ballance, D.; McKee, T.; Bergman, P.J. A Multicenter Study of Antimicrobial Prescriptions for Cats Diagnosed with Bacterial Urinary Tract Disease. J. Feline Med. Surg. 2022, 24, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Compri, M.; Mader, R.; Mazzolini, E.; De Angelis, G.; Mutters, N.T.; Babu Rajendran, N.; Galia, L.; Tacconelli, E.; Schrijver, R.; the ARCH working group; et al. White Paper: Bridging the Gap between Surveillance Data and Antimicrobial Stewardship in the Animal Sector—Practical Guidance from the JPIAMR ARCH and COMBACTE-MAGNET EPI-Net Networks. J. Antimicrob. Chemother. 2020, 75, ii52–ii66. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.H.; Page, S.W. Antimicrobial Stewardship in Veterinary Medicine. Microbiol. Spectr. 2018, 6, 1–22. [Google Scholar] [CrossRef]
- Weese, J.S.; Blondeau, J.; Boothe, D.; Guardabassi, L.G.; Gumley, N.; Papich, M.; Jessen, L.R.; Lappin, M.; Rankin, S.; Westropp, J.L.; et al. International Society for Companion Animal Infectious Diseases (ISCAID) Guidelines for the Diagnosis and Management of Bacterial Urinary Tract Infections in Dogs and Cats. Vet. J. 2019, 247, 8–25. [Google Scholar] [CrossRef]
- World Health Organization. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization: Geneve, Switzerland, 2024.
- Smoglica, C.; Evangelisti, G.; Fani, C.; Marsilio, F.; Trotta, M.; Messina, F.; Di Francesco, C.E. Antimicrobial Resistance Profile of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Central Italy. Antibiotics 2022, 11, 1363. [Google Scholar] [CrossRef]
- Rampacci, E.; Bottinelli, M.; Stefanetti, V.; Hyatt, D.R.; Sgariglia, E.; Coletti, M.; Passamonti, F. Antimicrobial Susceptibility Survey on Bacterial Agents of Canine and Feline Urinary Tract Infections: Weight of the Empirical Treatment. J. Glob. Antimicrob. Resist. 2018, 13, 192–196. [Google Scholar] [CrossRef]
- Bellato, A.; Robino, P.; Stella, M.C.; Scalas, D.; Savarino, P.; Zanatta, R.; Re, G.; Nebbia, P. Ten-Year Antimicrobial Resistance Trend in Uropathogenic Escherichia Coli (UPEC) Isolated from Dogs and Cats Admitted to a Veterinary Teaching Hospital in Italy. Microorganisms 2024, 12, 2175. [Google Scholar] [CrossRef]
- Leet-Otley, K.; Fellman, C.L.; Wayne, A.S.; Beaulac, K.; DeStefano, I.M.; Chambers, K.; Marino, K.B.; Doron, S. Demonstrating the Importance of Local Culture and Susceptibility Data: Antibiograms from Dogs at a Veterinary Tertiary Care Center. J. Am. Vet. Med. Assoc. 2023, 261, 1–7. [Google Scholar] [CrossRef]
- Scarpellini, R.; Assirelli, G.; Giunti, M.; Esposito, E.; Mondo, E.; Piva, S. Monitoring the Prevalence of Antimicrobial Resistance in Companion Animals: Results from Clinical Isolates in an Italian University Veterinary Hospital. Transbound. Emerg. Dis. 2023, 2023, 6695493. [Google Scholar] [CrossRef]
- Markey, B.; Quinn, P.J.; Carter, M.E.G.R. Carter Section 1: General Procedures in Microbiology. In Clinical Veterinary Microbiology; Elsevier: Amsterdam, The Netherlands, 2013; pp. 21–67. ISBN 0-7234-1711-3. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilutions Susceptibility Test for Bacteria Isolated from Animals, 4th ed.; CLSI Supplement Vet08; CLSI: Malvern, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI), CLSI Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; CLSI: Malvern, PA, USA, 2020.
- Clinical and Laboratory Standards Institute CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 7th ed.; CLSI Supplement VET01S; CLSI: Malvern, PA, USA, 2024. [Google Scholar]
- Kuriyama, T.; Karasawa, T.; Williams, D.W. Antimicrobial Chemotherapy. In Biofilms in Infection Prevention and Control; Elsevier: Amsterdam, The Netherlands, 2014; pp. 209–244. ISBN 978-0-12-397043-5. [Google Scholar]
- National Reference Center for Antimicrobial Resistance, Tecnhical Report, Tabelle Resistenze Intrinseche Dei Batteri Di Interesse Veterinario [Intrinsic Resistance Tables of Bacteria of Veterinary Interest]; CRAB: Rome, Italy, 2018.
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Dorsch, R.; Vopelius-Feldt, C.V.; Wolf, G.; Mueller, R.S.; Straubinger, R.K.; Hartmann, K. Bakterielle Harnwegsinfektionen bei Katzen: Prävalenz prädisponierender Erkrankungen und bakterieller Isolate sowie Ermittlung der antimikrobiellen Resistenz gegenüber häufig eingesetzten Antibiotika. Tierarztl. Prax. Ausg. K. 2016, 44, 227–236. [Google Scholar] [CrossRef]
- Fonseca, J.D.; Mavrides, D.E.; Graham, P.A.; McHugh, T.D. Results of Urinary Bacterial Cultures and Antibiotic Susceptibility Testing of Dogs and Cats in the UK. J. Small Anim. Pract. 2021, 62, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Koontz, C.W.; Epstein, S.E.; Westropp, J.L. Antimicrobial Susceptibility Patterns from Urinary Isolates Obtained from Cats (2013-2020). Vet. Intern. Medicne 2023, 37, 1077–1087. [Google Scholar] [CrossRef]
- Mack, C.; Gibson, J.; Meler, E.; Woldeyohannes, S.; Yuen, N.; Herndon, A. Antimicrobial Susceptibility Patterns of Aerobic Bacteria Isolated from Canine Urinary Samples in South East Queensland, 2013 to 2018. Aust. Vet. J. 2024, 102, 362–368. [Google Scholar] [CrossRef]
- Roberts, M.; White, J.; Lam, A. Prevalence of Bacteria and Changes in Trends in Antimicrobial Resistance of Escherichia Coli Isolated from Positive Canine Urinary Samples from an Australian Referral Hospital over a 5-year Period (2013–2017). Vet. Rec. Open 2019, 6, e000345. [Google Scholar] [CrossRef]
- Scarborough, R.; Bailey, K.; Galgut, B.; Williamson, A.; Hardefeldt, L.; Gilkerson, J.; Browning, G. Use of Local Antibiogram Data and Antimicrobial Importance Ratings to Select Optimal Empirical Therapies for Urinary Tract Infections in Dogs and Cats. Antibiotics 2020, 9, 924. [Google Scholar] [CrossRef]
- Yudhanto, S.; Hung, C.-C.; Maddox, C.W.; Varga, C. Antimicrobial Resistance in Bacteria Isolated from Canine Urine Samples Submitted to a Veterinary Diagnostic Laboratory, Illinois, United States. Front. Vet. Sci. 2022, 9, 867784. [Google Scholar] [CrossRef]
- Darwich, L.; Seminati, C.; Burballa, A.; Nieto, A.; Durán, I.; Tarradas, N.; Molina-López, R.A. Antimicrobial Susceptibility of Bacterial Isolates from Urinary Tract Infections in Companion Animals in Spain. Vet. Rec. 2021, 188, e60. [Google Scholar] [CrossRef]
- Hernando, E.; Vila, A.; D’Ippolito, P.; Rico, A.J.; Rodon, J.; Roura, X. Prevalence and Characterization of Urinary Tract Infection in Owned Dogs and Cats From Spain. Top. Companion Anim. Med. 2021, 43, 100512. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed]
- Balboni, A.; Franzo, G.; Bano, L.; Urbani, L.; Segatore, S.; Rizzardi, A.; Cordioli, B.; Cornaggia, M.; Terrusi, A.; Vasylyeva, K.; et al. No viable bacterial communities reside in the urinary bladder of cats with feline idiopathic cystitis. Res. Vet. Sci. 2024, 168, 105137. [Google Scholar] [CrossRef]
- Kocúreková, T.; Koščová, J.; Hajdučková, V. Infections of the Urinary Tract of Bacterial Origin in Dogs and Cats. Folia Vet. 2021, 65, 59–66. [Google Scholar] [CrossRef]
- Moyaert, H.; Morrissey, I.; De Jong, A.; El Garch, F.; Klein, U.; Ludwig, C.; Thiry, J.; Youala, M. Antimicrobial Susceptibility Monitoring of Bacterial Pathogens Isolated from Urinary Tract Infections in Dogs and Cats Across Europe: ComPath Results. Microb. Drug Resist. 2017, 23, 391–403. [Google Scholar] [CrossRef]
- Marques, C.; Belas, A.; Franco, A.; Aboim, C.; Gama, L.T.; Pomba, C. Increase in Antimicrobial Resistance and Emergence of Major International High-Risk Clonal Lineages in Dogs and Cats with Urinary Tract Infection: 16 Year Retrospective Study. J. Antimicrob. Chemother. 2018, 73, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Garcês, A.; Lopes, R.; Silva, A.; Sampaio, F.; Duque, D.; Brilhante-Simões, P. Bacterial Isolates from Urinary Tract Infection in Dogs and Cats in Portugal, and Their Antibiotic Susceptibility Pattern: A Retrospective Study of 5 Years (2017–2021). Antibiotics 2022, 11, 1520. [Google Scholar] [CrossRef]
- Vercelli, C.; Della Ricca, M.; Re, M.; Gambino, G.; Re, G. Antibiotic Stewardship for Canine and Feline Acute Urinary Tract Infection: An Observational Study in a Small Animal Hospital in Northwest Italy. Antibiotics 2021, 10, 562. [Google Scholar] [CrossRef]
- Litster, A.; Moss, S.M.; Honnery, M.; Rees, B.; Trott, D.J. Prevalence of Bacterial Species in Cats with Clinical Signs of Lower Urinary Tract Disease: Recognition of Staphylococcus Felis as a Possible Feline Urinary Tract Pathogen. Vet. Microbiol. 2007, 121, 182–188. [Google Scholar] [CrossRef]
- Torre, M.; Furrow, E.; Foster, J.D. Effect of Urine-specific Gravity on Performance of Bacteriuria in Predicting Urine Culture Results. J. Small Anim. Pract. 2022, 63, 286–292. [Google Scholar] [CrossRef]
- KuKanich, K.S.; Lubbers, B.V. Review of Enterococci Isolated from Canine and Feline Urine Specimens from 2006 to 2011. J. Am. Anim. Hosp. Assoc. 2015, 51, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Bierowiec, K.; Korzeniowska-Kowal, A.; Wzorek, A.; Rypuła, K.; Gamian, A. Prevalence of Staphylococcus Species Colonization in Healthy and Sick Cats. BioMed Res. Int. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Lu, Y.; McEwan, N.A. Staphylococcal and Micrococcal Adherence to Canine and Feline Corneocytes: Quantification Using a Simple Adhesion Assay. Vet. Dermatol. 2007, 18, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S. Investigation of Antimicrobial Use and the Impact of Antimicrobial Use Guidelines in a Small Animal Veterinary Teaching Hospital: 1995–2004. J. Am. Vet. Med. Assoc. 2006, 228, 553–558. [Google Scholar] [CrossRef]
- Robbins, S.N.; Goggs, R.; Lhermie, G.; Lalonde-Paul, D.F.; Menard, J. Antimicrobial Prescribing Practices in Small Animal Emergency and Critical Care. Front. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Mateus, A.L.P.; Brodbelt, D.C.; Barber, N.; Stärk, K.D.C. Qualitative Study of Factors Associated with Antimicrobial Usage in Seven Small Animal Veterinary Practices in the UK. Prev. Vet. Med. 2014, 117, 68–78. [Google Scholar] [CrossRef]
- Jessen, L.R.; Sørensen, T.M.; Lilja, Z.L.; Kristensen, M.; Hald, T.; Damborg, P. Cross-Sectional Survey on the Use and Impact of the Danish National Antibiotic Use Guidelines for Companion Animal Practice. Acta Vet. Scand. 2017, 59, 81. [Google Scholar] [CrossRef]
- Sørensen, T.M.; Bjørnvad, C.R.; Cordoba, G.; Damborg, P.; Guardabassi, L.; Siersma, V.; Bjerrum, L.; Jessen, L.R. Effects of Diagnostic Work-Up on Medical Decision-Making for Canine Urinary Tract Infection: An Observational Study in Danish Small Animal Practices. Vet. Intern. Medicne 2018, 32, 743–751. [Google Scholar] [CrossRef]
- Espinosa-Gongora, C.; Jessen, L.R.; Kieler, I.N.; Damborg, P.; Bjørnvad, C.R.; Gudeta, D.D.; Pires Dos Santos, T.; Sablier-Gallis, F.; Sayah-Jeanne, S.; Corbel, T.; et al. Impact of Oral Amoxicillin and Amoxicillin/Clavulanic Acid Treatment on Bacterial Diversity and β-Lactam Resistance in the Canine Faecal Microbiota. J. Antimicrob. Chemother. 2020, 75, 351–361. [Google Scholar] [CrossRef]
- Rantala, M.; Huovinen, P.; Hölsö, K.; Lilas, A.; Kaartinen, L. Survey of Condition-based Prescribing of Antimicrobial Drugs for Dogs at a Veterinary Teaching Hospital. Vet. Rec. 2004, 155, 259–262. [Google Scholar] [CrossRef]
- Trepanier, L.A. Idiosyncratic Toxicity Associated with Potentiated Sulfonamides in the Dog. Vet. Pharm. Ther. 2004, 27, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Fowler, H.; Davis, M.A.; Perkins, A.; Trufan, S.; Joy, C.; Buswell, M.; McElwain, T.F.; Moore, D.; Worhle, R.; Rabinowitz, P.M. Survey of Veterinary Antimicrobial Prescribing Practices, Washington State 2015. Vet. Rec. 2016, 179, 651. [Google Scholar] [CrossRef] [PubMed]
- Pleydell, E.; Souphavanh, K.; Hill, K.; French, N.; Prattley, D. Descriptive Epidemiological Study of the Use of Antimicrobial Drugs by Companion Animal Veterinarians in New Zealand. N. Z. Vet. J. 2012, 60, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, K.; Lehner, C.; Schuller, S.; Schüpbach-Regula, G.; Mevissen, M.; Peter, R.; Müntener, C.R.; Naegeli, H.; Willi, B. Antimicrobial Use for Selected Diseases in Cats in Switzerland. BMC Vet. Res. 2019, 15, 94. [Google Scholar] [CrossRef]
- Murphy, C.P.; Reid-Smith, R.J.; Boerlin, P.; Weese, J.S.; Prescott, J.F.; Janecko, N.; McEwen, S.A. Out-Patient Antimicrobial Drug Use in Dogs and Cats for New Disease Events from Community Companion Animal Practices in Ontario. Can. Vet. J. 2012, 53, 291–298. [Google Scholar]
- Frey, E. The Role of Companion Animal Veterinarians in One-Health Efforts to Combat Antimicrobial Resistance. J. Am. Vet. Med. Assoc. 2018, 253, 1396–1404. [Google Scholar] [CrossRef]
- European Medicines Agency. Categorisation of Antibiotics in the European Union; European Medicines Agency: Amsterdam, NY, USA, 2019.
- ECDC. Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report 2021; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2022.
- Da Silva, L.; Grecellé, C.Z.; Frazzon, A.P.G.; Streck, A.F.; Kipper, D.; Fonseca, A.S.K.; Ikuta, N.; Lunge, V.R. Multidrug-Resistant Enterococcus Faecium and Enterococcus Faecalis Isolated from Dogs and Cats in Southern Brazil. Microbiol. Res. 2024, 15, 1083–1090. [Google Scholar] [CrossRef]
- Tumpa, A.; Štritof, Z.; Pintarić, S. Prevalence and Antimicrobial Susceptibility of Enterococcus Spp. from Urine of Dogs and Cats in Northwestern Croatia. Res. Vet. Sci. 2022, 151, 42–46. [Google Scholar] [CrossRef]
- Clare, S.; Hartmann, F.A.; Jooss, M.; Bachar, E.; Wong, Y.Y.; Trepanier, L.A.; Viviano, K.R. Short- and Long-Term Cure Rates of Short-Duration Trimethoprim-Sulfamethoxazole Treatment in Female Dogs with Uncomplicated Bacterial Cystitis. Vet. Intern. Medicne 2014, 28, 818–826. [Google Scholar] [CrossRef]
- KuKanich, K.; Lubbers, B.; Salgado, B. Amoxicillin and Amoxicillin-clavulanate Resistance in Urinary ESCHERICHIA COLI Antibiograms of Cats and Dogs from the Midwestern United States. Vet. Intern. Medicne 2020, 34, 227–231. [Google Scholar] [CrossRef]
- Escher, M.; Vanni, M.; Intorre, L.; Caprioli, A.; Tognetti, R.; Scavia, G. Use of Antimicrobials in Companion Animal Practice: A Retrospective Study in a Veterinary Teaching Hospital in Italy. J. Antimicrob. Chemother. 2011, 66, 920–927. [Google Scholar] [CrossRef] [PubMed]
- De Marchi, L.; Vernaccini, M.; Meucci, V.; Briganti, A.; Lippi, I.; Marchetti, V.; Intorre, L. Six-Year Prescription Pattern of Antimicrobial Use in Cats at the Veterinary Teaching Hospital of the University of Pisa. Animals 2024, 14, 521. [Google Scholar] [CrossRef] [PubMed]
- Foglia Manzillo, V.; Peruzy, M.F.; Gizzarelli, M.; Izzo, B.; Sarnelli, P.; Carrella, A.; Vinciguerra, G.; Chirollo, C.; Ben Fayala, N.E.H.; Balestrino, I.; et al. Examining the Veterinary Electronic Antimicrobial Prescriptions for Dogs and Cats in the Campania Region, Italy: Corrective Strategies Are Imperative. Animals 2023, 13, 2869. [Google Scholar] [CrossRef]
- Chirollo, C.; Nocera, F.P.; Piantedosi, D.; Fatone, G.; Della Valle, G.; De Martino, L.; Cortese, L. Data on before and after the Traceability System of Veterinary Antimicrobial Prescriptions in Small Animals at the University Veterinary Teaching Hospital of Naples. Animals 2021, 11, 913. [Google Scholar] [CrossRef]
- Amphaiphan, C.; Yano, T.; Som-in, M.; Kungwong, P.; Wongsawan, K.; Pusoonthornthum, R.; Salman, M.D.; Tangtrongsup, S. Antimicrobial Drug Resistance Profile of Isolated Bacteria in Dogs and Cats with Urologic Problems at Chiang Mai University Veterinary Teaching Hospital, Thailand (2012–2016). Zoonoses Public Health 2021, 68, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.R.; Owens, K.; Gajewski, A.; Clabots, C. Escherichia Coli Colonization Patterns among Human Household Members and Pets, with Attention to Acute Urinary Tract Infection. J. Infect. Dis. 2008, 197, 218–224. [Google Scholar] [CrossRef]
- Aurich, S.; Wolf, S.A.; Prenger-Berninghoff, E.; Thrukonda, L.; Semmler, T.; Ewers, C. Genotypic Characterization of Uropathogenic Escherichia Coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats. Antibiotics 2023, 13, 38. [Google Scholar] [CrossRef]
- Damborg, P.; Pirolo, M.; Schøn Poulsen, L.; Frimodt-Møller, N.; Guardabassi, L. Dogs Can Be Reservoirs of Escherichia Coli Strains Causing Urinary Tract Infection in Human Household Contacts. Antibiotics 2023, 12, 1269. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)-Annual Epidemiological Report 2022; ECDC: Stockholm, Sweden, 2023.
- EFSA; ECDC. European Food Safety Authority and European Centre for Disease Prevention and Control The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2020/2021. EFSA J. 2023, 21, 7867. [Google Scholar]
- Ball, K.R.; Rubin, J.E.; Chirino-Trejo, M.; Dowling, P.M. Antimicrobial Resistance and Prevalence of Canine Uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002-2007. Can. Vet. J. 2008, 49, 985–990. [Google Scholar]
- Hall, J.L.; Holmes, M.A.; Baines, S.J. Prevalence and Antimicrobial Resistance of Canine Urinary Tract Pathogens. Vet. Rec. 2013, 173, 549. [Google Scholar] [CrossRef] [PubMed]
Bacterial Species | Dogs (n) | Dogs (%) | Cats (n) | Cats (%) | p Value |
---|---|---|---|---|---|
Total | 602 | 127 | |||
Citrobacter spp. | 6 | 1.0% | 0 | 0.0% | 0.590 |
Coagulase-negative Staphylococci (CoNS) other than Staphylococcus felis | 4 | 0.7% | 5 | 3.9% | 0.010 |
Corynebacterium urealyticum | 2 | 0.3% | 3 | 2.4% | 0.039 |
Enterobacter cloacae | 15 | 2.5% | 1 | 0.8% | 0.330 |
Enterococcus faecalis | 33 | 5.5% | 19 | 15.0% | <0.001 |
Enterococcus faecium | 12 | 2.0% | 3 | 2.4% | 0.733 |
Escherichia coli | 318 | 52.8% | 58 | 45.7% | 0.171 |
Klebsiella pneumoniae | 39 | 6.5% | 6 | 4.7% | 0.547 |
Other Enterobacter spp. 1 | 5 | 0.8% | 1 | 0.8% | 1 |
Other Enterococcus spp. 2 | 2 | 0.3% | 1 | 0.8% | 0.437 |
Other gram-negatives 3 | 11 | 1.8% | 0 | 0.0% | 0.227 |
Other Streptococcus spp. | 5 | 0.8% | 0 | 0.0% | 0.593 |
Proteus mirabilis | 33 | 5.5% | 7 | 5.5% | 1 |
Pseudomonas aeruginosa | 22 | 3.6% | 3 | 2.4% | 0.599 |
Staphylococcus aureus | 2 | 0.3% | 3 | 2.4% | 0.039 |
Staphylococcus felis | 0 | 0.0% | 7 | 5.5% | <0.001 |
Staphylococcus intermedius group (SIG) | 58 | 9.6% | 9 | 7.1% | 0.403 |
Streptococcus canis | 35 | 5.8% | 1 | 0.8% | 0.012 |
Hospitalization Data | Total Specimens (n = 670) | Total Specimens (%) | Specimens from Cats (n = 116) | Specimens from Cats (%) | Specimens from Dogs (n = 554) | Specimens from Dogs (%) |
---|---|---|---|---|---|---|
Previous hospitalization/surgery in the past 30 days | 119 | 17.8% | 27 | 23.3% | 92 | 16.6% |
Hospitalization at the time of sampling | 167 | 24.9% | 40 | 34.5% | 127 | 22.9% |
Hospitalization in intensive care unit | 79 | 11.8% | 18 | 15.5% | 61 | 11% |
Surgery at the time of sampling | 47 | 7% | 10 | 8.6% | 37 | 6.7% |
ISCAID Classification | Total Cases (%) | Cases from Dogs n (%) | Cases from Cats n (%) | Single-Species Infection n (%) | Mixed Infection n (%) | Cases with Previous Antimicrobial Use n (%) | Cases with Antimicrobial Use at the Time of Sampling n (%) |
---|---|---|---|---|---|---|---|
SUB | 114 (17%) | 99 (17.9%) | 15 (12.9%) | 103 (90.3%) | 11 (9.7%) | 30 (26.3%) | 6 (5.3%) |
SBC | 190 (28.4%) | 159 (28.7%) | 31 (26.7%) | 178 (93.7%) | 12 (6.3%) | 38 (20%) | 19 (10%) |
RBC | 166 (24.8%) | 132 (23.7%) | 34 (29.3%) | 143 (86.2%) | 23 (13.8%) | 110 (65.9%) | 20 (12%) |
uUTI | 167 (24.9%) | 137 (24.8%) | 30 (25.9%) | 155 (92.8%) | 12 (7.2%) | 71 (42.5%) | 38 (22.8%) |
CAUTI | 12 (1.8%) | 8 (1.4%) | 4 (3.4%) | 12 (100%) | 0 (0%) | 8 (66.7%) | 5 (41.7%) |
BP | 16 (2.4%) | 16 (2.8%) | 0 (0%) | 16 (100%) | 0 (0%) | 6 (37.5%) | 3 (18.8%) |
NC | 5 (0.7%) | 5 (0.9%) | 0 (0%) | 5 (100%) | 0 (0%) | 3 (60%) | 1 (20%) |
Total | 670 | 554 | 116 | 612 (91.3%) | 58 (8.7%) | 266 (39.7%) | 92 (13.7%) |
Antimicrobial Tested | Non-Susceptibility % Among all Bacterial Population (n = 729) | Non-Susceptibility % of Bacterial Isolates from Dogs (n = 602) | Non-Susceptibility % of Bacterial Isolates from Cats (n = 127) | p Value |
---|---|---|---|---|
Amikacin | 10.6% (65/612) | 10.1% (52/512) | 13% (13/100) | 0.398 |
Gentamicin | 17.3% (119/687) | 16.6% (93/561) | 20.6% (26/126) | 0.277 |
Ampicillin | 52.6% (328/623) | 54.5% (276/506) | 44.4% (52/117) | 0.048 |
Amoxicillin-clavulanate | 23.2% (156/671) | 22.1% (122/552) | 28.5% (34/119) | 0.129 |
Piperacillin-tazobactam | 17% (123/722) | 16.2% (97/598) | 21% (26/124) | 0.201 |
Cephazolin/Cephalothin | 28.8% (173/601) | 27.5% (139/505) | 35.4% (34/96) | 0.177 |
Ceftiofur | 23.1% (145/627) | 21.3% (113/529) | 32.6% (32/102) | 0.028 |
Tetracycline | 41.6% (286/688) | 40.8% (232/568) | 45% (54/120) | 0.401 |
Erythromycin | 58.1% (75/129) | 61.5% (64/104) | 44% (11/25) | 0.110 |
Clindamycin | 62.7% (84/134) | 65.1% (69/106) | 53.5% (15/29) | 0.188 |
Enrofloxacin | 45.2% (327/729) | 44.4% (265/599) | 50% (62/124) | 0.241 |
Trimethoprim- sulfamethoxazole | 22% (138/628) | 21.3% (113/530) | 25.5% (25/98) | 0.357 |
Bacterial Species | n of MDR Isolates | % of MDR Isolates | % of MDR Isolates Within the Species |
---|---|---|---|
E. coli | 120 | 44.1% | 31.9% (120/376) |
Enterobacter spp. | 7 | 2.6% | 31.8% (7/22) |
E. faecium | 12 | 4.4% | 80.0% (12/15) |
E. faecalis | 9 | 3.3% | 17.3% (9/52) |
C. urealyticum | 1 | 0.4% | 20.0% (1/5) |
K. pneumoniae | 25 | 9.2% | 55.6% (25/45) |
P. aeruginosa | 7 | 2.6% | 28.0% (7/25) |
P. mirabilis | 8 | 2.9% | 20.0% (8/40) |
Staphylococcus intermedius group (SIG) | 50 | 18.4% | 74.6% (50/67) |
S. canis | 21 | 7.7% | 58.3% (21/36) |
S. aureus | 3 | 1.1% | 60.0% (1/5) |
K. oxytoca | 1 | 0.4% | 33.3% (1/3) |
Coagulase-negative Staphylococci (CoNS) | 5 | 1.8% | 31.3% (5/16) |
Other Streptococcus spp. | 3 | 1.1% | 60% (3/5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scarpellini, R.; Piva, S.; Monari, E.; Vasylyeva, K.; Mondo, E.; Esposito, E.; Tumietto, F.; Dondi, F. Antimicrobial Resistance in Companion Animals: A 30-Month Analysis on Clinical Isolates from Urinary Tract Infections in a Veterinary Hospital. Animals 2025, 15, 1547. https://doi.org/10.3390/ani15111547
Scarpellini R, Piva S, Monari E, Vasylyeva K, Mondo E, Esposito E, Tumietto F, Dondi F. Antimicrobial Resistance in Companion Animals: A 30-Month Analysis on Clinical Isolates from Urinary Tract Infections in a Veterinary Hospital. Animals. 2025; 15(11):1547. https://doi.org/10.3390/ani15111547
Chicago/Turabian StyleScarpellini, Raffaele, Silvia Piva, Erika Monari, Kateryna Vasylyeva, Elisabetta Mondo, Erika Esposito, Fabio Tumietto, and Francesco Dondi. 2025. "Antimicrobial Resistance in Companion Animals: A 30-Month Analysis on Clinical Isolates from Urinary Tract Infections in a Veterinary Hospital" Animals 15, no. 11: 1547. https://doi.org/10.3390/ani15111547
APA StyleScarpellini, R., Piva, S., Monari, E., Vasylyeva, K., Mondo, E., Esposito, E., Tumietto, F., & Dondi, F. (2025). Antimicrobial Resistance in Companion Animals: A 30-Month Analysis on Clinical Isolates from Urinary Tract Infections in a Veterinary Hospital. Animals, 15(11), 1547. https://doi.org/10.3390/ani15111547