Complete Genome Sequencing of a G3P[14] Rabbit Rotavirus
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Sample Preparation and Nucleic Acid Extraction
2.3. Quantitative Reverse Transcription PCR (qRT-PCR) Specific for RVA
2.4. Screening for Other Pathogens
2.5. Amplification of Rotavirus a Genome
Pathogen | Target Gene | Assay | Primer/Probes | Sequence 5′-3′ | Reference |
---|---|---|---|---|---|
RVA | VP2 | qRT-PCR | Vp2f1 | TCTGCAGACAGTTGAACCTATTAA | [21] |
Vp2f2 | CAGACACGGTTGAACCCATTAA | ||||
Vp2f3 | TCGGCTTGATACAGTAGAACCTATAAATG | ||||
Vp2f4 | TGTCAGCTGATACAGTAGAACCTATAAATG | ||||
Vp2f5 | TCAGCTGAC ACAGTAGAACCTATAAATG | ||||
Vp2R1 | GTTGGCGTTTACAGTTCGTTCAT | ||||
Vp2R2 | GTTGGCGTCTACAATTCGTTCAT | ||||
VP2-probe | FAM-ATGCGCATRTTRTCAAAHGCAA-MGB-NFQ | ||||
RVA | Complete genome | RT | unRAf1 | GCCGGAGCTCTGCAGAATTCGGCTWTWAAA | [27] |
unRAf2 | GCCGGAGCTCTGCAGAATTCGGCTTTTTTT | ||||
unRAf3 | GCCGGAGCTCTGCAGAATTCGGCTTTTAAT | ||||
unRAr1 | GCCGGAGCTCTGCAGAATTCGGTCAYATC | ||||
unRAr2 | GCCGGAGCTCTGCAGAATTCGGTCACAWA | ||||
unRAr3 | GCCGGAGCTCTGCAGAATTCAGCCACATG | ||||
Universal | PCR | Up | GCCGGAGCTCTGCAGAATTC | [26] | |
E. coli | eae | PCR | ECW1 s | TGCGGCACAACAGGCGGCGA | [23] |
ECW2 as | CGGTCGCCGCACCAGGATTC | ||||
afr2 | PCR | AF/R2-F | AAGTTAGGGGACGCCATTAC | [24] | |
AF/R2-R | CCAGGACTTATTCTGACCAG | ||||
Eimeria spp. | 18srRNA | PCR | 1FE | TACCCAATGAAAACAGTTT | [25] |
4RB | CGTCTTCAAACCCCCTACTG |
2.6. Oxford Nanopore Technologies (ONT) Sequencing
2.7. Sequence and Phylogenetic Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bishop, R. Discovery of rotavirus: Implications for child health. J. Gastroenterol. Hepatol. 2009, 24, S81–S85. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Chen, C.; Zhang, X.; Yan, D.; Jiang, D.; Liu, X.; Yang, M.; Ding, C.; Lan, L.; Hecht, R.; et al. Global burden and trends of rotavirus infection-associated deaths from 1990 to 2019: An observational trend study. Virol. J. 2022, 19, 166. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Grow, S.; Iturriza-Gómara, M.; Hausdorff, W.P.; Fix, A.; Kirkwood, C.D. The Challenges and Opportunities of Next-Generation Rotavirus Vaccines: Summary of an Expert Meeting with Vaccine Developers. Viruses 2022, 14, 2565. [Google Scholar] [CrossRef]
- Buttery, J.P.; Kirkwood, C. Rotavirus vaccine implementation: Evidence to fill the gap? Lancet Glob. Health 2021, 9, e885–e886. [Google Scholar] [CrossRef]
- Tate, J.E.; Burton, A.H.; Boschi-Pinto, C.; Steele, A.D.; Duque, J.; Parashar, U.D.; WHO-coordinated Global Rotavirus Surveillance Network. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 136–141. [Google Scholar] [CrossRef]
- Pesavento, J.B.; Crawford, S.E.; Estes, M.K.; Prasad, B.V. Rotavirus proteins: Structure and assembly. Curr. Top. Microbiol. Immunol. 2006, 309, 189–219. [Google Scholar] [CrossRef]
- Kim, H.H.; Matthijnssens, J.; Kim, H.J.; Kwon, H.J.; Park, J.G.; Son, K.Y.; Ryu, E.H.; Kim, D.S.; Lee, W.S.; Kang, M.I.; et al. Full-length genomic analysis of porcine G9P[23] and G9P[7] rotavirus strains isolated from pigs with diarrhea in South Korea. Infect. Genet. Evol. 2012, 12, 1427–1435. [Google Scholar] [CrossRef] [PubMed]
- Matthijnssens, J.; Ciarlet, M.; McDonald, S.M.; Attoui, H.; Bányai, K.; Brister, J.R.; Buesa, J.; Esona, M.D.; Estes, M.K.; Gentsch, J.R.; et al. Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG). Arch. Virol. 2011, 156, 1397–1413. [Google Scholar] [CrossRef]
- Martella, V.; Ciarlet, M.; Lavazza, A.; Camarda, A.; Lorusso, E.; Terio, V.; Ricci, D.; Cariola, F.; Gentile, M.; Cavalli, A.; et al. Lapine rotaviruses of the genotype P[22] are widespread in Italian rabbitries. Vet. Microbiol. 2005, 111, 117–124. [Google Scholar] [CrossRef]
- Matthijnssens, J.; Rahman, M.; Martella, V.; Xuelei, Y.; De Vos, S.; De Leener, K.; Ciarlet, M.; Buonavoglia, C.; Van Ranst, M. Full genomic analysis of human rotavirus strain B4106 and lapine rotavirus strain 30/96 provides evidence for interspecies transmission. J. Virol. 2006, 80, 3801–3810. [Google Scholar] [CrossRef]
- Guo, D.; Liu, J.; Lu, Y.; Sun, Y.; Yuan, D.; Jiang, Q.; Lin, H.; Li, C.; Si, C.; Qu, L. Full genomic analysis of rabbit rotavirus G3P[14] strain N5 in China: Identification of a novel VP6 genotype. Infect. Genet. Evol. 2012, 12, 1567–1576. [Google Scholar] [CrossRef] [PubMed]
- Oem, J.K.; Lee, S.Y.; Kim, Y.S.; Na, E.J.; Choi, K.S. Genetic characteristics and analysis of a novel rotavirus G3P[22] identified in diarrheic feces of Korean rabbit. Infect. Genet. Evol. 2019, 73, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Liu, L.; Huang, T.; Tian, Y.; Guo, X.; Liu, C.; Huang, B.; Chen, Q. Complete genomic analysis of rabbit rotavirus G3P[22] in China. Arch. Virol. 2023, 168, 129. [Google Scholar] [CrossRef] [PubMed]
- Donato, C.M.; Manuelpillai, N.M.; Cowley, D.; Roczo-Farkas, S.; Buttery, J.P.; Crawford, N.W.; Kirkwood, C.D. Genetic characterization of a novel G3P[14] rotavirus strain causing gastroenteritis in 12 year old Australian child. Infect. Genet. Evol. 2014, 25, 97–109. [Google Scholar] [CrossRef]
- Watanabe, M.; Nakagomi, T.; Koshimura, Y.; Nakagomi, O. Direct evidence for genome segment reassortment between concurrently-circulating human rotavirus strains. Arch. Virol. 2001, 146, 557–570. [Google Scholar] [CrossRef]
- Schoondermark-van de Ven, E.; Van Ranst, M.; de Bruin, W.; van den Hurk, P.; Zeller, M.; Matthijnssens, J.; Heylen, E. Rabbit colony infected with a bovine-like G6P[11] rotavirus strain. Vet. Microbiol. 2013, 166, 154–164. [Google Scholar] [CrossRef]
- Reynoso-Utrera, E.; Bautista-Gómez, L.G.; Fonseca-Coronado, S.; Pérez-de la Rosa, J.D.; Rodríguez-Villavicencio, V.J.; Romero-Núñez, C.; Flores-Ortega, A.; Hernández-García, P.A.; Martínez-Castañeda, J.S. New Genotype G3 P[8] of Rotavirus Identified in a Mexican Gastroenteric Rabbit. Viruses 2024, 16, 1729. [Google Scholar] [CrossRef]
- De Leener, K.; Rahman, M.; Matthijnssens, J.; Van Hoovels, L.; Goegebuer, T.; van der Donck, I.; Van Ranst, M. Human infection with a P[14], G3 lapine rotavirus. Virology 2004, 325, 11–17. [Google Scholar] [CrossRef]
- Bonica, M.B.; Zeller, M.; Van Ranst, M.; Matthijnssens, J.; Heylen, E. Complete genome analysis of a rabbit rotavirus causing gastroenteritis in a human infant. Viruses 2015, 7, 844–856. [Google Scholar] [CrossRef]
- Pellegrini, F.; Lanave, G.; Caringella, F.; Diakoudi, G.; Salvaggiulo, A.; Cavalli, A.; Papaleo, A.; Di Martino, B.; Camero, M.; Bányai, K.; et al. Identification of Recombinant Aichivirus D in Cattle, Italy. Animals 2024, 14, 3315. [Google Scholar] [CrossRef]
- Gutiérrez-Aguirre, I.; Steyer, A.; Boben, J.; Gruden, K.; Poljsak-Prijatelj, M.; Ravnikar, M. Sensitive detection of multiple rotavirus genotypes with a single reverse transcription-real-time quantitative PCR assay. J. Clin. Microbiol. 2008, 46, 2547–2554. [Google Scholar] [CrossRef] [PubMed]
- Ndiana, L.A.; Lanave, G.; Desario, C.; Odigie, A.E.; Madubuike, K.G.; Lucente, M.S.; Ezeifeka, C.A.; Patruno, G.; Lorusso, E.; Elia, G.; et al. Detection of Selected Canine Viruses in Nigerian Free-Ranging Dogs Traded for Meat Consumption. Animals 2023, 13, 1119. [Google Scholar] [CrossRef] [PubMed]
- Wieler, L.H. Bestimmung von Virulenzfaktoren Bovine Shiga-Toxin-Bildender Escherichia coli (STEC-) Stämme als Bewertungsgrundlage ihrer Klinischen Bedeutung für Rind und Mensch. Habilitation Ph.D. Thesis, University of Giessen, Giessen, Germany, 1997. [Google Scholar]
- Dow, M.A.; Tóth, I.; Alexa, P.; Davies, M.; Malik, A.; Oswald, E.; Nagy, B. Predominance of afr2 and ral fimbrial genes related to those encoding the K88 and CS31A fimbrial adhesins in enteropathogenic Escherichia coli isolates from rabbits with postweaning diarrhea in Central Europe. J. Clin. Microbiol. 2005, 43, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Jinneman, K.C.; Wetherington, J.H.; Hill, W.E.; Omiescinski, C.J.; Adams, A.M.; Johnson, J.M.; Tenge, B.J.; Dang, N.L.; Wekell, M.M. An oligonucleotide-ligation assay for the differentiation between Cyclospora and Eimeria spp. polymerase chain reaction amplification products. J. Food Prot. 1999, 62, 682–685. [Google Scholar] [CrossRef] [PubMed]
- Froussard, P. rPCR: A powerful tool for random amplification of whole RNA sequences. PCR Methods Appl. 1993, 2, 185–190. [Google Scholar] [CrossRef]
- Faizuloev, E.; Mintaev, R.; Petrusha, O.; Marova, A.; Smirnova, D.; Ammour, Y.; Meskina, E.; Sergeev, O.; Zhavoronok, S.; Karaulov, A.; et al. New approach of genetic characterization of group A rotaviruses by the nanopore sequencing method. J. Virol. Methods. 2021, 292, 114114. [Google Scholar] [CrossRef]
- Vilsker, M.; Moosa, Y.; Nooij, S.; Fonseca, V.; Ghysens, Y.; Dumon, K.; Pauwels, R.; Alcantara, L.C.; vanden Eynden, E.; Vandamme, A.M.; et al. Genome Detective: An Automated System for Virus Identification from High-Throughput Sequencing Data. Bioinformatics 2019, 35, 871–873. [Google Scholar] [CrossRef]
- Beikpour, F.; Pellegrini, F.; Lanave, G.; Camero, M.; Catella, C.; Di Martino, B.; Di Profio, F.; Masotti, C.; Battistini, R.; Serracca, L.; et al. Exploring the Astrovirome of Shellfish Matrices Using Nanopore Sequencing. Vet. Sci. 2023, 10, 175. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Martella, V.; Ciarlet, M.; Camarda, A.; Pratelli, A.; Tempesta, M.; Greco, G.; Cavalli, A.; Elia, G.; Decaro, N.; Terio, V.; et al. Molecular characterization of the VP4, VP6, VP7, and NSP4 genes of lapine rotaviruses identified in Italy: Emergence of a novel VP4 genotype. Virology 2003, 314, 358–370. [Google Scholar] [CrossRef]
- Ciarlet, M.; Estes, M.K.; Barone, C.; Ramig, R.F.; Conner, M.E. Analysis of host range restriction determinants in the rabbit model: Comparison of homologous and heterologous rotavirus infections. J. Virol. 1998, 72, 2341–2351. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Gilger, M.A.; Barone, C.; McArthur, M.; Estes, M.K.; Conner, M.E. Rotavirus disease, but not infection and development of intestinal histopathological lesions, is age restricted in rabbits. Virology 1998, 251, 343–360. [Google Scholar] [CrossRef] [PubMed]
- Conner, M.E.; Estes, M.K.; Graham, D.Y. Rabbit model of rotavirus infection. J. Virol. 1988, 62, 1625–1633. [Google Scholar] [CrossRef]
- Petric, M.; Middleton, P.J.; Grant, C.; Tam, J.S.; Hewitt, C.M. Lapine rotavirus: Preliminary studies on epizoology and transmission. Can. J. Comp. Med. 1978, 42, 143–147. [Google Scholar] [PubMed]
- Sato, K.; Inaba, Y.; Miura, Y.; Tokuhisa, S.; Matumoto, M. Isolation of lapine rotavirus in cell cultures. Brief report. Arch. Virol. 1982, 71, 267–271. [Google Scholar] [CrossRef]
- Thouless, M.E.; DiGiacomo, R.F.; Deeb, B.J.; Howard, H. Pathogenicity of rotavirus in rabbits. J. Clin. Microbiol. 1988, 26, 943–947. [Google Scholar] [CrossRef]
- Hall, G.A.; Bridger, J.C.; Parsons, K.R.; Cook, R. Variation in rotavirus virulence: A comparison of pathogenesis in calves between two rotaviruses of different virulence. Vet. Pathol. 1993, 30, 223–233. [Google Scholar] [CrossRef]
- DiGiacomo, R.F.; Thouless, M.E. Epidemiology of naturally occurring rotavirus infection in rabbits. Lab. Anim. Sci. 1986, 36, 153–156. [Google Scholar]
- Reynoso Utrera, E.; Bautista Gómez, L.G.; Martínez Castañeda, J.S.; Romero Núñez, C.; García Rubio, V.G.; Aguado Almazán, G.L.; Hernández García, P.A.; Espinosa Ayala, E. Análisis de la presencia de Rotavirus en conejos del Estado de México. Rev. Mex. Cienc. Pecu. 2019, 10, 511–521. [Google Scholar] [CrossRef]
- Duarte, A.; Abade Dos Santos, F.A.; Fagulha, T.; Caetano, I.; Carvalho, P.; Carvalho, J.; Santos, A.E.; de Ayala, R.P.; Duarte, M.D. Mixed viral infections (Rotavirus, Herpesvirus and others) in European wild rabbits. Vet. Anim. Sci. 2025, 27, 100424. [Google Scholar] [CrossRef]
- Camguilhem, R.; Milon, A. Biotypes and O serogroups of Escherichia coli involved in intestinal infections of weaned rabbits: Clues to diagnosis of pathogenic strains. J. Clin. Microbiol. 1989, 27, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Hughes, K. Endoparasites of rabbits and hares. J. Vet. Diagn. Invest. 2024, 36, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Ciarlet, M.; Estes, M.K.; Conner, M.E. Comparative amino acid sequence analysis of the outer capsid protein VP4 from four lapine rotavirus strains reveals identity with genotype P[14] human rotaviruses. Arch. Virol. 1997, 142, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Martella, V.; Bányai, K.; Matthijnssens, J.; Buonavoglia, C.; Ciarlet, M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 2010, 140, 246–255. [Google Scholar] [CrossRef]
- Zhirakovskaia, E.V.; Aksanova, R.K.; Gorbunova, M.G.; Tikunov, A.I.; Kuril’shchikov, A.M.; Sokolov, S.N.; Netesov, S.V.; Tikunova, N.V. Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011. Mol. Gen. Mikrobiol. Virusol. 2012, 4, 33–41. [Google Scholar] [CrossRef]
- De Grazia, S.; Giammanco, G.M.; Potgieter, C.A.; Matthijnssens, J.; Banyai, K.; Platia, M.A.; Colomba, C.; Martella, V. Unusual assortment of segments in 2 rare human rotavirus genomes. Emerg. Infect. Dis. 2010, 16, 859–862. [Google Scholar] [CrossRef]
- Grant, L.; Esona, M.; Gentsch, J.; Watt, J.; Reid, R.; Weatherholtz, R.; Santosham, M.; Parashar, U.; O’Brien, K. Detection of G3P[3] and G3P[9] rotavirus strains in American Indian children with evidence of gene reassortment between human and animal rotaviruses. J. Med. Virol. 2011, 83, 1288–1299. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Than, V.T.; Thanh, H.D.; Kim, W. Evidence of multiple reassortment events of feline-to-human rotaviruses based on a rare human G3P[9] rotavirus isolated from a patient with acute gastroenteritis. Comp. Immunol. Microbiol. Infect. Dis. 2016, 46, 53–59. [Google Scholar] [CrossRef]
- Abravanel, F.; Lhomme, S.; El Costa, H.; Schvartz, B.; Peron, J.M.; Kamar, N.; Izopet, J. Rabbit Hepatitis E Virus Infections in Humans, France. Emerg. Infect. Dis. 2017, 23, 1191–1193. [Google Scholar] [CrossRef]
Gene | Segment | Length (nt *) | Reads (Nr **) | Coverage Depth | NCBI Accession |
---|---|---|---|---|---|
VP1 | 1 | 3302/3302 | 61,226 | 37,211 | PQ822044 |
VP2 | 2 | 2687/2690 | 113,982 | 85,274 | PQ822045 |
VP3 | 3 | 2591/2591 | 9989 | 8050 | PQ822046 |
VP4 | 4 | 2361/2362 | 14,713 | 13,158 | PQ822047 |
NSP1 | 5 | 1597/1611 | 25,116 | 35,791 | PQ822048 |
VP6 | 6 | 1356/1356 | 37,152 | 55,260 | PQ822049 |
NSP3 | 7 | 1072/1104 | 129,942 | 244,403 | PQ822050 |
NSP2 | 8 | 1059/1059 | 132,699 | 25,339 | PQ822051 |
VP7 | 9 | 1062/1062 | 64,508 | 129,080 | PQ822052 |
NSP4 | 10 | 751/751 | 13,765 | 37,195 | PQ822053 |
NSP5 | 11 | 1035/1035 | 621,268 | 69,740 | PQ822054 |
RVA Strain | VP7 | VP4 | VP6 | VP1 | VP2 | VP3 | NSP1 | NSP2 | NSP3 | NSP4 | NSP5/6 |
---|---|---|---|---|---|---|---|---|---|---|---|
Human-tc/USA/Wa/1974/G1P[8] | G1 | P[8] | I1 | R1 | C1 | M1 | A1 | N1 | T1 | E1 | H1 |
Human-tc/USA/DS-1/1976/G2P[4] | G2 | P[4] | I2 | R2 | C2 | M2 | A2 | N2 | T2 | E2 | H2 |
Human-tc/JPN/AU-1/1982/G3P[9] | G3 | P[9] | I3 | R3 | C3 | M3 | A3 | N3 | T3 | E3 | H3 |
Human-wt/BEL/BE5028/2012/G3P[14] | G3 | P[14] | I2 | R2 | C2 | M3 | A9 | N2 | T6 | E5 | H3 |
Human-wt/BEL/B4106/2000/G3P[14] | G3 | P[14] | I2 | R2 | C2 | M3 | A9 | N2 | T6 | E5 | H3 |
Human-wt/AUS/RCH272/2012/G3P[14] | G3 | P[14] | I2 | R3 | C3 | M3 | A9 | N2 | T6 | E2 | H3 |
Human-wt/RUS/Omsk08-442/2008/G3P[9] | G3 | P[9] | I2 | ND | ND | ND | ND | N2 | ND | ND | ND |
Human-wt/HUN/ERN5162/2012/G3P[9] | G3 | P[9] | I2 | R2 | C2 | M2 | A3 | N2 | T3 | E3 | H3 |
Human-wt/ITA/PA158/1996/G3P[9] | G3 | P[9] | I2 | R2 | C2 | M2 | A3 | N2 | T6 | E2 | H3 |
Human-wt/USA/0537/2002/G3P[9] | G3 | P[9] | I2 | R2 | C2 | M2 | A3 | N2 | T1 | E2 | H3 |
Rabbit-wt/ITA/36-9/2022/G3P[14] | G3 | P[14] | I2 | R2 | C2 | M3 | A9 | N2 | T6 | E5 | H3 |
Rabbit-tc/ITA/30-96/1996/G3P[14] | G3 | P[14] | I2 | R2 | C2 | M3 | A9 | N2 | T6 | E5 | H3 |
Rabbit-tc/CHN/N5/1992/G3P[14] | G3 | P[14] | I17 | R3 | C3 | M3 | A9 | N1 | T1 | E3 | H2 |
Rabbit-tc/NLD/K1130027/2011/G6P[11] | G6 | P[11] | I2 | R2 | C2 | M2 | A13 | N2 | T6 | E2 | H3 |
Rabbit-tc/CHN/Z3171/2020/G3P[22] | G3 | P[22] | I2 | R3 | C3 | M3 | A9 | N2 | T1 | E3 | H3 |
Rabbit-wt/SKR/Rab1404/2014/G3P[22] | G3 | P[22] | I2 | R3 | C3 | M3 | A9 | N2 | T3 | E3 | H3 |
Rabbit-wt/MEX/C-3-15/2015/G3P[8] | G3 | P[8] | ND | ND | ND | ND | ND | ND | ND | ND | ND |
Cat-wt/ITA/BA222/2005/G3P[9] | G3 | P[9] | I2 | R2 | C2 | M2 | A3 | N1 | T3 | E2 | H3 |
Cat-tc/AUS/Cat97/1984/G3P[3] | G3 | P[3] | I3 | R3 | C2 | M3 | A9 | N2 | T3 | E3 | H6 |
Cat-tc/JAP/FRV-1/1982/G3P[9] | G3 | P[9] | I3 | R3 | C3 | M3 | A3 | N3 | T3 | E3 | H3 |
Dog-tc/ITA/RV198-95/1995/G3P[3] | G3 | P[3] | I3 | R3 | C2 | M3 | A9 | N2 | T3 | E3 | H6 |
Cow-tc/USA/NCDV/1971/G6P[1] | G6 | P[1] | I2 | R2 | C2 | M2 | A3 | N2 | T6 | E2 | H3 |
Cow-wt/TUR/K53/2006/G15P[21] | G15 | P[21] | I2 | R2 | C2 | M2 | A13 | N2 | T9 | E2 | H3 |
Pig-tc/USA/Gottfried/1975/G4P[6] | G4 | P[6] | I1 | R1 | C1 | M1 | A8 | N1 | T1 | E1 | H1 |
Pig-tc/USA/OSU/1975/G5P[7] | G5 | P[7] | I5 | R1 | C1 | M1 | A1 | N1 | T1 | E1 | H1 |
Gene | Segment | Genotype | Reference Strain | Accession No | % nt Identity |
---|---|---|---|---|---|
VP1 | 1 | R2 | RVA/Human wt/BEL/B4106/2000/G3P[14] | AY740741 | 93.7% |
VP2 | 2 | C2 | RVA/Human-wt/BEL/B4106/2000/G3P[14] | AY740740 | 97.4% |
VP3 | 3 | M3 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258400 | 98.9% |
VP4 | 4 | P[14] | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258401 | 98.1% |
NSP1 | 5 | A9 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258404 | 98.3% |
VP6 | 6 | I2 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258402 | 97.9% |
NSP3 | 7 | T6 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258406 | 98.3% |
NSP2 | 8 | N2 | RVA/Human-wt/RUS/Omsk08-442/2008/G3P[9] | KC822934 | 96.2% |
VP7 | 9 | G3 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258403 | 96.7% |
NSP4 | 10 | E5 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258407 | 98.1% |
NSP5 | 11 | H3 | RVA/Human-wt/BEL/BE5028/2012/G3P[14] | KP258408 | 98.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omar, A.H.; Pellegrini, F.; Catella, C.; Diakoudi, G.; Salvaggiulo, A.; Casalino, G.; Circella, E.; D’Amico, F.; Schiavitto, M.; Camarda, A.; et al. Complete Genome Sequencing of a G3P[14] Rabbit Rotavirus. Animals 2025, 15, 1548. https://doi.org/10.3390/ani15111548
Omar AH, Pellegrini F, Catella C, Diakoudi G, Salvaggiulo A, Casalino G, Circella E, D’Amico F, Schiavitto M, Camarda A, et al. Complete Genome Sequencing of a G3P[14] Rabbit Rotavirus. Animals. 2025; 15(11):1548. https://doi.org/10.3390/ani15111548
Chicago/Turabian StyleOmar, Ahmed Hassan, Francesco Pellegrini, Cristiana Catella, Georgia Diakoudi, Anna Salvaggiulo, Gaia Casalino, Elena Circella, Francesco D’Amico, Michele Schiavitto, Antonio Camarda, and et al. 2025. "Complete Genome Sequencing of a G3P[14] Rabbit Rotavirus" Animals 15, no. 11: 1548. https://doi.org/10.3390/ani15111548
APA StyleOmar, A. H., Pellegrini, F., Catella, C., Diakoudi, G., Salvaggiulo, A., Casalino, G., Circella, E., D’Amico, F., Schiavitto, M., Camarda, A., Camero, M., Bányai, K., Matthijnssens, J., Ciarlet, M., Martella, V., & Lanave, G. (2025). Complete Genome Sequencing of a G3P[14] Rabbit Rotavirus. Animals, 15(11), 1548. https://doi.org/10.3390/ani15111548