Impact of Relative Humidity on Heat Stress Responses in Early-Lactation Holstein Cows
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animals
2.2. Samplings and Analysis
2.2.1. Dry Matter Intake and Water Intake
2.2.2. Milk Yield and Composition
2.2.3. Physiological Indicators
2.2.4. Hematology, Metabolite, and Hormone Parameters in Blood
2.2.5. Heat Shock Protein Gene Expression in Hair Follicles
2.3. Statistical Analysis
3. Results
3.1. Dry Matter Intake and Water Intake
3.2. Milk Yield and Composition
3.3. Physiological Indicators
3.4. Blood Profiles
3.5. Heat Shock Protein Gene Expression in Hair Follicles
4. Discussion
4.1. Dry Matter Intake and Water Intake
4.2. Milk Yield and Composition
4.3. Physiological Indicators
4.4. Blood Profiles
4.5. Heat Shock Protein Gene Expression in Hair Follicles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LRH | Low relative humidity |
HRH | High relative humidity |
RH | Relative humidity |
HS | Heat stress |
HSP | Heat shock protein |
DMI | Dry matter intake |
THI | Temperature–humidity index |
Tdb | Dry-bulb temperature |
ECM | Energy-corrected milk |
FCM | Fat-corrected milk |
RT | Rectal temperature |
HR | Heart rate |
cDNA | Complementary DNA |
NCBI | National Center for Biotechnology Information |
MUN | Milk urea nitrogen |
BHB | Beta-hydroxybutyrate |
WBC | White blood cell |
LYM | Lymphocyte |
MON | Monocyte |
GRA | Granulocyte |
RBC | Red blood cell |
HGB | Hemoglobin |
HCT | Hematocrit |
MCV | Mean corpuscular volume |
RDWc | Red cell distribution width |
MCH | Mean corpuscular hemoglobin |
MCHC | Mean corpuscular hemoglobin concentration |
PLT | Platelet |
MPV | Mean platelet volume |
PCT | Plateletcrit |
PDWc | Platelet distribution width |
NEFA | Non-esterified fatty acid |
BUN | Blood urea nitrogen |
IP | Inorganic phosphorous |
r-GT | Gamma-glutamyltranspeptidase |
GOT | Glutamic oxaloacetic transaminase |
BUN | Blood urea nitrogen |
HPA | Hypothalamus–pituitary–adrenal |
References
- Ouellet, V.; Cabrera, V.; Fadul-Pacheco, L.; Charbonneau, É. The relationship between the number of consecutive days with heat stress and milk production of Holstein dairy cows raised in a humid continental climate. J. Dairy Sci. 2019, 102, 8537–8545. [Google Scholar] [CrossRef] [PubMed]
- Davis, E.C.; Wang, M.; Donovan, S.M. The role of early life nutrition in the establishment of gastrointestinal microbial composition and function. Gut Microbes 2017, 8, 143–171. [Google Scholar] [CrossRef] [PubMed]
- Vaneckova, P.; Neville, G.; Tippett, V.; Aitken, P.; FitzGerald, G.; Tong, S. Do biometeorological indices improve modeling outcomes of heat-related mortality? JAMC 2011, 50, 1165–1176. [Google Scholar] [CrossRef]
- Montero, J.; Mirón, I.; Criado-Álvarez, J.; Linares, C.; Díaz, J. Influence of local factors in the relationship between mortality and heat waves: Castile-La Mancha (1975–2003). Sci. Total Environ. 2012, 414, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Zhang, Y.; Zhang, Z. Human responses to high humidity in elevated temperatures for people in hot-humid climates. Build Environ. 2017, 114, 257–266. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef]
- Burhans, W.; Burhans, C.R.; Baumgard, L. Invited review: Lethal heat stress: The putative pathophysiology of a deadly disorder in dairy cattle. J. Dairy Sci. 2022, 105, 3716–3735. [Google Scholar] [CrossRef]
- Skibiel, A.L.; Koh, J.; Zhu, N.; Zhu, F.; Yoo, M.J.; Laporta, J. Carry-over effects of dry period heat stress on the mammary gland proteome and phosphoproteome in the subsequent lactation of dairy cows. Sci. Rep. 2022, 12, 6637. [Google Scholar] [CrossRef]
- Idris, M.; Uddin, J.; Sullivan, M.; McNeill, D.M.; Phillips, C.J. Non-invasive physiological indicators of heat stress in cattle. Animals 2021, 11, 71. [Google Scholar] [CrossRef]
- Berman, A. Predicted limits for evaporative cooling in heat stress relief of cattle in warm conditions. J. Anim. Sci. 2009, 87, 3413–3417. [Google Scholar] [CrossRef]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Jo, J.H.; Nejad, J.G.; Kim, H.R.; Lee, H.G. Effect of seven days heat stress on feed and water intake, milk characteristics, blood parameters, physiological indicators, and gene expression in Holstein dairy cows. J. Therm. Biol. 2024, 123, 103929. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.S.; Lee, N.K.; Lee, H.G.; Park, K.K. Effects of heat stress on performance, physiological parameters, and blood profiles of early-fattening Hanwoo steers in climate chambers. Anim. Biosci. 2024, 37, 142–150. [Google Scholar] [CrossRef]
- Hou, Y.; Zhang, L.; Dong, R.; Liang, M.; Lu, Y.; Sun, X.; Zhao, X. Comparing responses of dairy cows to short-term and long-term heat stress in climate-controlled chambers. J. Dairy Sci. 2021, 104, 2346–2356. [Google Scholar] [CrossRef]
- Ominski, K.; Kennedy, A.; Wittenberg, K.; Nia, S.M. Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. J. Dairy Sci. 2002, 85, 730–737. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.H.; Nejad, J.G.; Lee, J.S.; Lee, H.G. Evaluation of heat stress effects in different geographical areas on milk and rumen characteristics in holstein dairy cows using robot milking and rumen sensors: A survey in South Korea. Animals 2022, 12, 2398. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC. Official Methods of Analysis, 15th ed.; Association of official analytical chemists: Washington DC, USA, 1990. [Google Scholar]
- Van Soest, P.V.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Boerman, J.; Potts, S.; VandeHaar, M.; Lock, A. Effects of partly replacing dietary starch with fiber and fat on milk production and energy partitioning. J. Dairy Sci. 2015, 98, 7264–7276. [Google Scholar] [CrossRef]
- Kim, W.S.; Nejad, J.G.; Peng, D.Q.; Jung, U.S.; Kim, M.J.; Jo, Y.H.; Jo, J.H.; Lee, J.S.; Lee, H.G. Identification of heat shock protein gene expression in hair follicles as a novel indicator of heat stress in beef calves. Animal 2020, 14, 1502–1509. [Google Scholar] [CrossRef]
- Littell, R.C.; Henry, P.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef]
- Elayadeth-Meethal, M.; Thazhathu Veettil, A.; Maloney, S.K.; Hawkins, N.; Misselbrook, T.H.; Sejian, V.; Rivero, M.J.; Lee, M.R. Size does matter: Parallel evolution of adaptive thermal tolerance and body size facilitates adaptation to climate change in domestic cattle. Ecol. Evol. 2018, 8, 10608–10620. [Google Scholar] [CrossRef] [PubMed]
- Fuller, A.; Mitchell, D.; Maloney, S.K.; Hetem, R.S. Towards a mechanistic understanding of the responses of large terrestrial mammals to heat and aridity associated with climate change. Clim. Change 2016, 3, 10. [Google Scholar] [CrossRef]
- Li, J.; Wang, G.; Zhao, T.; Zhou, G.; Yang, Y. Effects of temperature and relative humidity on the growth performance and blood index of goats. Sci. Agric. Sin. 2018, 51, 4556–4574. [Google Scholar]
- Weniger, J.; Stein, M. Influence of environmental temperature and humidity on nutrient digestibility of sheep. 1. Aims, experimental procedure and digestibility. Zuchtungskunde 1992, 64, 148–155. [Google Scholar]
- Johnson, H.; Vanjonack, W. Effects of environmental and other stressors on blood hormone patterns in lactating animals. J. Dairy Sci. 1976, 59, 1603–1617. [Google Scholar] [CrossRef]
- McArthur, A.; Clark, J. Body temperature of homeotherms and the conservation of energy and water. J. Therm. Biol. 1988, 13, 9–13. [Google Scholar] [CrossRef]
- Yazgan, K. Determining heat stress effect in Holstein dairy cattle using daily milk yield and meteorological data obtained from public weather station in Sanliurfa province of Turkey. Indian J. Anim. Res. 2017, 51, 1002–1011. [Google Scholar] [CrossRef]
- Spiers, D.; Spain, J.; Sampson, J.; Rhoads, R. Use of physiological parameters to predict milk yield and feed intake in heat-stressed dairy cows. J. Therm. Biol. 2004, 29, 759–764. [Google Scholar] [CrossRef]
- Ellett, M.D.; Rhoads, R.P.; Hanigan, M.D.; Corl, B.A.; Perez-Hernandez, G.; Parsons, C.L.; Baumgard, L.H.; Daniels, K.M. Relationships between gastrointestinal permeability, heat stress, and milk production in lactating dairy cows. J. Dairy Sci. 2024, 107, 5190–5203. [Google Scholar] [CrossRef]
- Abbaya, H.Y.; Augustine, C.; Millam, J.J.; Midala, B.D.; Malgwi, I.H. The effect of temperature and humidity related factors on milk quality traits of nigerian indigenous breeds of cattle. IOSR-JAVS 2022, 15, 37–45. [Google Scholar] [CrossRef]
- Baumgard, L.; Rhoads, R.P. Environmental physiology of livestock. In Effects of Environment on Metabolism; Collier, R.J., Collier, J.L., Eds.; John Wiley and Sons: Chichester, UK, 2012; pp. 81–100. [Google Scholar]
- Cowley, F.; Barber, D.G.; Houlihan, A.; Poppi, D.P. Immediate and residual effects of heat stress and restricted intake on milk protein and casein composition and energy metabolism. J. Dairy Sci. 2015, 98, 2356–2368. [Google Scholar] [CrossRef] [PubMed]
- Ríus, A. Invited Review: Adaptations of protein and amino acid metabolism to heat stress in dairy cows and other livestock species. Appl. Anim. Sci. 2019, 35, 39–48. [Google Scholar] [CrossRef]
- Berman, A. Extending the potential of evaporative cooling for heat-stress relief. J. Dairy Sci. 2006, 89, 3817–3825. [Google Scholar] [CrossRef]
- Ghareeb, A.F.; Schneiders, G.H.; Foutz, J.C.; Milfort, M.C.; Fuller, A.L.; Yuan, J.; Rekaya, R.; Aggrey, S.E. Heat stress alters the effect of Eimeria maxima infection on ileal amino acids digestibility and transporters expression in meat-type chickens. Animals 2022, 12, 1554. [Google Scholar] [CrossRef] [PubMed]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef] [PubMed]
- Nichelmann, M.; Tzschentke, B.; Burmeister, A. Evaporative heat loss at high relative air humidity in poultry. Eur. Poult. Sci. 1991, 55, 111–115. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Du, R.; Gu, X.; Zhang, Z.; Buyse, J.; Decuypere, E. Thermoregulation responses of broiler chickens to humidity at different ambient temperatures. II. Four weeks of age. Poult. Sci. 2005, 84, 1173–1178. [Google Scholar] [CrossRef]
- Jericho, K.; Magwood, S. Histological features of respiratory epithelium of calves held at differing temperature and humidity. Can. J. Comp. Med. 1977, 41, 369. [Google Scholar]
- Srikandakumar, A.; Johnson, E. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows. Trop. Anim. Health Prod. 2004, 36, 685–692. [Google Scholar] [CrossRef]
- Ying, Z.; Zhang, M.H.; Feng, J.H.; Diao, H.J. Effect of relative humidity at chronic temperature on growth performance, glucose consumption, and mitochondrial ATP production of broilers. J. Integr. Agric. 2019, 18, 1321–1328. [Google Scholar] [CrossRef]
- Katarzyna, O.; Sembratowicz, I. Stress as a Factor Modifying the Metabolism in Poultry. A Review. Annal. Zootech. 2012, 30, 34–43. [Google Scholar] [CrossRef]
- Shini, S.; Kaiser, P.; Shini, A.; Bryden, W.L. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 149, 324–333. [Google Scholar] [CrossRef]
- Marai, I.; El-Darawany, A.; Fadiel, A.; Abdel-Hafez, M. Physiological traits as affected by heat stress in sheep—A review. Small Rumin. Res. 2007, 71, 1–12. [Google Scholar] [CrossRef]
- Lakhani, P.; Alhussien, M.N.; Lakhani, N.; Jindal, R.; Nayyar, S. Seasonal variation in physiological responses, stress and metabolic-related hormones, and oxidative status of Murrah buffaloes. Biol. Rhythm. Res. 2018, 49, 844–852. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Yin, H.; Zhong, Y.; Wang, H.; Hu, J.; Xia, S.; Xiao, Y.; Nie, S.; Xie, M. Short-term exposure to high relative humidity increases blood urea and influences colonic urea-nitrogen metabolism by altering the gut microbiota. J. Adv. Res. 2022, 35, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Liu, S.; He, C.; Zhou, J.; Zhang, S.; Ai, Z.; Chen, Y.; Yu, Z.; Ni, D. Comparison of the effects of green and black tea extracts on Na+/K+-ATPase activity in intestine of type 1 and type 2 diabetic mice. Mol. Nutr. Food Res. 2019, 63, 1801039. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Takeuchi, M.; Kawajiri, C.; Abe, D.; Nagao, Y.; Yamazaki, A.; Sugita, Y.; Tsukamoto, S.; Sakai, S.; Takeda, Y. Severe hyponatremia caused by syndrome of inappropriate secretion of antidiuretic hormone developed as initial manifestation of human herpesvirus-6–associated acute limbic encephalitis after unrelated bone marrow transplantation. Transpl. Infect. Dis. 2013, 15, E54–E57. [Google Scholar] [CrossRef]
- Chen, S.; Zheng, Y.; Zhou, Y.; Guo, W.; Tang, Q.; Rong, G.; Hu, W.; Tang, J.; Luo, H. Gut dysbiosis with minimal enteritis induced by high temperature and humidity. Sci. Rep. 2019, 9, 18686. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef]
- Hong, C.; Zhu, H.; Zhou, X.; Zhai, X.; Li, S.; Ma, W.; Liu, K.; Shirai, K.; Sheerah, H.A.; Cao, J. Association of blood urea nitrogen with cardiovascular diseases and all-cause mortality in USA adults: Results from NHANES 1999–2006. Nutrients 2023, 15, 461. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, J.A.; Williamson, P.M.; Mangos, G.; Kelly, J.J. Cardiovascular consequences of cortisol excess. Vasc. Health Risk Manag. 2005, 1, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Alhussien, M.N.; Dang, A.K. Impact of different seasons on the milk somatic and differential cell counts, milk cortisol and neutrophils functionality of three Indian native breeds of cattle. J. Therm. Biol. 2018, 78, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Saleh, A.; Nakazawa, A.; Kumar, S.; Srinivasula, S.M.; Kumar, V.; Weichselbaum, R.; Nalin, C.; Alnemri, E.S.; Kufe, D. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 2000, 19, 4310–4322. [Google Scholar] [CrossRef]
Parameters 1 | TMR | Concentrates |
---|---|---|
Analyzed values (%, dry matter basis) | ||
Dry matter | 61.91 | 88.84 |
Crude protein | 6.06 | 18.06 |
Crude fat | 1.11 | 2.75 |
Crude fiber | 8.06 | 6.44 |
Crude ash | 3.15 | 6.17 |
Calcium | 0.37 | 0.61 |
Phosphorus | 0.17 | 0.50 |
NDF | 21.53 | 21.61 |
NDIP | 2.17 | 2.82 |
NDFn | 19.36 | 18.79 |
ADF | 11.30 | 10.71 |
ADIP | 0.52 | 0.73 |
Estimated values 2 | ||
NFC | 68.15 | 51.41 |
tdNFC | 71.67 | 55.27 |
tdCP | 5.46 | 17.77 |
tdFA | 0.11 | 1.75 |
Gene | Accession Number 1 | Sequence (5′ to 3′) | Length (bp) |
---|---|---|---|
HSP90 | NM_001012670 | F: GGAGGATCACTTGGCTGTCA R: GGGATTAGCTCCTCGCAGTT | 177 |
GAPDH | NM_001034034.2 | F: GGCAAGGTCATCCCTGAG R: GCAGGTCAGATCCACAACAG | 166 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
DMI, kg/day | 30.09 | 25.02 | 28.87 | 26.63 | 0.948 | 0.0038 | 0.0169 | 0.0098 |
WI, L/day | 93.22 | 99.39 | 94.88 | 97.19 | 2.186 | 0.8859 | 0.3861 | 0.5701 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
Milk yield, kg/d | 34.01 | 32.64 | 32.82 | 31.00 | 0.596 | 0.1051 | 0.0091 | 0.1501 |
Milk fat, kg/d | 1.42 | 1.22 | 1.61 | 1.18 | 0.046 | 0.5665 | 0.0317 | 0.7017 |
Milk protein, kg/d | 0.94 | 0.86 | 0.84 | 0.79 | 0.031 | 0.5063 | 0.1297 | 0.3644 |
Milk lactose, kg/d | 1.69 | 1.62 | 1.61 | 1.56 | 0.050 | 0.2176 | 0.0793 | 0.3012 |
SNF, kg/d | 8.24 | 8.22 | 7.91 | 8.13 | 0.039 | 0.7253 | 0.2429 | 0.3792 |
Somatic cells, 1000/mL | 118.50 | 140.17 | 119.00 | 56.25 | 9.205 | 0.1385 | 0.4119 | 0.1357 |
MUN, mg/dL | 13.35 | 13.20 | 14.17 | 14.13 | 0.421 | 0.5553 | 0.1513 | 0.4523 |
Acetone, mM | 0.09 | 0.06 | 0.05 | 0.03 | 0.010 | 0.4740 | 0.7882 | 0.5366 |
BHB, mM | 0.11 | 0.04 | 0.07 | 0.08 | 0.005 | 0.8849 | 0.1954 | 0.2380 |
Beta-casein, % | 2.05 | 1.93 | 1.89 | 2.01 | 0.023 | 0.6523 | 0.1790 | 0.6862 |
ECM | 37.08 | 32.58 | 39.51 | 29.85 | 1.089 | 0.5826 | 0.0352 | 0.9668 |
3.5% FCM | 38.12 | 33.54 | 41.51 | 32.22 | 1.072 | 0.4789 | 0.0310 | 0.9907 |
Milk energy | 25.70 | 22.50 | 27.29 | 21.85 | 0.702 | 0.4067 | 0.0357 | 0.8445 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
Rectal temperature, °C | 38.45 | 39.03 | 39.08 | 39.10 | 0.060 | 0.0001 | 0.0001 | 0.0001 |
Heart rate, bpm | 82.75 | 86.50 | 88.25 | 90.25 | 1.218 | 0.0095 | 0.0894 | 0.7343 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
WBC, 109/L | 9.10 | 12.10 | 9.80 | 7.43 | 0.486 | 0.2647 | 0.5495 | 0.0564 |
LYM, 109/L | 4.35 | 3.12 | 5.53 | 3.66 | 0.394 | 0.1136 | 0.6064 | 0.9054 |
MON, 109/L | 0.29 | 0.67 | 0.33 | 0.45 | 0.067 | 0.5946 | 0.1731 | 0.4605 |
GRA, 109/L | 4.47 | 8.32 | 3.94 | 3.33 | 0.421 | 0.0193 | 0.1414 | 0.0476 |
LYM, % | 48.60 | 25.53 | 51.63 | 51.13 | 3.204 | 0.1408 | 0.2670 | 0.2091 |
MON, % | 3.13 | 5.15 | 3.15 | 5.98 | 0.615 | 0.8116 | 0.1502 | 0.8227 |
GRA, % | 48.25 | 69.28 | 45.23 | 42.90 | 3.194 | 0.1490 | 0.4499 | 0.2065 |
RBC, 1012/L | 6.37 | 6.89 | 6.58 | 6.23 | 0.151 | 0.0229 | 0.8660 | 0.0426 |
HGB, g/dL | 9.75 | 10.30 | 10.10 | 9.20 | 0.177 | 0.0689 | 0.8177 | 0.3334 |
HCT, % | 28.39 | 30.56 | 30.27 | 26.55 | 0.487 | 0.0295 | 0.9104 | 0.0155 |
MCV, fL | 45.00 | 44.25 | 46.50 | 43.00 | 0.673 | 0.9955 | 0.4240 | 0.9508 |
RDWc, % | 20.93 | 19.73 | 19.70 | 20.70 | 0.176 | 0.4368 | 0.1796 | 0.1645 |
MCH, pg | 15.40 | 14.93 | 15.45 | 14.85 | 0.193 | 0.5170 | 0.2918 | 0.0324 |
MCHC, g/dL | 34.35 | 33.60 | 33.33 | 34.58 | 0.164 | 0.6323 | 0.8578 | 0.0104 |
PLT, 100–800 K/uL | 634.50 | 562.50 | 587.00 | 498.25 | 21.211 | 0.1395 | 0.8634 | 0.8438 |
MPV, fL | 7.18 | 7.05 | 7.50 | 7.13 | 0.069 | 0.0252 | 0.1046 | 0.9611 |
PCT, % | 0.46 | 0.40 | 0.45 | 0.35 | 0.016 | 0.0938 | 0.5531 | 0.8003 |
PDWc, % | 31.68 | 31.23 | 33.80 | 33.33 | 0.344 | 0.0041 | 0.4564 | 0.5232 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
Glucose, mg/dL | 46.00 | 49.00 | 57.75 | 59.50 | 1.133 | 0.0001 | 0.0156 | 0.9550 |
NEFA, uEq/L | 231.75 | 271.50 | 327.75 | 251.75 | 38.929 | 0.2265 | 0.4860 | 0.3346 |
BUN, mg/dL | 11.25 | 12.75 | 11.00 | 13.50 | 0.420 | 0.0182 | 0.0018 | 0.4168 |
Total protein, g/dL | 6.76 | 6.40 | 7.04 | 7.40 | 0.088 | 0.0016 | 0.5145 | 0.0366 |
Albumin, g/dL | 3.17 | 3.12 | 3.13 | 3.29 | 0.036 | 0.0319 | 0.7093 | 0.0568 |
r-Globulin, g/dL | 3.59 | 3.28 | 3.92 | 4.10 | 0.077 | 0.0004 | 0.2807 | 0.0350 |
Calcium, mg/dL | 8.70 | 7.90 | 8.48 | 9.43 | 0.122 | 0.0018 | 0.6105 | 0.0017 |
IP, mg/dL | 4.48 | 4.00 | 5.80 | 4.90 | 0.165 | 0.0297 | 0.1053 | 0.9338 |
Magnesium, mg/dL | 2.08 | 2.05 | 2.23 | 2.38 | 0.036 | 0.0072 | 0.9104 | 0.0807 |
Cholesterol, mg/dL | 209.50 | 191.50 | 181.50 | 219.75 | 7.985 | 0.0019 | 0.1305 | 0.0175 |
r-GT, U/L | 12.75 | 14.00 | 14.25 | 18.50 | 0.572 | 0.0451 | 0.2167 | 0.4563 |
GOT, U/L | 45.00 | 52.25 | 54.25 | 58.50 | 1.814 | 0.0040 | 0.3584 | 0.6985 |
Cortisol, ng/mL | 124.63 | 150.94 | 172.69 | 249.53 | 13.879 | 0.0060 | 0.0010 | 0.1290 |
Temperature (°C) | 25 | 31 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
RH (%) | LRH | HRH | LRH | HRH | T | RH | T × RH | |
HSP90 | 1.09 | 1.63 | 2.19 | 4.32 | 0.258 | 0.0039 | 0.0255 | 0.1522 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, J.; Lee, H. Impact of Relative Humidity on Heat Stress Responses in Early-Lactation Holstein Cows. Animals 2025, 15, 1503. https://doi.org/10.3390/ani15111503
Jo J, Lee H. Impact of Relative Humidity on Heat Stress Responses in Early-Lactation Holstein Cows. Animals. 2025; 15(11):1503. https://doi.org/10.3390/ani15111503
Chicago/Turabian StyleJo, Janghoon, and Honggu Lee. 2025. "Impact of Relative Humidity on Heat Stress Responses in Early-Lactation Holstein Cows" Animals 15, no. 11: 1503. https://doi.org/10.3390/ani15111503
APA StyleJo, J., & Lee, H. (2025). Impact of Relative Humidity on Heat Stress Responses in Early-Lactation Holstein Cows. Animals, 15(11), 1503. https://doi.org/10.3390/ani15111503