Assessment of Common Hematologic Parameters and Novel Hematologic Ratios for Predicting Piroplasmosis Infection in Horses
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals Inclusion Criteria and Study Design
2.2. Hematologic Analysis
2.3. Indirect (Serological) Detection
2.3.1. cELISA
2.3.2. IFAT
2.4. Direct Detection
2.5. Statistical Analysis
3. Results
3.1. Changes in Hematologic Parameters According to EP Status in Each Diagnostic Method
3.2. Changes in Hematologic Ratios According to EP Status in Each Diagnostic Method
3.3. Predictive Values of Hematologic Parameters and Ratios for EP Status
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Onyiche, T.E.; Suganuma, K.; Igarashi, I.; Yokoyama, N.; Xuan, X.; Thekisoe, O. A review on equine piroplasmosis: Epidemiology, vector ecology, risk factors, host immunity, diagnosis and control. Int. J. Environ. Res. Public Health 2019, 16, 1736. [Google Scholar] [CrossRef]
- Mendoza, F.J.; Pérez-Écija, A.; Kappmeyer, L.S.; Suarez, C.E.; Bastos, R.G. New insights in the diagnosis and treatment of equine piroplasmosis: Pitfalls, idiosyncrasies, and myths. Front. Vet. Sci. 2024, 11, 1459989. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Taioe, M.O.; Molefe, N.I.; Biu, A.A.; Luka, J.; Omeh, I.J.; Yokoyama, N.; Thekisoe, O. Equine piroplasmosis: An insight into global exposure of equids from 1990 to 2019 by systematic review and meta-analysis. Parasitology 2020, 147, 1411–1424. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, C.M. Equine piroplasmosis. J. Equine. Vet. Sci. 2013, 33, 497–508. [Google Scholar] [CrossRef]
- Wise, L.N.; Pelzel-McCluskey, A.M.; Mealey, R.H.; Knowles, D.P. Equine piroplasmosis. Vet. Clin. N. Am. Equine. Pract. 2014, 30, 677–693. [Google Scholar] [CrossRef] [PubMed]
- Bastos, R.G.; Sears, K.P.; Dinkel, K.D.; Kappmeyer, L.; Ueti, M.W.; Knowles, D.P.; Fry, L.M. Development of an indirect ELISA to detect equine antibodies to Theileria haneyi. Pathogens 2021, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Tirosh-Levy, S.; Gottlieb, Y.; Fry, L.M.; Knowles, D.P.; Steinman, A. Twenty years of equine piroplasmosis research: Global distribution, molecular diagnosis, and phylogeny. Pathogens 2020, 9, 926. [Google Scholar] [CrossRef]
- Yokoyama, N. Equine Piroplasmosis. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals, 13th ed.; WOAH: Paris, France, 2024. [Google Scholar]
- Camacho, A.T.; Guitian, F.J.; Pallas, E.; Gestal, J.J.; Olmeda, A.S.; Habela, M.A.; Telford, S.R., 3rd; Spielman, A. Theileria (Babesia) equi and Babesia caballi infections in horses in Galicia, Spain. Trop. Anim. Health Prod. 2005, 37, 293–302. [Google Scholar] [CrossRef]
- Camino, E.; Dorrego, A.; Carvajal, K.A.; Buendia-Andres, A.; de Juan, L.; Dominguez, L.; Cruz-Lopez, F. Serological, molecular and hematological diagnosis in horses with clinical suspicion of equine piroplasmosis: Pooling strengths. Vet. Parasitol. 2019, 275, 108928. [Google Scholar] [CrossRef]
- Dorrego, A.; Camino, E.; Gago, P.; Buendia-Andres, A.; Acurio, K.; Gonzalez, S.; de Juan, L.; Cruz-Lopez, F. Haemato-biochemical characterization of equine piroplasmosis asymptomatic carriers and seropositive, real-time PCR negative horses. Vet. Parasitol. 2023, 323, 110046. [Google Scholar] [CrossRef]
- Hernandez-Ainsa, M.; Velamazan, R.; Lanas, A.; Carrera-Lasfuentes, P.; Piazuelo, E. Blood-cell-based inflammatory markers as a useful tool for early diagnosis in colorectal cancer. Front. Med. 2022, 9, 843074. [Google Scholar] [CrossRef] [PubMed]
- Rezaeian, S.; Razmjooei, F.; Pourmokhtari, M.; Abdoli, A.; Mofazzal Jahromi, M.A.; Bagheri, K. Hematological, inflammatory, and novel biomarkers assessment as an eminent strategy for clinical management of COVID-19. Heliyon 2023, 9, e22896. [Google Scholar] [CrossRef] [PubMed]
- Van Rensburg, J.; Davids, S.; Smuts, C.; Davison, G.M. Use of full blood count parameters and haematology cell ratios in screening for sepsis in South Africa. Afr. J. Lab. Med. 2023, 12, 2104. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yao, W.; Wang, W.; Lv, Q.; Ding, W.; He, R. Common hematological and biochemical parameters for predicting urinary tract infections in geriatric patients with hip fractures. Front. Med. 2024, 11, 1333472. [Google Scholar] [CrossRef]
- Foy, B.H.; Carlson, J.C.T.; Aguirre, A.D.; Higgins, J.M. Platelet-white cell ratio is more strongly associated with mortality than other common risk ratios derived from complete blood counts. Nat. Commun. 2025, 16, 1113. [Google Scholar] [CrossRef]
- Scalco, R.; de Oliveira, G.N.; da Rosa Curcio, B.; Wooten, M.; Magdesian, K.G.; Hidai, S.T.; Pandit, P.; Aleman, M. Red blood cell distribution width to platelet ratio in neonatal foals with sepsis. J. Vet. Intern. Med. 2023, 37, 1552–1560. [Google Scholar] [CrossRef]
- Samuels, A.N.; Kamr, A.M.; Reed, S.M.; Slovis, N.M.; Hostnik, L.D.; Burns, T.A.; Toribio, R.E. Association of the neutrophil-lymphocyte ratio with outcome in sick hospitalized neonatal foals. J. Vet. Intern. Med. 2024, 38, 1196–1206. [Google Scholar] [CrossRef]
- Wilkins, P.A.; Wong, D.; Slovis, N.M.; Collins, N.; Barr, B.S.; MacKenzie, C.; De Solis, C.N.; Castagnetti, C.; Mariella, J.; Burns, T.; et al. The systemic inflammatory response syndrome and predictors of infection and mortality in 1068 critically ill newborn foals. J. Vet. Intern. Med. 2025, 39, e70004. [Google Scholar] [CrossRef]
- Rodríguez, R.; Cerón, J.J.; Riber, C.; Castejón, F.; Gómez-Díez, M.; Serrano-Rodríguez, J.M.; Muñoz, A. Acute phase proteins in Andalusian horses infected with Theileria equi. Vet. J. 2014, 202, 182–183. [Google Scholar] [CrossRef]
- II Estudio sobre el Impacto Económico del Sector Ecuestre en España (Deloitte); Real Federación Hípica Española: Madrid, Spain, 2022; Available online: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.rfhe.com/wp-content/uploads/2018/01/DELOITTE-RESUMEN-EJECUTIVO.pdf&ved=2ahUKEwjq-6Hb27GNAxWTAtsEHdtlC7kQFnoECBcQAQ&usg=AOvVaw2DTw4xXLORfFN1IU8KJMBz (accessed on 1 February 2025).
- Tudurachi, B.S.; Anghel, L.; Tudurachi, A.; Sascău, R.A.; Stătescu, C. Assessment of inflammatory hematological ratios (NLR, PLR, MLR, LMR and Monocyte/HDL-Cholesterol Ratio) in acute myocardial infarction and particularities in young patients. Int. J. Mol. Sic. 2023, 24, 14378. [Google Scholar] [CrossRef]
- Bartolome Del Pino, L.E.; Nardini, R.; Veneziano, V.; Iacoponi, F.; Cersini, A.; Autorino, G.L.; Buono, F.; Scicluna, M. Babesia caballi and Theileria equi infections in horses in Central-Southern Italy: Sero-molecular survey and associated risk factors. Ticks Tick Borne Dis. 2016, 7, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Bartolome Del Pino, L.E.; Meana, A. Host and environmental factors as determinants of equine piroplasmosis seroprevalence n Central Spain. Span. J. Agric. Res. 2020, 18, e0108. [Google Scholar] [CrossRef]
- Graham, H.; van Kalsbeek, P.; van der Goot, J.; Koene, M.G.J. Low seroprevalence of equine piroplasmosis in horses exported from the Netherlands between 2015 and 2021. Front. Vet. Sci. 2022, 9, 954046. [Google Scholar] [CrossRef] [PubMed]
- Hermans, L.M.; Bonsergent, C.; Josson, A.; Rocafort-Ferrer, G.; Le Guyader, M.; Angelloz-Pessey, S.; Leblond, A.; Malandrin, L. Evaluation of Theileria equi vertical transmission rate and routes in a cohort of asymptomatic mares and their foals. Ticks Tick Borne Dis. 2025, 16, 102432. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, M.S.; El-Ezz, N.T.; Abdel-Shafy, S.; Nassar, S.A.; El Namaky, A.H.; Khalil, W.K.; Knowles, D.; Kappmeyer, L.; Silva, M.G.; Suarez, C.E. Assessment of Theileria equi and Babesia caballi infections in equine populations in Egypt by molecular, serological and hematological approaches. Parasit. Vectors. 2016, 9, 260. [Google Scholar] [CrossRef]
- Hailat, N.Q.; Lafi, S.Q.; Al-Darraji, A.M.; Al-Ani, F.K. Equine babesiosis associated with strenuous exercise: Clinical and pathological studies in Jordan. Vet. Parasitol. 1997, 69, 1–8. [Google Scholar] [CrossRef]
- Zobba, R.; Ardu, M.; Niccolini, S.; Chessa, B.; Manna, L.; Cocco, R.; Pinna Parpaglia, M.L. Clinical and laboratory findings in equine piroplasmosis. J. Equine. Vet. Sci. 2008, 28, 301–308. [Google Scholar] [CrossRef]
- Al-Obaidi, Q.T.; Mohd Mokhtar, A.; Al-Sultan, I.I.; Azlinda, A.B.; Mohd Azam, K.G.K. Equine piroplasmosis in Kelantan, Malaysia: Clinicohemato-biochemical alterations in subclinically and clinically infected equids. Trop. Biomed. 2016, 33, 619–631. [Google Scholar]
- Wise, L.N.; Kappmeyer, L.S.; Mealey, R.H.; Knowles, D.P. Review of equine piroplasmosis. J. Vet. Intern. Med. 2013, 27, 1334–1346. [Google Scholar] [CrossRef]
- Tamzali, Y. Equine piroplasmosis: An updated review. Equine Vet. Educ. 2013, 25, 590–598. [Google Scholar] [CrossRef]
- Yao, H.; Lian, L.; Zheng, R.; Chen, C. Red blood cell distribution width/platelet ratio on admission as a predictor for in-hospital mortality in patients with acute myocardial infarction: A retrospective analysis from MIMIC-IV Database. BMC Anesthesiol. 2023, 23, 113. [Google Scholar] [CrossRef] [PubMed]
- Farkas, J.D. The complete blood count to diagnose septic shock. J. Thorac. Dis. 2020, 12, s16–s21. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Huang, Y.; Li, S.; Lin, J.; Liu, W.; Ding, Z.; Li, X.; Chen, Y.; Pang, W.; Yang, D.; et al. Platelet-to-white blood cell ratio: A prognostic predictor for 90-day outcomes in ischemic stroke patients with intravenous thrombolysis. J. Stroke Cerebrovasc. Dis. 2016, 25, 2430–2438. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Q.; Sun, Y.Y.; Wang, Y.; Yan, X.L.; Jin, H.; Sun, X.; Zhang, P.; Zhu, H.J.; Guo, Z.N.; Yang, Y. Platelet-to-neutrophil ratio after intravenous thrombolysis predicts unfavorable outcomes in acute ischemic stroke. Curr. Neurovasc. Res. 2020, 17, 411–419. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Wang, M.; Gu, C.; Liu, J. Platelet-to-monocyte ratio as a novel promising agent for the prognosis of hepatitis B virus-associated decompensated cirrhosis. Can. J. Gastroenterol. Hepatol. 2023, 2023, 6646156. [Google Scholar] [CrossRef]
RBC (×106/μL) | HTC (%) | Hb (g/dL) | MCV (fL) | MCHC (g/dL) | MCH (pg) | RDW (%) | WBC (×103/μL) | NEU (×103/μL) | NEU (%) | LYM (×103/μL) | LYM (%) | MONO (×103/μL) | MONO (%) | EOS (×103/μL) | EOS (%) | BASO (×103/μL) | BASO (%) | PLT (×103/μL) | PCT (%) | MPV (fL) | PDW (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B− T− | 7.4 ± 0.1 | 34.2 ± 0.6 | 11.8 (3.0) | 46.4 ± 0.4 | 35.1 (1.9) | 16.3 (1.6) | 21.7 (2.1) | 7.7 (3.3) | 4.8 (2.4) | 62.1 ± 1.2 | 2.1 (1.5) | 29.5± 1.2 | 0.4 (0.3) | 4.5 (1.8) | 0.1 (0.2) | 1.5 (2.6) | 0.05 (0.04) | 0.5 (0.3) | 112 (49) | 0.09 (0.04) | 8.4 (1.0) | 12.9 (5.9) |
B+ T− | 5.7 ± 0.6 a | 26.8 ± 2.7 a | 10.2 (5.6) a | 47.2 ± 0.7 | 36.1 (1.8) a | 17.0 (1.0) a | 19.9 (4.5) a | 8.1 (3.8) | 4.2 (1.9) | 59.3 ± 3.5 | 2.3 (1.5) | 28.1 ± 2.8 | 0.6 (0.7) a | 7.7 (8.7) a | 0.1 (0.3) | 1.3 (4.1) | 0.09 (0.08) | 1.0 (1.6) a | 59 (39) a | 0.03 (0.05) a | 8.9 (2.3) | 15.0 (6.8) |
B− T+ | 6.7 ± 0.3 a | 31 ± 1.2 | 11.4 (3.3) | 46.6 ± 0.7 | 35.2 (2.0) | 16.7 (1.7) | 21.3 (1.6) b | 9.1 (3.6) a | 5.2 (1.9) | 58.5 ± 2.7 | 2.5 (1.7) | 29.2 ± 2.0 | 0.4 (0.3) | 5.1 (3.3) b | 0.2 (0.3) | 2.0 (3.2) | 0.04 (0.03) | 0.5 (0.3) b | 116 (48) b | 0.1 (0.04) b | 8.6 (0.7) | 10.3 (6.8) |
Reference Range * | 6–11 | 30–43 | 10.5–17.0 | 37–55 | 31.0–38.6 | 12.5–19.7 | 20.5–26.5 | 6–12 | 2.5–7.5 | 30–70 | 1.5–5.0 | 15–50 | 0.2–0.5 | 0–7 | 0–0.4 | 0–3 | 0–0.1 | 0–1 | 90–300 | 0.08–0.12 | 4.1–9.0 | 12.0–17.5 |
RBC (×106/μL) | HTC (%) | Hb (g/dL) | MCV (fL) | MCHC (g/dL) | MCH (pg) | RDW (%) | WBC (×103/μL) | NEU (×103/μL) | NEU (%) | LYM (×103/μL) | LYM (%) | MONO (×103/μL) | MONO (%) | EOS (×103/μL) | EOS (%) | BASO (×103/μL) | BASO (%) | PLT (×103/μL) | PCT (%) | MPV (fL) | PDW (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
sB− sT− | 7.1 ± 0.1 | 33.2 ± 0.6 | 11.7 (2.3) | 47.3 ± 0.4 | 34.6 (1.7) | 16.3 (1.7) | 21.5 (1.9) | 7.9 (3.5) | 5.0 (3.1) | 63.1 ± 1.2 | 2.1 (1.1) | 28.3 ± 1.1 | 0.3 (0.2) | 4.6 (2.1) | 0.1 (0.2) | 1.8 (2.7) | 0.04 (0.04) | 0.5 (0.5) | 123 (57) | 0.1 (0.05) | 8.4 (0.9) | 12.7 (6.1) |
sB+ sT− | 6.9 ± 0.3 | 32.7 ± 1.5 | 11.3 (1.6) | 47.1 ± 1.1 | 34.3 (2.1) | 16.2 (0.7) | 21.5 (1.1) | 7.6 (1.7) | 3.9 (1.7) | 55.8 ± 4.7 | 2.8 (0.5) | 35.4 ± 4.0 | 0.3 (0.1) | 4.6 (1.9) | 0.2 (0.2) | 2.8 (2.7) | 0.04 (0.04) | 0.5 (0.4) | 112 (85) | 0.1 (0.05) | 8.3 (1.2) | 11.2 (6.2) |
sB− sT+ | 7.2 ± 0.4 | 34.1 ± 1.6 | 11.8 (2.9) | 46.6 ± 0.8 | 34.8 (2.2) | 16.1 (2.3) | 22.3 (1.8) a | 8.1 (3.6) | 4.6 (2.9) | 54.2 ± 3.3 a | 2.9 (2.3) a | 37.5 ± 3.2 a | 0.4 (0.2) | 4.6 (1.4) | 0.1 (0.2) | 2.1 (3.1) | 0.04 (0.03) | 0.5 (0.5) | 95 (60) | 0.08 (0.05) | 8.7 (1.7) | 12.3 (5.4) |
Reference Range * | 6–11 | 30–43 | 10.5–17.0 | 37–55 | 31.0–38.6 | 12.5–19.7 | 20.5–26.5 | 6–12 | 2.5–7.5 | 30–70 | 1.5–5.0 | 15–50 | 0.2–0.5 | 0–7 | 0–0.4 | 0–3 | 0–0.1 | 0–1 | 90–300 | 0.08–0.12 | 4.1–9.0 | 12.0–17.5 |
NLR | NMR | LMR | MLR | ELR | PWR | PNR | PLR | PMR | RDW:PLT | |
---|---|---|---|---|---|---|---|---|---|---|
B− T− | 2.1 (2.1) | 13.5 (7.0) | 6.3 (4.4) | 0.1 (0.1) | 0.05 (0.1) | 13.7 (8.6) | 22.6 (16.1) | 50.4 (42.1) | 302 (210) | 0.2 (0.1) |
B+ T− | 2.5 (2.3) | 6.6 (7.1) a | 3.8 (3.2) a | 0.3 (0.3) a | 0.05 (0.1) | 6.7 (8.5) a | 10.5 (14.3) a | 26.1 (35.8) | 74 (205) a | 0.3 (0.3) a |
B− T+ | 1.9 (1.6) | 11.8 (8.7) | 6.2 (12.5) | 0.1 (0.2) b | 0.07 (0.1) | 12.3 (8.2) | 22.5 (12.9) | 42.0 (37.4) | 273 (275) b | 0.2 (0.1) b |
NLR | NMR | LMR | MLR | ELR | PWR | PNR | PLR | PMR | RDW:PLT | |
---|---|---|---|---|---|---|---|---|---|---|
sB− sT− | 2.1 (1.8) | 12.9 (7.5) | 6.4 (3.5) | 0.1 (0.1) | 0.1 (0.1) | 14.7 (10.7) | 24.5 (17.5) | 55.8 (40.3) | 311 (238) | 0.2 (0.1) |
sB+ sT− | 1.3 (0.7) a | 10.4 (5.2) | 7.6 (4.4) | 0.1 (0.1) | 0.1 (0.1) | 14.1 (12.3) | 29.8 (25.5) | 43.5 (55.2) | 325 (247) | 0.2 (0.2) |
sB− sT+ | 1.3 (1.0) a | 11.9 (7.8) | 8.3 (3.7) a | 0.1 (0.1) a | 0.1 (0.1) | 12.8 (7.4) | 24.4 (18.4) | 32.8 (20.9) a | 236 (159) | 0.2 (0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duaso, J.; Perez-Ecija, A.; Martínez, E.; Navarro, A.; De Las Heras, A.; Mendoza, F.J. Assessment of Common Hematologic Parameters and Novel Hematologic Ratios for Predicting Piroplasmosis Infection in Horses. Animals 2025, 15, 1485. https://doi.org/10.3390/ani15101485
Duaso J, Perez-Ecija A, Martínez E, Navarro A, De Las Heras A, Mendoza FJ. Assessment of Common Hematologic Parameters and Novel Hematologic Ratios for Predicting Piroplasmosis Infection in Horses. Animals. 2025; 15(10):1485. https://doi.org/10.3390/ani15101485
Chicago/Turabian StyleDuaso, Juan, Alejandro Perez-Ecija, Esther Martínez, Ana Navarro, Adelaida De Las Heras, and Francisco J. Mendoza. 2025. "Assessment of Common Hematologic Parameters and Novel Hematologic Ratios for Predicting Piroplasmosis Infection in Horses" Animals 15, no. 10: 1485. https://doi.org/10.3390/ani15101485
APA StyleDuaso, J., Perez-Ecija, A., Martínez, E., Navarro, A., De Las Heras, A., & Mendoza, F. J. (2025). Assessment of Common Hematologic Parameters and Novel Hematologic Ratios for Predicting Piroplasmosis Infection in Horses. Animals, 15(10), 1485. https://doi.org/10.3390/ani15101485