Changes in Ovarian Activity and Expressions of Follicle Development Regulation Factors During the Laying–Incubation Cycle in Magang Geese
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experimental Design
2.2. Blood Hormone Detection
2.3. Gene Expression Detection
2.4. Protein Expression Detection
2.5. Statistical Analysis
3. Results
3.1. Ovarian Morphology and Follicular Development in the Laying–Incubation Cycle
3.2. Reproductive Hormone Changes in the Laying–Incubation Cycle
3.3. Expression Levels of Reproductive Factors in Ovarian Stroma in the Laying–Incubation Cycle
3.4. Expression Levels of Reproductive Factors at Different Stages of Follicular Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, Z.D.; Tian, Y.B.; Wu, W.; Wang, Z.Y. Controlling reproductive seasonality in the geese: A review. World’s Poult. Sci. J. 2008, 64, 343–355. [Google Scholar] [CrossRef]
- Huang, Y.M.; Shi, Z.D.; Liu, Z.; Liu, Y.; Li, X.W. Endocrine regulations of reproductive seasonality, follicular development and incubation in Magang geese. Anim. Reprod. Sci. 2008, 104, 344–358. [Google Scholar] [CrossRef]
- Shi, Z.D.; Huang, Y.M.; Liu, Z.; Liu, Y.; Li, X.W.; Proudman, J.A.; Yu, R.C. Seasonal and photoperiodic regulation of secretion of hormones associated with reproduction in Magang goose ganders. Domest. Anim. Endocrinol. 2007, 32, 190–200. [Google Scholar] [CrossRef]
- Ikegami, K.; Yoshimura, T. Circadian clocks and the measurement of daylength in seasonal reproduction. Mol. Cell. Endocrinol. 2012, 349, 76–81. [Google Scholar] [CrossRef]
- Leska, A.; Dusza, L. Seasonal changes in the hypothalamo-pituitary-gonadal axis in birds. Reprod. Biol. 2007, 7, 99–126. [Google Scholar]
- Kriegsfeld, L.J.; Ubuka, T.; Bentley, G.E.; Tsutsui, K. Seasonal control of gonadotropin-inhibitory hormone (GnIH) in birds and mammals. Front. Neuroendocrinol. 2015, 37, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Saigoh, E.; Ukena, K.; Teranishi, H.; Fujisawa, Y.; Kikuchi, M.; Ishii, S.; Sharp, P.J. A novel avian hypothalamic peptide inhibiting gonadotropin release. Biochem. Biophys. Res. Commun. 2000, 275, 661–667. [Google Scholar] [CrossRef]
- Tsutsui, K. A new key neurohormone controlling reproduction, gonadotropin-inhibitory hormone (GnIH): Biosynthesis, mode of action and functional significance. Prog. Neurobiol. 2009, 88, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, K.; Ubuka, T.; Bentley, G.E.; Kriegsfeld, L.J. Review: Regulatory mechanisms of gonadotropin-inhibitory hormone (GnIH) synthesis and release in photoperiodic animals. Front. Neurosci. 2013, 7, 60. [Google Scholar] [CrossRef]
- Wilkanowska, A.; Mazurowski, A.; Mroczkowski, S.; Kokoszynski, D. Prolactin (PRL) and prolactin receptor (PRLR) genes and their role in poultry production traits. Folia. Biol. 2014, 62, 1–8. [Google Scholar] [CrossRef]
- Liufu, S.; Pan, J.; Sun, J.; Shen, X.; Jiang, D.; Ouyang, H.; Xu, D.; Tian, Y.; Huang, Y. Opn5 regulating mechanism of follicle development through the TSH-DIO2/DIO3 pathway in mountain ducks under different photoperiods. Front. Physiol. 2022, 13, 813881. [Google Scholar] [CrossRef]
- Suzuki, T.; Higgins, P.J.; Crawford, D.R. Control selection for RNA quantitation. Biotechniques 2000, 29, 332–337. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L.; Zhang, Y.; Yao, Y.; Zhao, W.; Xu, Q.; Chen, G. Characterization of ovarian morphology and reproductive hormones in Zhedong white geese (Anser cygnoides domesticus) during the reproductive cycle. J. Anim. Physiol. Anim. Nutr. 2021, 105, 938–945. [Google Scholar] [CrossRef]
- Chun, S.Y.; Billig, H.; Tilly, J.L.; Furuta, I.; Tsafriri, A.; Hsueh, A.J. Gonadotropin suppression of apoptosis in cultured preovulatory follicles: Mediatory role of endogenous insulin-like growth factor i. Endocrinology 1994, 135, 1845–1853. [Google Scholar] [CrossRef] [PubMed]
- Bellido, C.; Aguilar, R.; Garrido-Gracia, J.C.; Sanchez-Criado, J.E. Effects of progesterone (P) and antiprogestin RU486 on LH and FSH release by incubated pituitaries from rats treated with the SERM LY11701 8-HCL and/or recombinant human FSH. J. Endocrinol. Investig. 2002, 25, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.J.; Blache, D. A neuroendocrine model for prolactin as the key mediator of seasonal breeding in birds under long- and short-day photoperiods. Can. J. Physiol. Pharmacol. 2003, 81, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Proszkowiec, M.; Rzasa, J. Variation in the ovarian and plasma progesterone and estradiol levels of the domestic hen during a pause in laying. Folia. Biol. 2001, 49, 285–289. [Google Scholar]
- Yin, H.; Ukena, K.; Ubuka, T.; Tsutsui, K. A novel g protein-coupled receptor for gonadotropin-inhibitory hormone in the Japanese quail (Coturnix japonica): Identification, expression and binding activity. J. Endocrinol. 2005, 184, 257–266. [Google Scholar] [CrossRef]
- Zhu, G.; Fang, C.; Li, J.; Mo, C.; Wang, Y.; Li, J. Transcriptomic diversification of granulosa cells during follicular development in chicken. Sci. Rep. 2019, 9, 5462. [Google Scholar] [CrossRef]
- Lovell, T.M.; Gladwell, R.T.; Groome, N.P.; Knight, P.G. Ovarian follicle development in the laying hen is accompanied by divergent changes in inhibin A, inhibin B, activin A and follistatin production in granulosa and theca layers. J. Endocrinol. 2003, 177, 45–55. [Google Scholar] [CrossRef]
- Tsutsui, K.; Bentley, G.E.; Ubuka, T.; Saigoh, E.; Yin, H.; Osugi, T.; Inoue, K.; Chowdhury, V.S.; Ukena, K.; Ciccone, N.; et al. The general and comparative biology of gonadotropin-inhibitory hormone (GnIH). Gen. Comp. Endocrinol. 2007, 153, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Porter, T.E.; Hargis, B.M.; Silsby, J.L.; El, H.M. Differential steroid production between theca interna and theca externa cells: A three-cell model for follicular steroidogenesis in avian species. Endocrinology 1989, 125, 109–116. [Google Scholar] [CrossRef]
- Rimon-Dahari, N.; Yerushalmi-Heinemann, L.; Alyagor, L.; Dekel, N. Ovarian folliculogenesis. Results Probl. Cell Differ. 2016, 58, 167–190. [Google Scholar] [PubMed]
- Wang, J.; Gong, Y. Transcription of CYP19A1 is directly regulated by SF-1 in the theca cells of ovary follicles in chicken. Gen. Comp. Endocrinol. 2017, 247, 1–7. [Google Scholar] [CrossRef]
- Woods, D.C.; Johnson, A.L. Regulation of follicle-stimulating hormone-receptor messenger RNA in hen granulosa cells relative to follicle selection. Biol. Reprod. 2005, 72, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.A.; Yeh, Y.T.; Fang, W.L.; Wu, L.S.; Harada, N.; Wang, P.H.; Ke, F.C.; Lee, W.L.; Hwang, J.J. Calcineurin and CRTC2 mediate FSH and TGFbeta1 upregulation of CYP19A1 and NR5A in ovary granulosa cells. J. Mol. Endocrinol. 2014, 53, 259–270. [Google Scholar] [CrossRef]
- Qin, Q.; Sun, A.; Guo, R.; Lei, M.; Ying, S.; Shi, Z. The characteristics of oviposition and hormonal and gene regulation of ovarian follicle development in Magang geese. Reprod. Biol. Endocrinol. 2013, 11, 65. [Google Scholar] [CrossRef]
- Dai, T.; Yang, L.; Wei, S.; Chu, Y.; Dan, X. The effect of gonadotropin-inhibitory hormone on steroidogenesis and spermatogenesis by acting through the hypothalamic-pituitary-testis axis in mice. Endocrine 2024, 84, 745–756. [Google Scholar] [CrossRef]
- Guo, X.; Dai, T.; Wei, S.; Ma, Z.; Zhao, H.; Dan, X. Rfamide-related peptide-3(RFRP-3) receptor gene is expressed in mouse ovarian granulosa cells: Potential role of RFRP-3 in steroidogenesis and apoptosis. Steroids 2024, 202, 109349. [Google Scholar] [CrossRef]
- Zhou, X.; Jiang, D.; Zhang, Z.; Shen, X.; Pan, J.; Xu, D.; Tian, Y.; Huang, Y. Expression of GnIH and its effects on follicle development and steroidogenesis in quail ovaries under different photoperiods. Poult. Sci. 2022, 101, 102227. [Google Scholar] [CrossRef]
- Guemene, D.; Williams, J.B. Relationships between broodiness expression laying persistency and concentrations of hormones during the first productive period in turkey hens (Meleagris gallopavo). Reprod. Nutr. Dev. 1994, 34, 371–381. [Google Scholar] [CrossRef]
- Tabibzadeh, C.; Rozenboim, I.; Silsby, J.L.; Pitts, G.R.; Foster, D.N.; El, H.M. Modulation of ovarian cytochrome P450 17 alpha-hydroxylase and cytochrome aromatase messenger ribonucleic acid by prolactin in the domestic turkey. Biol. Reprod. 1995, 52, 600–608. [Google Scholar] [CrossRef]
- Yu, F.Q.; Han, C.S.; Yang, W.; Jin, X.; Hu, Z.Y.; Liu, Y.X. Activation of the p38 MAPK pathway by follicle-stimulating hormone regulates steroidogenesis in granulosa cells differentially. J. Endocrinol. 2005, 186, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Xu, Y.; Yin, Y.; Yao, G.; Tian, H.; Wang, G.; Lian, J.; Wang, Y.; Sun, F. Steroidogenic factor-1 is required for TGF-beta3-mediated 17beta-estradiol synthesis in mouse ovarian granulosa cells. Endocrinology 2011, 152, 3213–3225. [Google Scholar] [CrossRef]
- Johnson, A.L. Ovarian follicle selection and granulosa cell differentiation. Poult. Sci. 2015, 94, 781–785. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, W.; Yang, C.; Li, X.; Shen, X.; Jiang, D.; Huang, Y.; Tian, Y. Gonadotropin inhibitory hormone downregulates steroid hormone secretion and genes expressions in duck granulosa cells. Anim. Reprod. 2021, 18, e20210036. [Google Scholar] [CrossRef] [PubMed]
- Sechman, A.; Antos, P.; Katarzynska, D.; Grzegorzewska, A.; Wojtysiak, D.; Hrabia, A. Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on secretion of steroids and StAR, HSD3B and CYP19A1 mrna expression in chicken ovarian follicles. Toxicol. Lett. 2014, 225, 264–274. [Google Scholar] [CrossRef]
- Hadinia, S.H.; Carneiro, P.; Fitzsimmons, C.J.; Bedecarrats, G.Y.; Zuidhof, M.J. Post-photostimulation energy intake accelerated pubertal development in broiler breeder pullets. Poult. Sci. 2020, 99, 2215–2229. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ubuka, T. Discovery of gonadotropin-inhibitory hormone (GnIH), progress in GnIH research on reproductive physiology and behavior and perspective of GnIH research on neuroendocrine regulation of reproduction. Mol. Cell. Endocrinol. 2020, 514, 110914. [Google Scholar] [CrossRef]
- Son, Y.L.; Ubuka, T.; Tsutsui, K. Molecular mechanisms of gonadotropin-inhibitory hormone (GnIH) actions in target cells and regulation of GnIH expression. Front. Endocrinol. 2019, 10, 110. [Google Scholar] [CrossRef]
- Tsutsui, K.; Ubuka, T.; Son, Y.L.; Bentley, G.E.; Kriegsfeld, L.J. Contribution of GnIH research to the progress of reproductive neuroendocrinology. Front. Endocrinol. 2015, 6, 179. [Google Scholar] [CrossRef] [PubMed]
- Ullah, R.; Shen, Y.; Zhou, Y.D.; Huang, K.; Fu, J.F.; Wahab, F.; Shahab, M. Expression and actions of GnIH and its orthologs in vertebrates: Current status and advanced knowledge. Neuropeptides 2016, 59, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Sang, L.; Sun, S.; Wang, J.; Gao, C.; Chen, D.; Xie, X. Dual effects of gonadotropin-inhibitory hormone on testicular development in prepubertal Minxinan Black rabbits (Oryctolagus cuniculus). Front. Vet. Sci. 2024, 11, 1320452. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence (5′-3′) | Tm (°C) | PCR Product (bp) |
---|---|---|---|
FSHR | F: GATGAGCAACCTGGCAATAAG | 58 | 140 |
R: GGTGAGCAAGCCACATTAAC | |||
LHR | F: GTAACACTGGAATAAGGGAAT | 57 | 191 |
R: GAAGGCATGACTGTGGATA | |||
PRLR | F: ACGAGTTGCGACTAAAGCCT | 60 | 228 |
R: CACCCACGATGATCCACACA | |||
GnIHR | F: CATCCTGGTGTGCTTCATCG | 56 | 164 |
R: ACATGGTGTTGTCAAAGGGC | |||
StAR | F: CTGCCATCTCCTACCGCCAC | 60 | 217 |
R: CTGCTCCACCACCACCTCCA | |||
3β-HSD | F: AGAAGTGACAGGCCCAAACT | 60 | 188 |
R: ACATGGATCTCAGGGCACAA | |||
CYP19A1 | F: GGATGGGAGTAGGTAATGCC | 60 | 274 |
R: ACAAGACCAGGACCAGACAG | |||
GnIH | F: AAAGTGCCAAATTCAGTTGCT | 58 | 120 |
R: GCTCTCTCCAAAAGCTCTTCC | |||
β-actin | F: CCTCTTCCAGCCATCTTTCTT | 60 | 110 |
R: TGTTGGCATACAGGTCCTTAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, R.; Sun, J.; Pan, J.; Shen, X.; Jiang, D.; Ouyang, H.; Xu, D.; Tian, Y.; Huang, Y. Changes in Ovarian Activity and Expressions of Follicle Development Regulation Factors During the Laying–Incubation Cycle in Magang Geese. Animals 2025, 15, 1390. https://doi.org/10.3390/ani15101390
Wu R, Sun J, Pan J, Shen X, Jiang D, Ouyang H, Xu D, Tian Y, Huang Y. Changes in Ovarian Activity and Expressions of Follicle Development Regulation Factors During the Laying–Incubation Cycle in Magang Geese. Animals. 2025; 15(10):1390. https://doi.org/10.3390/ani15101390
Chicago/Turabian StyleWu, Rui, Junfeng Sun, Jianqiu Pan, Xu Shen, Danli Jiang, Hongjia Ouyang, Danning Xu, Yunbo Tian, and Yunmao Huang. 2025. "Changes in Ovarian Activity and Expressions of Follicle Development Regulation Factors During the Laying–Incubation Cycle in Magang Geese" Animals 15, no. 10: 1390. https://doi.org/10.3390/ani15101390
APA StyleWu, R., Sun, J., Pan, J., Shen, X., Jiang, D., Ouyang, H., Xu, D., Tian, Y., & Huang, Y. (2025). Changes in Ovarian Activity and Expressions of Follicle Development Regulation Factors During the Laying–Incubation Cycle in Magang Geese. Animals, 15(10), 1390. https://doi.org/10.3390/ani15101390