Detection Rate of Porcine Circoviruses in Different Ages and Production Herds of Intensive Pig Farms in China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Farms and Animals
2.2. Sample Collection
2.3. qPCR Detection of PCVs
2.4. Statistical Analysis
3. Results
3.1. Distribution of the Examined Farms of PCVs Found
3.2. PCV Detection Rates in Different Age Categories of Pigs
3.3. The Ct Value of PCVs in Different Age Categories of Pigs
3.4. The Distribution of PCV Mixed Infection Combinations
3.5. The Presence Correlation Between Different PCV Types in Age Categories of Pigs at the Individual Level
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CI | Confidence interval |
Ct | Cycle threshold |
PCVs | Porcine circoviruses |
PCV1 | Porcine circovirus type 1 |
PCV2 | Porcine circovirus type 2 |
PCV3 | Porcine circovirus type 3 |
PCV4 | Porcine circovirus type 4 |
PCVAD | porcine circovirus-associated disease |
qPCR | Quantitative polymerase chain reaction |
References
- Todd, D.; McNulty, M.S.; Adair, B.M.; Allan, G.M. Animal circoviruses. Adv. Virus Res. 2001, 57, 1–70. [Google Scholar] [CrossRef]
- Beltran-Alcrudo, D.; Falco, J.R.; Raizman, E.; Dietze, K. Transboundary spread of pig diseases: The role of international trade and travel. BMC Vet. Res. 2019, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Rasch, R.; Tochtermann, G. Characterization of papovavirus-and picornavirus-like particles in permanent pig kidney cell lines. Zentralblatt Bakteriol. Orig. A 1974, 226, 153–167. [Google Scholar]
- Meehan, B.M.; McNeilly, F.; Todd, D.; Kennedy, S.; Jewhurst, V.A.; Ellis, J.A.; Hassard, L.E.; Clark, E.G.; Haines, D.M.; Allan, G.M. Characterization of novel circovirus DNAs associated with wasting syndromes in pigs. J. Gen. Virol. 1998, 79 Pt 9, 2171–2179. [Google Scholar] [CrossRef]
- Phan, T.G.; Giannitti, F.; Rossow, S.; Marthaler, D.; Knutson, T.P.; Li, L.; Deng, X.; Resende, T.; Vannucci, F.; Delwart, E. Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virol. J. 2016, 13, 184. [Google Scholar] [CrossRef]
- Zhang, H.H.; Hu, W.Q.; Li, J.Y.; Liu, T.N.; Zhou, J.Y.; Opriessnig, T.; Xiao, C.T. Novel circovirus species identified in farmed pigs designated as Porcine circovirus 4, Hunan province, China. Transbound. Emerg. Dis. 2020, 67, 1057–1061. [Google Scholar] [CrossRef]
- Tischer, I.; Gelderblom, H.; Vettermann, W.; Koch, M.A. A very small porcine virus with circular single-stranded DNA. Nature 1982, 295, 64–66. [Google Scholar] [CrossRef]
- Saha, D.; Lefebvre, D.J.; Ducatelle, R.; Doorsselaere, J.V.; Nauwynck, H.J. Outcome of experimental porcine circovirus type 1 infections in mid-gestational porcine foetuses. BMC Vet. Res. 2011, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Segalés, J.; Sibila, M. Revisiting Porcine Circovirus Disease Diagnostic Criteria in the Current Porcine Circovirus 2 Epidemiological Context. Vet. Sci. 2022, 9, 110. [Google Scholar] [CrossRef]
- Palinski, R.; Piñeyro, P.; Shang, P.; Yuan, F.; Guo, R.; Fang, Y.; Byers, E.; Hause, B.M. A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. J. Virol. 2017, 91, e01879-16. [Google Scholar] [CrossRef]
- Kedkovid, R.; Woonwong, Y.; Arunorat, J.; Sirisereewan, C.; Sangpratum, N.; Lumyai, M.; Kesdangsakonwut, S.; Teankum, K.; Jittimanee, S.; Thanawongnuwech, R. Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Vet. Microbiol. 2018, 215, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.H.; Mai, K.J.; Zhou, L.; Wu, R.T.; Tang, X.Y.; Wu, J.L.; He, L.L.; Lan, T.; Xie, Q.M.; Sun, Y.; et al. Detection and genome sequencing of porcine circovirus 3 in neonatal pigs with congenital tremors in South China. Transbound. Emerg. Dis. 2017, 64, 1650–1654. [Google Scholar] [CrossRef] [PubMed]
- Faccini, S.; Barbieri, I.; Gilioli, A.; Sala, G.; Gibelli, L.R.; Moreno, A.; Sacchi, C.; Rosignoli, C.; Franzini, G.; Nigrelli, A. Detection and genetic characterization of Porcine circovirus type 3 in Italy. Transbound. Emerg. Dis. 2017, 64, 1661–1664. [Google Scholar] [CrossRef]
- Tochetto, C.; Lima, D.A.; Varela, A.P.M.; Loiko, M.R.; Paim, W.P.; Scheffer, C.M.; Herpich, J.I.; Cerva, C.; Schmitd, C.; Cibulski, S.P.; et al. Full-Genome Sequence of Porcine Circovirus type 3 recovered from serum of sows with stillbirths in Brazil. Transbound. Emerg. Dis. 2018, 65, 5–9. [Google Scholar] [CrossRef]
- Tan, C.Y.; Lin, C.N.; Ooi, P.T. What do we know about porcine circovirus 3 (PCV3) diagnosis so far?: A review. Transbound. Emerg. Dis. 2021, 68, 2915–2935. [Google Scholar] [CrossRef] [PubMed]
- Franzo, G.; He, W.; Correa-Fiz, F.; Li, G.; Legnardi, M.; Su, S.; Segalés, J. A Shift in Porcine Circovirus 3 (PCV-3) History Paradigm: Phylodynamic Analyses Reveal an Ancient Origin and Prolonged Undetected Circulation in the Worldwide Swine Population. Adv. Sci. 2019, 6, 1901004. [Google Scholar] [CrossRef]
- Wang, D.; Mai, J.; Yang, Y.; Xiao, C.T.; Wang, N. Current knowledge on epidemiology and evolution of novel porcine circovirus 4. Vet. Res. 2022, 53, 38. [Google Scholar] [CrossRef]
- Sirisereewan, C.; Nguyen, T.C.; Piewbang, C.; Jittimanee, S.; Kedkovid, R.; Thanawongnuwech, R. Molecular detection and genetic characterization of porcine circovirus 4 (PCV4) in Thailand during 2019–2020. Sci. Rep. 2023, 13, 5168. [Google Scholar] [CrossRef]
- Nguyen, V.G.; Do, H.Q.; Huynh, T.M.; Park, Y.H.; Park, B.K.; Chung, H.C. Molecular-based detection, genetic characterization and phylogenetic analysis of porcine circovirus 4 from Korean domestic swine farms. Transbound. Emerg. Dis. 2022, 69, 538–548. [Google Scholar] [CrossRef]
- Holgado-Martín, R.; Arnal, J.L.; Sibila, M.; Franzo, G.; Martín-Jurado, D.; Risco, D.; Segalés, J.; Gómez, L. First detection of porcine circovirus 4 (PCV-4) in Europe. Virol. J. 2023, 20, 230. [Google Scholar] [CrossRef]
- Kroeger, M.; Vargas-Bermudez, D.S.; Jaime, J.; Parada, J.; Groeltz, J.; Gauger, P.; Piñeyro, P. First detection of PCV4 in swine in the United States: Codetection with PCV2 and PCV3 and direct detection within tissues. Sci. Rep. 2024, 14, 15535. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Du, Q.; Han, Z.; Bi, J.; Lan, T.; Wang, W.; Zheng, M. Detection and genetic characterization of porcine circovirus 4 (PCV4) in Guangxi, China. Gene 2021, 773, 145384. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Li, Y.; Zhang, X.; He, J.; Ma, H. Prevalence of Porcine Circoviruses in Slaughterhouses in Central Shanxi Province, China. Front. Vet. Sci. 2022, 9, 820914. [Google Scholar] [CrossRef]
- Chen, N.; Huang, Y.; Ye, M.; Li, S.; Xiao, Y.; Cui, B.; Zhu, J. Co-infection status of classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circoviruses (PCV2 and PCV3) in eight regions of China from 2016 to 2018. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 68, 127–135. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Qiao, M.; Guo, J.; Xing, G.; Jin, C.; Wang, J.; Sun, M.; Tian, K. Molecular Epidemiology of Porcine Circovirus Type 3 Infection in Swine Herds in China. Virol. Sin. 2018, 33, 373–377. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, Q.; Xu, T.; Chen, X.; Li, H.; Ma, M.; Zhang, Y.; He, Z.; Chen, H. Detection and genetic characteristics of porcine circovirus type 2 and 3 in Henan province of China. Mol. Cell. Probes 2022, 61, 101790. [Google Scholar] [CrossRef]
- Cao, L.; Sun, W.; Lu, H.; Tian, M.; Xie, C.; Zhao, G.; Han, J.; Wang, W.; Zheng, M.; Du, R.; et al. Genetic variation analysis of PCV1 strains isolated from Guangxi Province of China in 2015. BMC Vet. Res. 2018, 14, 43. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gong, Q.L.; Nie, L.B.; Wang, Q.; Ge, G.Y.; Li, D.L.; Ma, B.Y.; Sheng, C.Y.; Su, N.; Zong, Y.; et al. Prevalence of porcine circovirus 2 throughout China in 2015-2019: A systematic review and meta-analysis. Microb. Pathog. 2020, 149, 104490. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, T.; Wen, J.; Yang, L.; Lai, S.; Sun, X.; Xu, Z.; Zhu, L. Prevalence and phylogenetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) in the Southwest of China during 2020–2022. Front. Vet. Sci. 2022, 9, 1042792. [Google Scholar] [CrossRef]
- Xu, T.; Hou, C.Y.; Zhang, Y.H.; Li, H.X.; Chen, X.M.; Pan, J.J.; Chen, H.Y. Simultaneous detection and genetic characterization of porcine circovirus 2 and 4 in Henan province of China. Gene 2022, 808, 145991. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Z.; Wang, X.; Bi, M.; Hu, S.; Li, K.; Pan, X.; Wang, Y.; Ma, D.; Mo, X. Epidemiological investigation and analysis of the infection of porcine circovirus in Xinjiang. Virol. J. 2024, 21, 230. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Xiao, Y.; Li, X.; Li, S.; Xie, N.; Yan, X.; Li, X.; Zhu, J. Development and application of a quadruplex real-time PCR assay for differential detection of porcine circoviruses (PCV1 to PCV4) in Jiangsu province of China from 2016 to 2020. Transbound. Emerg. Dis. 2021, 68, 1615–1624. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, G.; Tong, K.; Wang, Y.; Li, T.; Tan, X.; Yang, J.; Yang, X.; Guo, L.; Zeng, J. Pathogenic ecological characteristics of PCV2 in large-scale pig farms in China affected by African swine fever in the surroundings from 2018 to 2021. Front. Microbiol. 2022, 13, 1013617. [Google Scholar] [CrossRef]
- Fan, M.; Bian, L.; Tian, X.; Hu, Z.; Wu, W.; Sun, L.; Yuan, G.; Li, S.; Yue, L.; Wang, Y.; et al. Infection characteristics of porcine circovirus type 2 in different herds from intensive farms in China, 2022. Front. Vet. Sci. 2023, 10, 1187753. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, Y.H.; Tian, R.B.; Hou, C.Y.; Li, X.S.; Zheng, L.L.; Wang, L.Q.; Chen, H.Y. Prevalence and genetic analysis of porcine circovirus type 2 (PCV2) and type 3 (PCV3) between 2018 and 2020 in central China. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021, 94, 105016. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, N.; Zhang, J.; Zhang, S.; Jiang, Y.; Wang, D.; Tan, Q.; Yang, Y.; Wang, N. Molecular detection and sequence analysis of porcine circovirus type 3 in sow sera from farms with prolonged histories of reproductive problems in Hunan, China. Arch. Virol. 2018, 163, 2841–2847. [Google Scholar] [CrossRef]
- Tian, R.B.; Zhao, Y.; Cui, J.T.; Zheng, H.H.; Xu, T.; Hou, C.Y.; Wang, Z.Y.; Li, X.S.; Zheng, L.L.; Chen, H.Y. Molecular detection and phylogenetic analysis of Porcine circovirus 4 in Henan and Shanxi Provinces of China. Transbound. Emerg. Dis. 2021, 68, 276–282. [Google Scholar] [CrossRef]
- Hou, C.Y.; Zhang, L.H.; Zhang, Y.H.; Cui, J.T.; Zhao, L.; Zheng, L.L.; Chen, H.Y. Phylogenetic analysis of porcine circovirus 4 in Henan Province of China: A retrospective study from 2011 to 2021. Transbound. Emerg. Dis. 2022, 69, 1890–1901. [Google Scholar] [CrossRef] [PubMed]
- Igriczi, B.; Dénes, L.; Biksi, I.; Albert, E.; Révész, T.; Balka, G. High Prevalence of Porcine Circovirus 3 in Hungarian Pig Herds: Results of a Systematic Sampling Protocol. Viruses 2022, 14, 1219. [Google Scholar] [CrossRef]
- Allan, G.M.; McNeilly, F.; Cassidy, J.P.; Reilly, G.A.; Adair, B.; Ellis, W.A.; McNulty, M.S. Pathogenesis of porcine circovirus; experimental infections of colostrum deprived piglets and examination of pig foetal material. Vet. Microbiol. 1995, 44, 49–64. [Google Scholar] [CrossRef]
- Stevenson, G.W.; Kiupel, M.; Mittal, S.K.; Choi, J.; Latimer, K.S.; Kanitz, C.L. Tissue distribution and genetic typing of porcine circoviruses in pigs with naturally occurring congenital tremors. J. Vet. Diagn. Investig. 2001, 13, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Stevenson, G.W.; Kiupel, M.; Harrach, B.; Anothayanontha, L.; Kanitz, C.L.; Mittal, S.K. Sequence analysis of old and new strains of porcine circovirus associated with congenital tremors in pigs and their comparison with strains involved with postweaning multisystemic wasting syndrome. Can. J. Vet. Res. 2002, 66, 217–224. [Google Scholar]
- Opriessnig, T.; Karuppannan, A.K.; Castro, A.; Xiao, C.T. Porcine circoviruses: Current status, knowledge gaps and challenges. Virus Res. 2020, 286, 198044. [Google Scholar] [CrossRef]
- Vilalta, C.; Sanhueza, J.; Alvarez, J.; Murray, D.; Torremorell, M.; Corzo, C.; Morrison, R. Use of processing fluids and serum samples to characterize porcine reproductive and respiratory syndrome virus dynamics in 3 day-old pigs. Vet. Microbiol. 2018, 225, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Dénes, L.; Ruedas-Torres, I.; Szilasi, A.; Balka, G. Detection and localization of atypical porcine pestivirus in the testicles of naturally infected, congenital tremor affected piglets. Transbound. Emerg. Dis. 2022, 69, e621–e629. [Google Scholar] [CrossRef] [PubMed]
- Tischer, I.; Mields, W.; Wolff, D.; Vagt, M.; Griem, W. Studies on epidemiology and pathogenicity of porcine circovirus. Arch. Virol. 1986, 91, 271–276. [Google Scholar] [CrossRef]
- O’Neill, K.C.; Hemann, M.; Giménez-Lirola, L.G.; Halbur, P.G.; Opriessnig, T. Vaccination of sows reduces the prevalence of PCV-2 viraemia in their piglets under field conditions. Vet. Rec. 2012, 171, 425. [Google Scholar] [CrossRef]
- Lopez-Rodriguez, A.; Dewulf, J.; Meyns, T.; Del-Pozo-Sacristán, R.; Andreoni, C.; Goubier, A.; Chapat, L.; Charreyre, C.; Joisel, F.; Maes, D. Effect of sow vaccination against porcine circovirus type 2 (PCV2) on virological profiles in herds with or without PCV2 systemic disease. Can. Vet. J. 2016, 57, 619–628. [Google Scholar]
- Pejsak, Z.; Podgórska, K.; Truszczyński, M.; Karbowiak, P.; Stadejek, T. Efficacy of different protocols of vaccination against porcine circovirus type 2 (PCV2) in a farm affected by postweaning multisystemic wasting syndrome (PMWS). Comp. Immunol. Microbiol. Infect. Dis. 2010, 33, e1–e5. [Google Scholar] [CrossRef]
- Fraile, L.; Sibila, M.; Nofrarías, M.; López-Jimenez, R.; Huerta, E.; Llorens, A.; López-Soria, S.; Pérez, D.; Segalés, J. Effect of sow and piglet porcine circovirus type 2 (PCV2) vaccination on piglet mortality, viraemia, antibody titre and production parameters. Vet. Microbiol. 2012, 161, 229–234. [Google Scholar] [CrossRef]
- Opriessnig, T.; Patterson, A.R.; Madson, D.M.; Pal, N.; Ramamoorthy, S.; Meng, X.J.; Halbur, P.G. Comparison of the effectiveness of passive (dam) versus active (piglet) immunization against porcine circovirus type 2 (PCV2) and impact of passively derived PCV2 vaccine-induced immunity on vaccination. Vet. Microbiol. 2010, 142, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Afghah, Z.; Webb, B.; Meng, X.J.; Ramamoorthy, S. Ten years of PCV2 vaccines and vaccination: Is eradication a possibility? Vet. Microbiol. 2017, 206, 21–28. [Google Scholar] [CrossRef]
- Figueras-Gourgues, S.; Fraile, L.; Segalés, J.; Hernández-Caravaca, I.; López-Úbeda, R.; García-Vázquez, F.A.; Gomez-Duran, O.; Grosse-Liesner, B. Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porc. Health Manag. 2019, 5, 21. [Google Scholar] [CrossRef]
- Segalés, J. Best practice and future challenges for vaccination against porcine circovirus type 2. Expert Rev. Vaccines 2015, 14, 473–487. [Google Scholar] [CrossRef]
- Segalés, J. Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. Virus Res. 2012, 164, 10–19. [Google Scholar] [CrossRef]
- Lin, C.N.; Ke, N.J.; Chiou, M.T. Cross-Sectional Study on the Sero- and Viral Dynamics of Porcine Circovirus Type 2 in the Field. Vaccines 2020, 8, 339. [Google Scholar] [CrossRef]
- Woźniak, A.; Miłek, D.; Matyba, P.; Stadejek, T. Real-Time PCR Detection Patterns of Porcine Circovirus Type 2 (PCV2) in Polish Farms with Different Statuses of Vaccination against PCV2. Viruses 2019, 11, 1135. [Google Scholar] [CrossRef] [PubMed]
- Czyżewska-Dors, E.B.; Dors, A.; Pomorska-Mól, M.; Podgórska, K.; Pejsak, Z. Efficacy of the Porcine circovirus 2 (PCV2) vaccination under field conditions. Vet. Ital. 2018, 54, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Papatsiros, V.; Papakonstantinou, G.; Meletis, E.; Bitchava, D.; Kostoulas, P. Evaluation of porcine circovirus type 2 double vaccination in weaning piglets that reared for gilts under field conditions. Vet. Res. Forum 2023, 14, 13–19. [Google Scholar] [CrossRef]
- Venegas-Vargas, C.; Taylor, L.P.; Foss, D.L.; Godbee, T.K.; Philip, R.; Bandrick, M. Cellular and humoral immunity following vaccination with two different PCV2 vaccines (containing PCV2a or PCV2a/PCV2b) and challenge with virulent PCV2d. Vaccine 2021, 39, 5615–5625. [Google Scholar] [CrossRef]
- Opriessnig, T.; Patterson, A.R.; Madson, D.M.; Pal, N.; Halbur, P.G. Comparison of efficacy of commercial one dose and two dose PCV2 vaccines using a mixed PRRSV-PCV2-SIV clinical infection model 2-3-months post vaccination. Vaccine 2009, 27, 1002–1007. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; Blanco, G.; Segalés, J.; Sibila, M. Can Porcine circovirus type 2 (PCV2) infection be eradicated by mass vaccination? Vet. Microbiol. 2014, 172, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Molossi, F.A.; de Almeida, B.A.; de Cecco, B.S.; da Silva, M.S.; Mósena, A.C.S.; Brandalise, L.; Simão, G.M.R.; Canal, C.W.; Vanucci, F.; Pavarini, S.P.; et al. A putative PCV3-associated disease in piglets from Southern Brazil. Braz. J. Microbiol. 2022, 53, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Arruda, B.; Piñeyro, P.; Derscheid, R.; Hause, B.; Byers, E.; Dion, K.; Long, D.; Sievers, C.; Tangen, J.; Williams, T.; et al. PCV3-associated disease in the United States swine herd. Emerg. Microbes Infect. 2019, 8, 684–698. [Google Scholar] [CrossRef]
- Deim, Z.; Dencső, L.; Erdélyi, I.; Valappil, S.K.; Varga, C.; Pósa, A.; Makrai, L.; Rákhely, G. Porcine circovirus type 3 detection in a Hungarian pig farm experiencing reproductive failures. Vet. Rec. 2019, 185, 84. [Google Scholar] [CrossRef]
- Alomar, J.; Saporiti, V.; Pérez, M.; Gonçalvez, D.; Sibila, M.; Segalés, J. Multisystemic lymphoplasmacytic inflammation associated with PCV-3 in wasting pigs. Transbound. Emerg. Dis. 2021, 68, 2969–2974. [Google Scholar] [CrossRef]
- Saporiti, V.; Valls, L.; Maldonado, J.; Perez, M.; Correa-Fiz, F.; Segalés, J.; Sibila, M. Porcine Circovirus 3 Detection in Aborted Fetuses and Stillborn Piglets from Swine Reproductive Failure Cases. Viruses 2021, 13, 264. [Google Scholar] [CrossRef]
- Vargas-Bermúdez, D.S.; Vargas-Pinto, M.A.; Mogollón, J.D.; Jaime, J. Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Vet. Res. 2021, 17, 150. [Google Scholar] [CrossRef]
- Patterson, A.R.; Madson, D.M.; Halbur, P.G.; Opriessnig, T. Shedding and infection dynamics of porcine circovirus type 2 (PCV2) after natural exposure. Vet. Microbiol. 2011, 149, 225–229. [Google Scholar] [CrossRef]
- Franzo, G.; Legnardi, M.; Tucciarone, C.M.; Drigo, M.; Klaumann, F.; Sohrmann, M.; SegalÉs, J. Porcine circovirus type 3: A threat to the pig industry? Vet. Rec. 2018, 182, 83. [Google Scholar] [CrossRef]
- Hernández, J.; Henao-Díaz, A.; Reséndiz-Sandoval, M.; Ramírez-Morán, J.; Cota-Valdez, A.; Mata-Haro, V.; Giménez-Lirola, L.G. Evaluation of IgM, IgA, and IgG Antibody Responses Against PCV3 and PCV2 in Tissues of Aborted Fetuses from Late-Term Co-Infected Sows. Pathogens 2025, 14, 198. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.J. Porcine circovirus type 2 (PCV2): Pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 2013, 1, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Segalés, J.; Domingo, M.; Chianini, F.; Majó, N.; Domínguez, J.; Darwich, L.; Mateu, E. Immunosuppression in postweaning multisystemic wasting syndrome affected pigs. Vet. Microbiol. 2004, 98, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, L.; Xu, S. Pathogenicity and immune modulation of porcine circovirus 3. Front. Vet. Sci. 2023, 10, 1280177. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Wang, Q.; Li, H.W.; Zhang, S.; Zhao, J.; Bao, D.; Zhao, H.; Wang, K.; Hu, G.X.; Gao, F.S. Genomic composition and pathomechanisms of porcine circoviruses: A review. Virulence 2024, 15, 2439524. [Google Scholar] [CrossRef]
- Ge, S.; Li, J.; Fan, X.; Liu, F.; Li, L.; Wang, Q.; Ren, W.; Bao, J.; Liu, C.; Wang, H.; et al. Molecular Characterization of African Swine Fever Virus, China, 2018. Emerg. Infect. Dis. 2018, 24, 2131–2133. [Google Scholar] [CrossRef]
- Wu, F.; Xu, T.; Lai, S.Y.; Ai, Y.R.; Zhou, Y.C.; Ge, L.P.; Sun, J.; Liu, Z.H.; Zeng, X.; Lang, L.Q.; et al. Prevalence and genetic evolution analysis of porcine epidemic diarrhea virus and porcine circovirus type 2 in Sichuan Province, China, from 2023 to 2024. Front. Vet. Sci. 2024, 11, 1475347. [Google Scholar] [CrossRef]
PCV Types | Number and Percentage of PCV Combinations | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Breeding Farm | Fattening Farm | Nursery Pig | Fattening Pig | Sow | ||||||
Farm Number | Rate | Farm Number | Rate | Sample Number | Rate | Sample Number | Rate | Sample Number | Rate | |
Negative | 0 | 0.00% | 1 | 3.70% | 131 | 55.50% | 157 | 37.20% | 316 | 34.20% |
PCV1 only | 0 | 0.00% | 1 | 3.70% | 11 | 4.70% | 68 | 16.10% | 98 | 10.60% |
PCV2 only | 0 | 0.00% | 2 | 7.41% | 44 | 18.60% | 116 | 27.50% | 50 | 5.40% |
PCV3 only | 0 | 0.00% | 1 | 3.70% | 20 | 8.50% | 9 | 2.10% | 250 | 27.00% |
PCV4 only | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 0.20% | 3 | 0.30% |
PCV1 + PCV2 | 0 | 0.00% | 8 | 29.63% | 8 | 3.40% | 41 | 9.70% | 30 | 3.20% |
PCV1 + PCV3 | 1 | 3.33% | 1 | 3.70% | 0 | 0.00% | 5 | 1.20% | 78 | 8.40% |
PCV1 + PCV4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 0.10% |
PCV2 + PCV3 | 0 | 0.00% | 1 | 3.70% | 21 | 8.90% | 12 | 2.80% | 57 | 6.20% |
PCV2 + PCV4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 3 | 0.70% | 0 | 0.00% |
PCV3 + PCV4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 1 | 0.10% |
PCV1 + PCV2 + PCV3 | 25 | 83.33% | 10 | 37.04% | 1 | 0.40% | 7 | 1.70% | 36 | 3.90% |
PCV1 + PCV2 + PCV4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 2 | 0.50% | 1 | 0.10% |
PCV1 + PCV3 + PCV4 | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% |
PCV2 + PCV3 + PCV4 | 0 | 0.00% | 1 | 3.70% | 0 | 0.00% | 1 | 0.20% | 1 | 0.10% |
PCV1 + PCV2 + PCV3 + PCV4 | 4 | 13.33% | 1 | 3.70% | 0 | 0.00% | 0 | 0.00% | 3 | 0.30% |
Total | 30 | 100% | 27 | 100% | 236 | 100% | 422 | 100% | 925 | 100% |
PCV1 n (%), r | PCV2 n (%), r | PCV3 n (%), r | PCV4 n (%), r | |
---|---|---|---|---|
Nursery Pig | ||||
PCV1 | 20 (8.5%), 1 | |||
PCV2 | 9 (3.8%), 0.09 | 74 (31.4%), 1 | ||
PCV3 | 1 (0.4%), −0.1 | 22 (9.3%), 0.21 * | 42 (17.8%), 1 | |
PCV4 | / | / | / | / |
Fattening Pig | ||||
PCV1 | 123 (29.1%), 1 | |||
PCV2 | 50 (11.8%), −0.32 | 182 (43.1%), 1 | ||
PCV3 | 12 (2.8%), 0.04 | 20 (4.7%), 0.09 | 34 (8.1%), 1 | |
PCV4 | 2 (0.5%), −0.02 | 6 (1.4%), 0.11 * | 1 (0.2%), 0.03 | 7 (1.7%), 1 |
Sow | ||||
PCV1 | 247 (26.7%), 1 | |||
PCV2 | 70 (7.6%), 0.14 * | 178 (19.2%), 1 | ||
PCV3 | 117 (12.6%), 0.02 | 97 (10.5), 0.08 * | 426 (46.1%), 1 | |
PCV4 | 5 (0.5%), 0.06 | 5 (0.5%), 0.08 * | 5 (0.5%), 0.08 | 10 (1.1%), 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, M.; Hu, Z.; Bian, L.; Wang, Y.; Zhang, X.; Li, X.; Wang, X. Detection Rate of Porcine Circoviruses in Different Ages and Production Herds of Intensive Pig Farms in China. Animals 2025, 15, 1376. https://doi.org/10.3390/ani15101376
Fan M, Hu Z, Bian L, Wang Y, Zhang X, Li X, Wang X. Detection Rate of Porcine Circoviruses in Different Ages and Production Herds of Intensive Pig Farms in China. Animals. 2025; 15(10):1376. https://doi.org/10.3390/ani15101376
Chicago/Turabian StyleFan, Mingyu, Zhiqiang Hu, Lujie Bian, Yunzhou Wang, Xiaoyang Zhang, Xiaowen Li, and Xinglong Wang. 2025. "Detection Rate of Porcine Circoviruses in Different Ages and Production Herds of Intensive Pig Farms in China" Animals 15, no. 10: 1376. https://doi.org/10.3390/ani15101376
APA StyleFan, M., Hu, Z., Bian, L., Wang, Y., Zhang, X., Li, X., & Wang, X. (2025). Detection Rate of Porcine Circoviruses in Different Ages and Production Herds of Intensive Pig Farms in China. Animals, 15(10), 1376. https://doi.org/10.3390/ani15101376