Pharmacokinetics of Antibiotics in Crocodiles: A Review
Simple Summary
Abstract
1. Introduction
2. Antibiotic Use in Reptiles
2.1. Aminoglycosides
2.2. Beta-Lactams
2.2.1. Penicillins
2.2.2. Cephalosporins
2.3. Fluoroquinolones
2.4. Macrolides
2.5. Tetracyclines
Species | Drug | Dose (mg/kg) | AUC | AUC Last | AUC0–∞ (μg × h/mL) | C0 | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t½λz (h) | MRT | Information Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freshwater crocodiles | Long-acting formulation of oxytetracycline | 5 (i.m.; n = 5) | 199.27 ± 51.91 | 206.96 ± 54.56 | - | 2.15 ± 0.51 | 1.0 | - | - | 33.59 ± 2.51 | 76.36 ± 8.79 | [68] | |
10 (i.m.; n = 5) | 1101.36 ± 164.54 | 1196.05 ± 159.93 | - | 7.68 ± 1.08 | 0.5 | - | - | 38.42 ± 25.47 | 93.55 ± 2.72 | ||||
20 (i.m.; n = 5) | 2405.15 ± 182.37 | 2611.76 ± 196.08 | - | 17.08 ± 2.09 | 0.5 | - | 38.04 ± 1.98 | 92.03 ± 3.01 | |||||
American alligators | Long-acting formulation of oxytetracycline | 10 (i.v.; n = 6) | 1468.85 ± 413.91 | - | - | 60.63 ± 28.26 | - | - | 790 ± 100 | 7 ± 2 | 15.15 ± 17.01 | 119.01 ± 59.75 | [70] |
American alligators | Tetracycline | 50 (p.o.; n = 12) | 41 ± 1.25 (Fasted) 15 ± 3 (Nonfasted) | - | - | - | 0.52 ± 0.14 (Fasted) 0.46 ± 0.22 (Nonfasted) | 10.7 ± 4.6 (Fasted) 9 ± 1.9 (Nonfasted) | - | - | - | [67] |
3. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eatwell, K. Antibiotic therapy in reptiles. J. Herpetol. Med. Surg. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Simpson, B.K.; Bezuijen, M.R. Siamese crocodile Crocodylus siamensis. In Crocodiles Status Survey and Conservation Action Plan; Darwin Crocodile Specialist Group: Karama, Australia, 2010; pp. 120–126. [Google Scholar]
- Manolis, S.C.; Webb, G.J. Best Management Practices for Crocodilian Farming; IUCN-SSC Crocodile Specialist Group: Karama, Australia, 2016; p. 10. [Google Scholar]
- Cowan, M.L. Diseases of the respiratory system. In Reptile Medicine and Surgery in Clinical Practice; Wiley: Hoboken, NJ, USA, 2017; pp. 299–306. [Google Scholar]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed]
- Pagkalis, S.; Mantadakis, E.; Mavros, M.N.; Ammari, C.; Falagas, M.E. Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs 2011, 71, 2277–2294. [Google Scholar] [CrossRef] [PubMed]
- Riviere, J.; Lees, P.; Elliott, J.; Clarke, C.; Anadón, A.; Baggot, D.; Brown, S.; Burka, J.; Clarke, C.; Craigmill, A. USP veterinary pharmaceutical information monographs-antibiotics. J. Vet. Pharmacol. Ther. 2003, 26, v–271. [Google Scholar]
- Jacobson, E.R.; Brown, M.P.; Chung, M.; Vliet, K.; Swift, R. Serum concentration and disposition kinetics of gentamicin and amikacin in juvenile American alligators. J. Zoo Anim. Med. 1988, 19, 188–194. [Google Scholar] [CrossRef]
- Hodge, M.K. The effect of acclimation temperature on gentamicin nephrotoxicity in the Florida broad banded water snake (Natrix fasciata). In Proceedings of the Annual Proceedings. American Association of Zoo Veterinarians, Knoxville, TN, USA, 7–9 November 1979. [Google Scholar]
- Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med. 2016, 6, a025247. [Google Scholar] [CrossRef]
- Pandey, N.; Cascella, M. Beta-lactam antibiotics. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Friedland, I.R.; McCracken Jr, G.H. Management of infections caused by antibiotic-resistant Streptococcus pneumoniae. N. Engl. J. Med. 1994, 331, 377–382. [Google Scholar] [CrossRef]
- Prescott, J.F. Beta-lactam Antibiotics. In Antimicrobial Therapy in Veterinary Medicine; Wiley: Hoboken, NJ, USA, 2013; pp. 133–152. [Google Scholar] [CrossRef]
- Poapolathep, S.; Giorgi, M.; Klangkaew, N.; Phaochoosak, N.; Chaiyabutr, N.; Wongwaipairoj, T.; Poapolathep, A. Pharmacokinetic profiles of amoxicillin trihydrate in freshwater crocodiles (Crocodylus siamensis) after intramuscular administration at two doses. J. Vet. Pharmacol. Ther. 2020, 43, 307–312. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Bousquet-mélou, A. Plasma terminal half-life. J. Vet. Pharmacol. Ther. 2004, 27, 427–439. [Google Scholar] [CrossRef]
- Enna, S.; Bylund, D.B. xPharm: The comprehensive pharmacology reference. Elseveir Masson: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Bui, T.; Patel, P.; Preuss, C.V. Cephalosporins. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Poapolathep, S.; Giorgi, M.; Chaiyabutr, N.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairote, T.; Poapolathep, A. Pharmacokinetics of ceftriaxone in freshwater crocodiles (Crocodylus siamensis) after intramuscular administration at two dosages. J. Vet. Pharmacol. Ther. 2020, 43, 141–146. [Google Scholar] [CrossRef]
- Stašek, J.; Keller, F.; Kočí, V.; Klučka, J.; Klabusayová, E.; Wiewiorka, O.; Strašilová, Z.; Beňovská, M.; Škardová, M.; Maláska, J. Update on therapeutic drug monitoring of beta-lactam antibiotics in critically ill patients—A narrative review. J. Antibiot. 2023, 12, 568. [Google Scholar] [CrossRef]
- Goudah, A. Pharmacokinetic parameters of ceftriaxone after single intravenous and intramuscular administration in camels (Camelus dromedarius). Res. Vet. Sci. 2008, 84, 483–489. [Google Scholar] [CrossRef]
- Goudah, A.; Shin, H.C.; Shim, J.H.; Abd El-Aty, A.M. Characterization of the relationship between serum and milk residue disposition of ceftriaxone in lactating ewes. J. Vet. Pharmacol. Ther. 2006, 29, 307–312. [Google Scholar] [CrossRef]
- Ismail, M. Pharmacokinetics, urinary and mammary excretion of ceftriaxone in lactating goats. Vet. Med. 2005, 52, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Cashin, K.; Martinez, S.; Magnin, G.; Nevarez, J.G. Pharmacokinetics of Single Intramuscular Administration of Ceftiofur Crystalline Free Acid in American Alligators (Alligator mississippiensis). J. Zoo Wildl. Med. 2024, 54, 721–727. [Google Scholar] [CrossRef]
- Hooper, D.C.; Wolfson, J.S. Fluoroquinolone antimicrobial agents. N. Engl. J. Med. 1991, 324, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Blondeau, J.M. Fluoroquinolones: Mechanism of action, classification, and development of resistance. Surv. Ophthalmol. 2004, 49, S73–S78. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Goldman, J. Safety concerns surrounding quinolone use in children. J. Clin. Pharmacol. 2016, 56, 1060–1075. [Google Scholar] [CrossRef]
- MHRA. Fluoroquinolone antibiotics: New restrictions and precautions for use due to very rare reports of disabling and potentially long-lasting or irreversible side effects. Drug Ther. Bull. 2019, 57, 118. [Google Scholar]
- Martelli, P.; Lai, O.R.; Krishnasamy, K.; Langelet, E.; Marín, P.; Laricchiuta, P.; Crescenzo, G. Pharmacokinetic behavior of enrofloxacin in estuarine crocodile (Crocodylus porosus) after single intravenous, intramuscular, and oral doses. J. Zoo Wildl. Med. 2009, 40, 696–704. [Google Scholar] [CrossRef]
- Poapolathep, S.; Giorgi, M.; Chaiyabutr, N.; Chokejaroenrat, C.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairote, T.; Poapolathep, A. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin in freshwater crocodiles (Crocodylus siamensis) after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2020, 43, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Helmick, K.E.; Papich, M.G.; Vliet, K.A.; Bennett, R.A.; Jacobson, E.R. Pharmacokinetics of enrofloxacin after single-dose oral and intravenous administration in the American alligator (Alligator mississippiensis). J. Zoo Wildl. Med. 2004, 35, 333–340. [Google Scholar] [CrossRef]
- Poapolathep, S.; Giorgi, M.; Hantrakul, S.; Klangkaew, N.; Sanyathitiseree, P.; Poapolathep, A. Pharmacokinetics of marbofloxacin in freshwater crocodiles (Crocodylus siamensis) after intravenous and intramuscular administration. J. Vet. Pharmacol. Ther. 2017, 40, 57–61. [Google Scholar] [CrossRef]
- Lai, O.R.; Marín, P.; Laricchiuta, P.; Marzano, G.; Crescenzo, G.; Escudero, E. Pharmacokinetics of marbofloxacin in loggerhead sea turtles (Caretta caretta) after single intravenous and intramuscular doses. J. Zoo Wildl. Med. 2009, 40, 501–507. [Google Scholar] [CrossRef]
- Lai, O.R.; Marín, P.; Laricchiuta, P.; Gelli, D.; Escudero, E.; Crescenzo, G. Pharmacokinetics of injectable marbofloxacin after intravenous and intramuscular administration in red-eared sliders (Trachemys scripta elegans). J. Vet. Pharmacol. Ther. 2020, 43, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Salvadori, M.; De Vito, V.; Owen, H.; Giorgi, M. Pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin after intracoelomic administration in Tortoises (Testudo hermanni). Isr. J. Vet. Med. 2015, 70, 45–48. [Google Scholar]
- Chan, T.; Bunce, P.E. Fluoroquinolone antimicrobial drugs. Can. Med. Assoc. J. 2017, 189, E638. [Google Scholar] [CrossRef] [PubMed]
- Helmick, K.E.; Brown, D.R.; Jacobson, E.R.; Brown, M.B. In vitro drug susceptibility pattern of Mycoplasma alligatoris isolated from symptomatic American alligators (Alligator mississippiensis). J. Zoo Wildl. Med. 2002, 33, 108–111. [Google Scholar]
- Yalong, M.; Poapolathep, S.; Giorgi, M.; Khidkhan, K.; Klangkaew, N.; Phaochoosak, N.; Chaiyabutr, N.; Wongwaipairoj, T.; Poapolathep, A. Pharmacokinetic disposition of marbofloxacin after intramuscular administration in estuarine crocodiles (Crocodylus porosus). J. Vet. Pharmacol. Ther. 2024, 47, 48–53. [Google Scholar] [CrossRef]
- Coke, R.L.; Isaza, R.; Koch, D.E.; Pellerin, M.A.; Hunter, R.P. Preliminary single-dose pharmacokinetics of marbofloxacin in ball pythons (Python regius). J. Zoo Wildl. Med. 2006, 37, 6–10. [Google Scholar] [CrossRef]
- Hunter, R.; Koch, D.; Coke, R.; Carpenter, J.; Isaza, R. Identification and comparison of marbofloxacin metabolites from the plasma of ball pythons (Python regius) and blue and gold macaws (Ara ararauna). J. Vet. Pharmacol. Ther. 2007, 30, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Lai, O.; Laricchiuta, P.; Putignano, C.; Conversano, M.; Santacroce, M.; Crescenzo, G. Pharmacokinetics, pharmacokinetic/pharmacodynamic integration and dosage regimen of marbofloxacin in red-eared slider (Trachemys scripta elegans). In Proceedings of the 43rd International Symposium on Diseases of Zoo and Wild Animals, Edinburgh, UK, 19–20 May 2007. [Google Scholar]
- Marín, P.; Lai, O.; Laricchiuta, P.; Marzano, G.; Di Bello, A.; Cárceles, C.; Crescenzo, G. Pharmacokinetics of marbofloxacin after a single oral dose to loggerhead sea turtles (Caretta caretta). Res. Vet. Sci. 2009, 87, 284–286. [Google Scholar] [CrossRef]
- Vercelli, C.; De Vito, V.; Salvadori, M.; Barbero, R.; Re, G.; Gennero, M.S.; Giorgi, M. Blood concentrations of marbofloxacin and its in vivo effect in yellow-bellied slider turtles (Trachemys scripta scripta) after a single intracoelomic injection at 3 dose rates. J. Exot. Pet Med. 2016, 25, 295–304. [Google Scholar] [CrossRef]
- Toutain, P.-L.; Ferran, A.; Bousquet-Mélou, A. Species differences in pharmacokinetics and pharmacodynamics. In Comparative and Veterinary Pharmacology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 19–48. [Google Scholar]
- Poapolathep, S.; Klangkaew, N.; Wongwaipairoj, T.; Chaiyabutr, N.; Giorgi, M.; Poapolathep, A. Pharmacokinetics of danofloxacin in freshwater crocodiles (Crocodylus siamensis) after intramuscular injection. J. Vet. Pharmacol. Ther. 2022, 45, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Corum, O.; Corum, D.D.; Altan, F.; Er, A.; Cetin, G.; Uney, K. Pharmacokinetics of intravenous and intramuscular danofloxacin in red-eared slider turtles (Trachemys scripta elegans). J. Vet. Med. Sci. 2019, 81, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Marín, P.; Bayón, A.; Fernández-Varón, E.; Escudero, E.; Clavel, C.; Almela, R.; Cárceles, C. Pharmacokinetics of danofloxacin after single dose intravenous, intramuscular and subcutaneous administration to loggerhead turtles Caretta caretta. Dis. Aquat. Organ. 2008, 82, 231–236. [Google Scholar] [CrossRef]
- Wanmad, W.; Chomcheun, T.; Jongkolpath, O.; Klangkaew, N.; Phaochoosak, N.; Sukkheewan, R.; Laovechprasit, W.; Khidkhan, K.; Giorgi, M.; Poapolathep, A. Pharmacokinetic characteristics of danofloxacin in green sea (Chelonia mydas) and hawksbill sea (Eretmochelys imbricata) turtles. J. Vet. Pharmacol. Ther. 2022, 45, 402–408. [Google Scholar] [CrossRef]
- Patel, P.; Hashmi, M. Macrolides. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mankin, A.S. Macrolides. In Encyclopedia of Microbiology, 3rd ed.; Schaechter, M., Ed.; Academic Press: Amsterdam, The Netherlands, 2009; Volume 4, pp. 529–558. [Google Scholar]
- Van Bambeke, F.; Mingeot-Leclercq, M.-P.; Glupczynski, Y.; Tulkens, P.M. Mechanisms of action. Infect. Dis. 2017, 2, 1162–1180. [Google Scholar]
- Poapolathep, S.; Giorgi, M.; Klangkaew, N.; Khidkhan, K.; Chaiyabutr, N.; Wongwaipairoj, T.; Poapolathep, A. Pharmacokinetic profiles of clarithromycin in freshwater crocodiles (Crocodylus siamensis). J. Vet. Pharmacol. Ther. 2022, 45, 147–152. [Google Scholar] [CrossRef]
- Sukkheewan, R.; Poapolathep, A.; Giorgi, M.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairoj, T.; Udomkusonsri, P.; Chaiyabutr, N.; Poapolathep, S. Pharmacokinetic characteristics of azithromycin in freshwater crocodiles (Crocodylus siamensis) after intramuscular administration at three different dosages. J. Vet. Pharmacol. Ther. 2022, 45, 501–507. [Google Scholar] [CrossRef]
- Papich, M.G. Pharmacokinetic–pharmacodynamic (PK–PD) modeling and the rational selection of dosage regimes for the prudent use of antimicrobial drugs. Vet. Microbiol. 2014, 171, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.; Felmingham, D.; Ridgway, G. In vitro activity of azithromycin (CP-62,993), a novel macrolide, against enteric pathogens. Drugs Under Exp. Clin. Res. 1988, 14, 613–615. [Google Scholar]
- Coke, R.L.; Hunter, R.P.; Isaza, R.; Koch, D.E.; Goatley, M.A.; Carpenter, J.W. Pharmacokinetics and tissue concentrations of azithromycin in ball pythons (Python regius). Am. J. Vet. Res. 2003, 64, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Poapolathep, S.; Escudero, E.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairoj, T.; Marin, P.; Poapolathep, A. Pharmacokinetics of tildipirosin in estuarine (Crocodylus porosus) and freshwater (Crocodylus siamensis) crocodiles. Vet. J. 2024, 305, 106130. [Google Scholar] [CrossRef] [PubMed]
- Galecio, J.S.; Badillo, E.; Escudero, E.; Corrales, J.C.; Yuste, M.T.; Marín, P. Antimicrobial susceptibility of Pasteurella multocida isolated from sheep with fibrinous pneumonia. Acta Vet. Beogr. 2023, 73, 171–178. [Google Scholar] [CrossRef]
- Galecio, J.S.; Escudero, E.; Badillo, E.; Marín, P. Pharmacokinetics of tildipirosin in horses after intravenous and intramuscular administration and its potential muscle damage. Res. Vet. Sci. 2022, 152, 20–25. [Google Scholar] [CrossRef]
- Galecio, J.S.; Escudero, E.; Cerón, J.J.; Crescenzo, G.; Marín, P. Pharmacokinetics of tildipirosin in ewes after intravenous, intramuscular and subcutaneous administration. Animals 2020, 10, 1332. [Google Scholar] [CrossRef]
- Galecio, J.S.; Escudero, E.; Corrales, J.C.; García-Romero, E.; De la Fe, C.; Hernandis, V.; Marin, P. Susceptibility of caprine mastitis pathogens to tildipirosin, gamithromycin, oxytetracycline, and danofloxacin: Effect of serum on the in vitro potency of current macrolides. World J. Microbiol. Biotechnol. 2022, 38, 221. [Google Scholar] [CrossRef]
- McDonald, P.J.; Pruul, H. Macrolides and the immune system. Scand. J. Infect. Dis. 1992, 24, 34. [Google Scholar]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef]
- Eliopoulos, G.M.; Eliopoulos, G.M.; Roberts, M.C. Tetracycline therapy: Update. Clin. Infect. Dis. 2003, 36, 462–467. [Google Scholar] [CrossRef]
- Calderón, C.B.; Sabundayo, B.P. Antimicrobial classifications: Drugs for bugs. Antimicrob. Susceptibility Test. Protoc. 2007, 7, 29–32. [Google Scholar]
- Wentzel, J.M. A Comparative Study of the Minimum Inhibitory and Mutant Prevention Concentrations of Florfenicol and Oxytetracycline for Animal Isolates of Pasteurella multocida and Salmonella typhimurium. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2012. [Google Scholar]
- CLSI. VET08: Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; Paperback: Wayne, PA, USA, 2018. [Google Scholar]
- Rivera, S.; Nevarez, J.G.; Maxwell, L.K.; Barker, S.A. Pharmacokinetics of tetracycline after single-dose oral administration in the American alligator (Alligator mississippiensis). J. Zoo Wildl. Med. 2012, 43, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Poapolathep, S.; Klangkaew, N.; Phaochoosak, N.; Wongwaipairoj, T.; Giorgi, M.; Chaiyabutr, N.; Trott, D.; Poapolathep, A. Pharmacokinetics of a long-acting formulation of oxytetracycline in freshwater crocodiles (Crocodylus siamensis) after intramuscular administration at three different dosages. Animals 2020, 10, 1281. [Google Scholar] [CrossRef]
- Medlicott, N.J.; Waldron, N.A.; Foster, T.P. Sustained release veterinary parenteral products. Adv. Drug Deliv. Rev. 2004, 56, 1345–1365. [Google Scholar] [CrossRef]
- Helmick, K.E.; Papich, M.G.; Vliet, K.A.; Bennett, R.A.; Jacobson, E.R.J.J.o.Z.; Medicine, W. Pharmacokinetic disposition of a long-acting oxytetracycline formulation after single-dose intravenous and intramuscular administrations in the American alligator (Alligator mississippiensis). J. Zoo Wildl. Med. 2004, 35, 341–346. [Google Scholar] [CrossRef]
- Toribio, R.E.; Mudge, M.C. Diseases of the foal. Equine Med. Surg. Reprod. 2013, 423. [Google Scholar] [CrossRef]
- Lammers, L.A.; Achterbergh, R.; Mathôt, R.A.; Romijn, J.A. The effects of fasting on drug metabolism. Expert Opin. Drug Metab. Toxicol. 2020, 16, 79–85. [Google Scholar] [CrossRef]
Species | Drug | Dose (mg/kg) | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t1/2λz (h) | Information Source |
---|---|---|---|---|---|---|---|---|
American alligators | Gentamicin sulfate | 1.25 (i.m.; n = 6) | - | - | 387 ± 114 | 7.05 ± 1.49 | 37.8 ± 4.0 | [8] |
1.75 (i.m.; n = 6) | 9.5 | 0.5 | 287 ± 57 | 2.67 ± 0.63 | 75.4 ± 10.7 | |||
Amikacin sulfate | 1.75 (i.m.; n = 6) | - | - | 252 ± 66 | 3.64 ± 0.52 | 49.4 ± 18.2 | ||
2.25 (i.m.; n = 6) | 14.5 | 1 | 224 ± 36 | 3.09 ± 0.79 | 52.8 ± 15.8 |
Drug | Dose (mg/kg) | AUC Last (μg × h/mL) | AUC0–∞ (μg × h/mL) | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t1/2λz (h) | MRT | Kel (1/h) | Information Source |
---|---|---|---|---|---|---|---|---|---|---|---|
Amoxicillin trihydrate | 5 (i.m.; n = 5) | 182.89 ± 47.86 | 184.07 ± 48.06 | 6.64 ± 1.76 | 8.4 ± 0.89 | 360 ± 80 | 29 ± 6 | 8.72 ± 0.61 | 21.54 ± 2.76 | 0.080 ± 0.005 | [14] |
10 (i.m.; n = 5) | 330.70 ± 70.03 | 331.22 ± 69.92 | 11.23 ± 2.40 | 10.0 ± 0.0 | 410 ± 140 | 31 ± 6 | 8.98 ± 1.13 | 23.49 ± 2.20 | 0.078 ± 0.008 |
Species | Drug | Dose (mg/kg) | AUClast | AUC0–∞ (μg × h/mL) | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t½λz (h) | MRT | Kel (1/h) | Information Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Freshwater crocodiles | Ceftriaxone | 12.5 (i.m.; n = 5) | 135.73 ± 11.86 | 147.04 ± 17.09 | 24.61 ± 5.15 | 0.5 | 2800 ± 350 | 93 ± 8 | 21.14 ± 3.72 | 24.41 ± 4.46 | 0.034 ± 0.006 | [18] |
25 (i.m.; n = 5) | 234.31 ± 22.71 | 244.61 ± 24.07 | 26.39 ± 2.81 | 1.0 | 3080 ± 430 | 108 ± 9 | 19.93 ± 2.58 | 28.28 ± 2.46 | 0.035 ± 0.005 | |||
American alligators | Ceftiofur crystalline- free acid | 30 (i.m.; n = 6) | 4.24 | - | 23.2 | 72 | - | - | 143 | - | 0.00480 | [23] |
Species | Drug | Dose (mg/kg) | AUClast | AUC0–∞ (μg × h/mL) | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t½λz (h) | MRT | F (%) | Kel (1/h) | Information Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Estuarine crocodiles | Enrofloxacin | 5 (i.v.; n = 5) | 1327.01 ± 117.35 | 1769.19 ± 12.51 | - | - | 160.92 ± 23.18 | 24.49 ± 1.26 | 40.48 ± 5.70 | 141.05 ± 17.25 | - | - | [28] |
5 (i.m.; n = 5) | 74.38 ± 12.95 | 133.23 ± 7.05 | 8.90 ± 2.28 | 0.65 ± 0.15 | - | - | 19.02 ± 2.80 | 10.19 ± 0.20 | 87.97 ± 12.36 | - | |||
5 (p.o.; n = 5) | 1015.45 ± 63.35 | 1901.24 ± 299.18 | 21.04 ± 3.17 | 21.20 ± 7.03 | - | - | 64.98 ± 21.14 | 34.47 ± 1.81 | 142.50 ± 20.94 | - | |||
Freshwater crocodiles | Enrofloxacin | 5 (i.v.; n = 5) | 107.75 ± 31.74 | 125.65 ± 39.37 | - | - | 3390 ± 1560 | 40 ± 18 | 43.24 ± 9.98 | 45.33 ± 4.46 | - | 0.01 ± 0.002 | [29] |
5 (i.m.; n = 5) | 86.38 ± 10.91 | 97.54 ± 5.41 | 2.33 ± 0.60 | 7.20 ± 1.79 | - | - | 44.72 ± 5.16 | 39.44 ± 5.19 | 82.65 | 0.02 ± 0.002 | |||
American alligators | Enrofloxacin | 5 (i.v.; n = 6) | 119.10 ± 43.34 (AUC) | - | 1.41 ± 0.37 | - | 1880 ± 960 | 47 ± 21 | 21.05 ± 11.84 | 77.04 ± 21.00 | - | 0.033 ± 0.025 | [29] |
5 (p.o.; n = 5) | 37.31 ± 18.86 | 201.02 ± 225.15 Extra% 56.62 ± 29.06 | 0.50 ± 0.27 | 55 ± 29 | - | - | 77.73 ± 4.84 | 139.58 ± 146.56 | - | - | |||
Freshwater crocodiles | Marbofloxacin | 2 (i.v.; n = 6) | - | 97.29 ± 15.08 | - | - | - | 22.62 ± 4.10 | 57.51 ± 8.51 | 72.50 ± 10.92 | - | 0.01 ± 0.001 | [31] |
2 (i.m.; n = 6) | - | 102.91 ± 15.07 | 2.70 ± 0.52 | 0.54 ± 0.25 | - | - | 57.61 ± 11.79 | 75.06 ± 8.98 | 105.39 | 0.012 ± 0.002 | |||
Estuarine crocodiles | Marbofloxacin | 2 (i.m.; n = 5) | 57.34 | 58.78 | 1.55 | 2 | 1668.8 (Vz/F) | 34.02 (Cl/F) | 33.99 | 49.0 | - | 0.02 | [37] |
4 (i.m.; n = 5) | 175.28 | 183.98 | 4.96 | 1 | 1231.9 (Vz/F) | 21.74 (Cl/F) | 39.28 | 56.29 | - | 0.02 | |||
Freshwater crocodiles | Danofloxacin | 6 (i.m.; n = 5) | 213.17 | 235.72 | 7.20 | 0.30 | 1630 (Vd/F) | 0.024 (Cl/F) | 48.18 | 49.53 | - | 0.014 | [44] |
12 (i.m.; n = 5) | 493.96 | 611.91 | 12.30 | 0.35 | 1970 (Vd/F) | 0.020 (Cl/F) | 67.29 | 59.01 | - | 0.010 |
Species | Drug | Dose (mg/kg) | AUC Last | AUC0–∞ (μg × h/mL) | Cmax (μg/mL) | Tmax (h) | Vd (mL/kg) | Cl (mL/h/kg) | t½λz (h) | MRT | F (%) | Kel (1/h) | Information Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Freshwater crocodile | Clarithromycin | 2.5 (i.v.; n = 5) | 149.15 | 163.48 | - | - | - | 0.017 | 20.65 | 27.13 | - | 0.033 | [51] |
2.5 (i.m.; n = 5) | 221.89 | 224.10 | 9.08 | 2.29 | - | - | 19.36 | 39.10 | 137.09 | 0.036 | |||
Freshwater crocodiles | Azithromycin | 2.5 (i.m.; n = 5) | 82.99 | 86.24 | 8.21 | 0.5 | - | - | 33.70 | 40.92 | - | 0.021 | [52] |
5 (i.m.; n = 5) | 191.11 | 200.40 | 13.16 | 0.5 | - | - | 38.11 | 40.16 | - | 0.018 | |||
10 (i.m.; n = 5) | 411.84 | 425.40 | 36.97 | 1 | - | - | 34.80 | 36.65 | - | 0.019 | |||
Estuarine crocodile | Tildipirosin | 2 (i.v.; n = 5) | 331.32 ± 70.60 | 373.51 ± 69.71 | - | - | 360 ± 100 | 6 ± 1 | 44.22 | 63.91 ± 9.89 | - | 0.016 ± 0.002 | [56] |
2 (i.m.; n = 5) | 325.65 ± 30.83 | 392.67 ± 33.99 | 12.63 ± 1.65 | 1.60 ± 0.55 | - | - | 59.52 | 77.68 ± 6.58 | 108.00 ± 21.44 | - | |||
4 (i.m.; n = 5) | 465.85 ± 89.82 | 554.96 ± 99.62 | 15.11 ± 2.11 | 1.40 ± 0.55 | - | - | 56.99 | 75.51 ± 9.55 | 76.71 ± 21.04 | 0.012 ± 0.002 | |||
Freshwater crocodile | Tildipirosin | 2 (i.v.; n = 5) | 66.14 ± 11.11 | 70.71 ± 11.02 | - | - | 1480 ± 260 | 29 ± 4 | 35.33 | 45.61 ± 5.12 | - | 0.020 ± 0.002 | |
2 (i.m.; n = 5) | 68.42 ± 17.19 | 76.56 ± 20.43 | 6.44 ± 1.20 | 1.40 ± 0.55 | - | - | 44.50 | 56.62 ± 6.27 | 107.82 ± 22.52 | 0.016 ± 0.003 | |||
4 (i.m.; n = 5) | 101.06 ± 9.38 | 111.07 ± 11.38 | 9.77 ± 1.43 | 1.40 ± 0.55 | - | - | 41.50 | 51.72 ± 8.36 | 80.20 ± 15.52 | 0.017 ± 0.003 |
Antibiotic | Species | PK/PD Index | MIC Target (µg/mL) | Achieved PK/PD | Information Source |
---|---|---|---|---|---|
Gentamicin | American alligator | Cmax/MIC ≥ 8 | <6 (A. hydrophila) | Cmax = 9.5 µg/mL (i.m. 1.75 mg/kg) | [8] |
Amikacin | American alligator | Cmax/MIC ≥ 8 | <12 | Cmax = 14.5 µg/mL (i.m. 2.25 mg/kg) | |
Amoxicillin trihydrate | Freshwater crocodile | T > MIC ≥ 40–50% | ≤0.25 | Sustained for 96 h (5 mg/kg) | [14] |
Ceftriaxone | Freshwater crocodile | ≤1 | Above MIC for 72–96 h | [18] | |
Ceftiofur | American alligator | ≤2 | Sustained > 366 h | [23] | |
Enrofloxacin | Estuarine crocodile | AUC/MIC ≥ 125; Cmax/MIC ≥ 8 | ≤0.5 | Met targets via i.m. & i.v. | [28] |
American alligator | Effective via i.v. | [30] | |||
Freshwater crocodile | >1 | Requires high doses | [29] | ||
Marbofloxacin | Freshwater crocodile | AUC/MIC ≥ 125; Cmax/MIC ≥ 10 | ≤0.25–0.56 | Achieved PK/PD thresholds | [31] |
Danofloxacin | Freshwater crocodile | AUC/MIC ≥ 125 | <0.04 | Met targets at 6 mg/kg | [44] |
Clarithromycin | Freshwater crocodile | T > MIC ≥ 40–50% | 0.5 | Sustained for 10 days at 2.5 mg/kg | [51] |
Azithromycin | Freshwater crocodile | 4 (A. hydrophila) | Met at 10 mg/kg for 24 h | [52] | |
Tildipirosin | Estuarine & Freshwater | AUC/MIC ≥ 65 | 0.5 | Sustained > 65 h at both doses | [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laut, S.; Poapolathep, S.; Sitthiangkool, P.; Klangkaew, N.; Phaochoosak, N.; Giorgi, M.; Badillo, E.; Escudero, E.; Marín, P.; Poapolathep, A. Pharmacokinetics of Antibiotics in Crocodiles: A Review. Animals 2025, 15, 1363. https://doi.org/10.3390/ani15101363
Laut S, Poapolathep S, Sitthiangkool P, Klangkaew N, Phaochoosak N, Giorgi M, Badillo E, Escudero E, Marín P, Poapolathep A. Pharmacokinetics of Antibiotics in Crocodiles: A Review. Animals. 2025; 15(10):1363. https://doi.org/10.3390/ani15101363
Chicago/Turabian StyleLaut, Seavchou, Saranya Poapolathep, Pandaree Sitthiangkool, Narumol Klangkaew, Napasorn Phaochoosak, Mario Giorgi, Elena Badillo, Elisa Escudero, Pedro Marín, and Amnart Poapolathep. 2025. "Pharmacokinetics of Antibiotics in Crocodiles: A Review" Animals 15, no. 10: 1363. https://doi.org/10.3390/ani15101363
APA StyleLaut, S., Poapolathep, S., Sitthiangkool, P., Klangkaew, N., Phaochoosak, N., Giorgi, M., Badillo, E., Escudero, E., Marín, P., & Poapolathep, A. (2025). Pharmacokinetics of Antibiotics in Crocodiles: A Review. Animals, 15(10), 1363. https://doi.org/10.3390/ani15101363