Population Pharmacokinetics of Enrofloxacin in Micropterus salmoides Based on a Nonlinear Mixed Effect Model After Intravenous and Oral Administration
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Fish Management
2.3. EF Exposure and Sampling
2.3.1. Oral Administration
2.3.2. Intravenous Administration
2.4. Sample Preparation
2.5. HPLC Analysis and Method Validation
2.6. PPK Parameterization
2.7. Model Validation
3. Results
3.1. HPLC Analysis
3.2. Initial Estimation
3.3. PPK Parameters
3.4. Model Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Barron, M.G.; Gedutis, C.; James, M.O. Pharmacokinetics of sulphadimethoxine in the lobster, Homarus americanus, following intrapericardial administration. Xenobiotica 1988, 18, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Kara, J.S.; Hayton, W.L. Temperature and Surfactant Dependence of Accumulation of 4-Aminoantipyrine and Ethanol in Fish. J. Pharm. Sci. 1978, 67, 1558–1563. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, H.; Yang, X.; Lu, L. Integrated pharmacokinetics/pharmacodynamics parameters-based dosing guidelines of enrofloxacin in grass carp Ctenopharyngodon idella to minimize selection of drug resistance. BMC Vet. Res. 2013, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Li, M.; Fu, Y.; Zhang, X.; Dong, J.; Liu, Y.; Zhou, S.; Ai, X.; Lin, Z. Effect of temperature on plasma and tissue kinetics of doxycycline in grass carp (Ctenopharyngodon idella) after oral administration. Aquaculture 2019, 511, 734204. [Google Scholar] [CrossRef]
- Yang, F.; Yang, F.; Wang, G.; Kong, T.; Wang, H.; Zhang, C. Effects of water temperature on tissue depletion of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus gibelio) following multiple oral doses. Aquaculture 2020, 515, 734542. [Google Scholar] [CrossRef]
- Shan, Q.; Fan, J.; Wang, J.; Zhu, X.; Yin, Y.; Zheng, G. Pharmacokinetics of enrofloxacin after oral, intramuscular and bath administration in crucian carp (Carassius auratus gibelio). J. Vet. Pharmacol. Ther. 2018, 41, 159–162. [Google Scholar] [CrossRef]
- Xu, N.; Li, M.; Lin, Z.; Ai, X. Comparative pharmacokinetics of sulfadiazine and its metabolite N4-acetyl sulfadiazine in grass carp (Ctenopharyngodon idella) at different temperatures after oral administration. Pharmaceutics 2022, 14, 712. [Google Scholar] [CrossRef]
- Xu, N.; Sun, W.; Gong, L.; Liu, Y.; Dong, J.; Yang, Y.; Zhou, S.; Ai, X. Comparative pharmacokinetics of doxycycline in crayfish (Procambarus clarkii) following oral, intramuscular, and intrasinus administrations. Aquaculture 2022, 551, 737941. [Google Scholar] [CrossRef]
- de Velde, F.; Mouton, J.W.; de Winter, B.C.M.; van Gelder, T.; Koch, B.C.P. Clinical applications of population pharmacokinetic models of antibiotics: Challenges and perspectives. Pharmacol. Res. 2018, 134, 280–288. [Google Scholar] [CrossRef]
- Yoo, O.; Tang, E.K.Y.; Nguyen, M.N.; Salman, S.; Hua, A.J.; von Ungern Sternberg, B.S.; Lim, L.Y. HPLC-UV assay of tramadol and O-desmethyltramadol in human plasma containing other drugs potentially co-administered to participants in a paediatric population pharmacokinetic study. J. Chromatogr. B 2021, 1184, 122971. [Google Scholar] [CrossRef]
- Viel, A.; Antoine, R.; Morvan, M.-L.; Fournel, C.; Daniel, P.; Thorin, C.; Baron, S.; Sanders, P.; Calvez, S. Population pharmacokinetics/pharmacodynamics modelling of enrofloxacin for the three major trout pathogens Aeromonas salmonicida, Flavobacterium psychrophilum and Yersinia ruckeri. Aquaculture 2021, 545, 737119. [Google Scholar] [CrossRef]
- Xu, L.; Quan, K.; Wang, H.; Hu, K.; Yang, X.; Lv, L. Medication regimen for prevention of drug resistance using enrofloxacin agaist Aeromonas hydrophilain crucian carp Carassius auratus. J. Fish. Sci. China 2013, 20, 635–643. [Google Scholar]
- Yang, Y.; Xu, N.; Dong, J.; Yang, Q.; Liu, Y.; Ai, X. Isolation and idenfication of Aeromonas veronii strain Zy01 from Taiwan Loach and its antibiotic sensitivity. Microbiol. China 2017, 44, 852–858. [Google Scholar]
- Dong, J.; Ding, H.; Xu, N.; Liu, Y.; Yang, Y.; Yang, Q.; Song, Y.; Ai, X. Identification and synergistic susceptibility test of pathogenic Aeromonas veronii isolated from hybrid catfish. Chin. J. Prev. Vet. Med. 2017, 39, 897–901. [Google Scholar]
- Teles, J.A.; Castello Branco, L.C.; Del Bianchi, M.; Pilarski, F.; Reyes, F.G.R. Pharmacokinetic study of enrofloxacin in Nile tilapia (Oreochromis niloticus) after a single oral administration in medicated feed. J. Vet. Pharmacol. Ther. 2016, 39, 205–208. [Google Scholar] [CrossRef]
- Uney, K.; Terzi, E.; Durna Corum, D.; Ozdemir, R.C.; Bilen, S.; Corum, O. Pharmacokinetics and pharmacokinetic/pharmacodynamic integration of enrofloxacin following single oral administration of different doses in brown trout (Salmo trutta). Animals 2021, 11, 3086. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, J.; Zheng, G.; Zhu, X.; Yang, Y.; Ma, L.; Zhao, C.; Li, L.; Yin, Y. Pharmacokinetics and tissue residues of enrofloxacin in the largemouth bass (Micropterus salmoides) after oral administration. J. Vet. Pharmacol. Ther. 2019, 43, 147–152. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Zheng, G.; Yin, Y.; Zhu, X.; Shan, Q.; Yang, Y.; Ma, L.; Li, L.; Liu, S. Pharmacokinetics, tissue distribution, and depletion of enrofloxacin and its metabolite ciprofloxacin in the northern snakehead (Channa argus) following multiple oral administration. Aquaculture 2021, 533, 736183. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, C.; Duan, M.; Wang, H.; Song, Z.; Shao, H.; Ma, K.; Yang, F. Pharmacokinetics and tissue distribution of enrofloxacin following single oral administration in yellow river carp (Cyprinus carpio haematoperus). Front. Vet. Sci. 2022, 9, 822032. [Google Scholar] [CrossRef]
- BFFA. China Fishery Statistics Yearbook 2019; Bureau of Fisheries and Fishery Administration, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Ed.; China Agriculture Press: Beijing, China, 2024. [Google Scholar]
- Xu, N.; Sun, W.; Gong, L.; Dong, J.; Zhou, S.; Liu, Y.; Yang, Y.; Yang, Q.; Ding, Y.; Ai, X. An improved withdrawal interval calculation and risk assessment of doxycycline in crayfish (Procambarus clarkii) in the natural cultured environment. Food Res. Int. 2023, 166, 112604. [Google Scholar] [CrossRef]
- Xu, N.; Sun, W.; Zhang, H.; Li, Z.; Luo, X.; Ai, X.; Ding, Y.; Cheng, B. Effects of temperature on plasma protein binding ratios (PPBRs) of enrofloxacin and ciprofloxacin in yellow catfish (Pelteobagrus fulvidraco), grass carp (Ctenopharyngodon idella), and largemouth bass (Micropterus salmoides). Animals 2023, 13, 1749. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Sun, W.; Zhang, H.; Liu, Y.; Dong, J.; Zhou, S.; Yang, Y.; Yang, Q.; Ai, X. Plasma and tissue kinetics of enrofloxacin and its metabolite, ciprofloxacin, in yellow catfish (Pelteobagrus fulvidraco) after a single oral administration at different temperatures. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023, 266, 109554. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.W.; Yang, F.; Dai, Y.; Zhang, C.S.; Shao, H.T.; Wang, H.; Ma, K.L.; Li, Z.E.; Yang, F. Population pharmacokinetics of danofloxacin in yellow river carp (Cyprinus carpio haematopterus) after one single oral dose. Front. Vet. Sci. 2022, 9, 868966. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Sun, W.; Zhang, H.; Li, Z.; Cheng, B.; Ding, Y.; Ai, X. The assessment of withdrawal interval for enrofloxacin in yellow catfish (Pelteobagrus fulvidraco) after multiple oral administrations at disparate temperatures. Animals 2023, 13, 2568. [Google Scholar] [CrossRef]
- EC. Commission Implementing Regulation (EU) 2021/808 of 22 March 2021 on the Performance of Analytical Methods for Residues of Pharmacologically Active Substances Used in Food-Producing Animals and on the Interpretation of Results As Well as on the Methods to Be Used for Sampling and Repealing Decisions 2002/657/EC and 98/179/EC. 2021. Available online: https://eur-lex.europa.eu/eli/reg_impl/2021/808/oj/eng (accessed on 13 January 2025).
- Xu, N.; Zhang, H.; Zhou, S.; Liu, Y.; Yang, Q.; Dong, J.; Ding, Y.; Ai, X. Population Pharmacokinetics of Enrofloxacin in Ctenopharyngodon idella Based on the Sparse Sampling Method and a Nonlinear Mixed Effect Model Following Intravenous and Oral Administration. J. Vet. Pharmacol. Ther. 2025. online ahead of print. [Google Scholar] [CrossRef]
- Rosenberg, J.F.; Haulena, M.; Phillips, B.E.; Harms, C.A.; Lewbart, G.A.; Lahner, L.L.; Papich, M.G. Population pharmacokinetics of enrofloxacin in purple sea stars (Pisaster ochraceus) following an intracoelomic injection or extended immersion. Am. J. Vet. Res. 2016, 77, 1266–1275. [Google Scholar] [CrossRef]
- Kukanich, B.; Huff, D.; Riviere, J.; Papich, M. Naïve averaged, naïve pooled, and population pharmacokinetics of orally administered marbofloxacin in juvenile harbor seals. J. Am. Vet. Med. Assoc. 2007, 230, 390–395. [Google Scholar] [CrossRef]
- Petkova, T.; Yordanova, A.; Milanova, A. Population pharmacokinetics of doxycycline, administered alone or with N-acetylcysteine, in chickens with experimental Mycoplasma gallisepticum infection. Pharmaceutics 2022, 14, 2440. [Google Scholar] [CrossRef]
- Fang, X.; Liu, X.; Liu, W.; Lu, C. Pharmacokinetics of enrofloxacin in allogynogenetic silver crucian carp, Carassius auratus gibelio. J. Vet. Pharmacol. Ther. 2012, 35, 397–401. [Google Scholar] [CrossRef]
- Fang, X.; Zhou, J.; Liu, X. Pharmacokinetics of enrofloxacin in snakehead fish, Channa argus. J. Vet. Pharmacol. Ther. 2016, 39, 209–212. [Google Scholar] [CrossRef]
- Koc, F.; Uney, K.; Atamanalp, M.; Tumer, I.; Kaban, G. Pharmacokinetic disposition of enrofloxacin in brown trout (Salmo trutta fario) after oral and intravenous administrations. Aquaculture 2009, 295, 142–144. [Google Scholar] [CrossRef]
- Ma, R.; Yang, L.; Ren, T.; Dong, Y.; Liu, T.; Zhuang, P.; Fang, W.; Yang, X.; Hu, K. Enrofloxacin pharmacokinetics in Takifugu flavidus after oral administration at three salinity levels. Aquac. Res. 2017, 48, 4545–4553. [Google Scholar] [CrossRef]
- Greenwell, M.G.; Sherrill, J.; Clayton, L.A. Osmoregulation in fish: Mechanisms and clinical implications. Vet. Clin. N. Am. Exot. Anim. Pract. 2003, 6, 169–189. [Google Scholar] [CrossRef]
- Wright, D.H.; Brown, G.H.; Peterson, M.L.; Rotschafer, J.C. Application of fluoroquinolone pharmacodynamics. J. Antimicrob. Chemother. 2000, 46, 669–683. [Google Scholar] [CrossRef] [PubMed]
- Mckellar, Q.A.; Sanchez Bruni, S.F.; Jones, D.G. Pharmacokinetic/pharmacodynamic relationships of antimicrobial drugs used in veterinary medicine. J. Vet. Pharmacol. Ther. 2004, 27, 503–514. [Google Scholar] [CrossRef]
- Gieseker, C.M.; Crosby, T.C.; Woods, L.C., 3rd. Provisional epidemiological cutoff values for standard broth microdilution susceptibility testing of Flavobacterium columnare. J. Fish Dis. 2017, 40, 679–686. [Google Scholar] [CrossRef]
Spiked Concentration (μg/mL) | Recovery (%) | Intra-Day RSD (%) | Inter-Day RSD (%) |
---|---|---|---|
0.02 | 103.12 ± 4.32 | 3.21 | 6.72 |
0.1 | 89.27 ± 4.55 | 2.07 | 5.68 |
1 | 83.29 ± 2.08 | 2.11 | 3.01 |
Parameters | Units | P.O. | IV |
---|---|---|---|
Ka | /h | 1.19 | - |
V | h | 7.30 | - |
CL | /h | 0.086 | 0.013 |
V1 | h | - | 0.51 |
V2 | /h | - | 1.31 |
CL2 | L/h/kg | - | 1.24 |
Scenarios | LRT | −2LL | AIC | BIC | Parameter (n) |
---|---|---|---|---|---|
No influence of wt | −84.84 | 169.67 | 183.67 | 200.77 | 7 |
Ka-wt | −84.63 | 169.26 | 185.26 | 204.80 | 8 |
V-wt | −83.51 | 167.01 | 183.01 | 202.55 | 8 |
Ka-wt V-wt | −83.16 | 166.32 | 184.32 | 206.31 | 9 |
CL-wt | −84.83 | 169.67 | 185.67 | 205.21 | 8 |
Ka-wt CL-wt | −84.59 | 169.17 | 187.17 | 209.16 | 9 |
V-wt CL-wt | −83.99 | 167.98 | 185.98 | 207.96 | 9 |
Ka-wt V-wt CL-wt | −82.44 | 164.88 | 184.88 | 209.31 | 10 |
Scenarios | Parameters | Estimated Values | Units | Standard Error | Coefficient of Variation (%) | 2.5% CI | 97.5% CI |
---|---|---|---|---|---|---|---|
Importing covariate of wt | tvKa | 1.03 | /h | 0.14 | 13.49 | 0.75 | 1.31 |
tvV | 6.94 | L/kg | 0.52 | 7.45 | 5.91 | 7.97 | |
tvCL | 0.097 | L/h/kg | 0.0091 | 9.31 | 0.079 | 0.12 | |
dVdwt | −0.39 | - | 0.17 | −43.90 | −0.73 | −0.049 | |
stdev0 | 0.25 | - | 0.033 | 13.25 | 0.18 | 0.32 | |
Without importing covariate of wt | tvKa | 0.98 | /h | 0.14 | 14.00 | 0.71 | 1.26 |
tvV | 6.82 | L/kg | 0.50 | 7.34 | 5.82 | 7.81 | |
tvCL | 0.098 | L/h/kg | 0.0099 | 10.16 | 0.078 | 0.12 | |
stdev0 | 0.30 | - | 0.046 | 15.10 | 0.21 | 0.39 | |
Bootstrap (n = 1000) | tvKa | 1.01 | /h | 0.16 | 15.99 | 0.75 | 1.37 |
tvV | 6.90 | L/kg | 0.54 | 7.88 | 5.89 | 8.02 | |
tvCL | 0.095 | L/h/kg | 0.013 | 13.47 | 0.073 | 0.12 | |
stdev0 | 0.30 | - | 0.032 | 10.46 | 0.24 | 0.36 |
Scenarios | LogLik | −2LL | AIC | BIC | Parameter (n) |
---|---|---|---|---|---|
No influence of wt | −136.35 | 272.70 | 290.70 | 313.30 | 9.00 |
V1-wt | −136.05 | 272.10 | 292.10 | 317.21 | 10.00 |
V2-wt | −135.17 | 270.34 | 290.34 | 315.45 | 10.00 |
V1-wt V2-wt | −135.14 | 270.28 | 292.28 | 319.90 | 11.00 |
CL-wt | −136.03 | 272.07 | 292.07 | 317.18 | 10.00 |
V1-wt CL-wt | −135.78 | 271.56 | 293.56 | 321.18 | 11.00 |
V2-wt CL-wt | −135.13 | 270.25 | 292.25 | 319.87 | 11.00 |
V1-wt V2-wt CL-wt | −135.10 | 270.19 | 294.19 | 324.32 | 12.00 |
CL2-wt | −135.82 | 271.65 | 291.65 | 316.75 | 10.00 |
V1-wt CL2-wt | −135.89 | 271.78 | 293.78 | 321.40 | 11.00 |
V2-wt CL2-wt | −134.13 | 268.25 | 290.25 | 317.87 | 11.00 |
V1-wt V2-wt CL2-wt | −133.96 | 267.92 | 291.92 | 322.05 | 12.00 |
CL-wt CL2-wt | −135.37 | 270.75 | 292.75 | 320.37 | 11.00 |
V1-wt CL-wt CL2-wt | −135.44 | 270.87 | 294.87 | 325.00 | 12.00 |
V2-wt CL-wt CL2-wt | −134.04 | 268.08 | 292.08 | 322.21 | 12.00 |
V1-wt V2-wt CL-wt CL2-wt | −133.85 | 267.69 | 293.69 | 326.33 | 13.00 |
Scenarios | Parameter | Estimated Values | Units | Standard Error | Coefficient of Variation (%) | 2.5% CI | 97.5% CI |
---|---|---|---|---|---|---|---|
Importing covariate of wt | tvV1 | 0.58 | L/kg | 0.05 | 9.23 | 0.47 | 0.68 |
tvV2 | 1.25 | L/kg | 0.09 | 6.80 | 1.08 | 1.42 | |
tvCL | 0.012 | L/h/kg | 0.00 | 6.23 | 0.01 | 0.01 | |
tvCL2 | 0.96 | L/h/kg | 0.12 | 12.69 | 0.72 | 1.21 | |
dV2dwt | −0.21 | - | 0.23 | −113.84 | −0.67 | 0.26 | |
stdev0 | 0.14 | - | 0.02 | 12.57 | 0.10 | 0.17 | |
Without importing covariate of wt | tvV1 | 0.57 | L/kg | 0.05 | 9.63 | 0.46 | 0.67 |
tvV2 | 1.28 | L/kg | 0.08 | 6.55 | 1.11 | 1.44 | |
tvCL | 0.012 | L/h/kg | 0.00 | 6.12 | 0.01 | 0.01 | |
tvCL2 | 1.00 | L/h/kg | 0.12 | 12.47 | 0.75 | 1.25 | |
stdev0 | 0.14 | - | 0.02 | 11.98 | 0.11 | 0.17 | |
Bootstrap (n = 1000) | tvV1 | 0.54 | L/kg | 0.095 | 17.39 | 0.34 | 0.70 |
tvV2 | 1.27 | L/kg | 0.11 | 8.38 | 1.09 | 1.52 | |
tvCL | 0.013 | L/h/kg | 0.0010 | 7.88 | 0.011 | 0.015 | |
tvCL2 | 1.06 | L/h/kg | 0.21 | 19.70 | 0.73 | 1.52 | |
stdev0 | 0.12 | - | 0.020 | 17.13 | 0.079 | 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, N.; Zhou, S.; Dong, J.; Li, J.; Ding, Y.; Ai, X. Population Pharmacokinetics of Enrofloxacin in Micropterus salmoides Based on a Nonlinear Mixed Effect Model After Intravenous and Oral Administration. Animals 2025, 15, 1362. https://doi.org/10.3390/ani15101362
Xu N, Zhou S, Dong J, Li J, Ding Y, Ai X. Population Pharmacokinetics of Enrofloxacin in Micropterus salmoides Based on a Nonlinear Mixed Effect Model After Intravenous and Oral Administration. Animals. 2025; 15(10):1362. https://doi.org/10.3390/ani15101362
Chicago/Turabian StyleXu, Ning, Shun Zhou, Jing Dong, Jiangtao Li, Yongzhen Ding, and Xiaohui Ai. 2025. "Population Pharmacokinetics of Enrofloxacin in Micropterus salmoides Based on a Nonlinear Mixed Effect Model After Intravenous and Oral Administration" Animals 15, no. 10: 1362. https://doi.org/10.3390/ani15101362
APA StyleXu, N., Zhou, S., Dong, J., Li, J., Ding, Y., & Ai, X. (2025). Population Pharmacokinetics of Enrofloxacin in Micropterus salmoides Based on a Nonlinear Mixed Effect Model After Intravenous and Oral Administration. Animals, 15(10), 1362. https://doi.org/10.3390/ani15101362