The Risk Factors Associated with the Carriage to Critical Antimicrobial-Resistant Escherichia coli in Healthy Household Dogs: A One Health Perspective
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Collection
2.3. Isolation and Identification of E. coli
2.4. Phenotypic Antimicrobial Resistance Characterization
2.5. Risk Factors
2.6. Statistical Analysis
- (1)
- The initial association between each potential risk factor and the likelihood of E. coli resistance to each antibiotic was evaluated using a chi-square test. Risk factors with a p-value lower than 0.25 were included in the multivariable logistic regression (MLR) analysis.
- (2)
- Final models were developed using a stepwise backward elimination method, with adjustments for potential confounding variables.
- (3)
- Collinearity in the final models was evaluated using Pearson’s correlation test, examining correlation values between predictors.
- (4)
- Model fit was assessed using Pearson’s chi-square test. The strength of the association between risk factors and the presence of resistant E. coli was represented by the final model estimates, expressed as odds ratios (ORs). Statistical significance was determined using a p-value threshold of <0.05. All statistical analyses were conducted using RStudio software (Version 2023.09.1).
3. Results
3.1. Characterization of Sampled Dogs
3.2. Risk Factors Associated with AMC-Resistant E. coli Isolates
3.3. Risk Factors Associated with CTZ-Resistant E. coli Isolates
3.4. Risk Factors Associated with ENR-Resistant E. coli Isolates
4. Discussion
4.1. Risk Factors Associated with ENR Resistance
4.2. Risk Factors Associated with AMC Resistance
4.3. Risk Factors Associated with CTZ Resistance
4.4. Protective Factors: Healthcare Workers and Diet
4.5. Public Health and Veterinary Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Da Costa, P.M.; Loureiro, L.; Matos, A.J. Transfer of multidrug-resistant bacteria between intermingled ecological niches: The interface between humans, animals and the environment. Int. J. Environ. Res. Public Health 2013, 10, 278–294. [Google Scholar] [CrossRef] [PubMed]
- Paitan, Y. Current Trends in Antimicrobial Resistance of Escherichia coli. In Escherichia coli, a Versatile Pathogen, 2nd ed.; Frankel, G., Ron, E., Eds.; Springer: Cham, Switzerland, 2018; Volume 416, pp. 181–211. [Google Scholar]
- Mader, R.; Damborg, P.; Amat, J.P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.E.; Fitzgerald, W.; et al. EU-JAMRAI. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet). EuroSurveillance 2021, 26, 2001359. [Google Scholar] [CrossRef] [PubMed]
- Marco-Fuertes, A.; Marin, C.; Lorenzo-Rebenaque, L.; Vega, S.; Montoro-Dasi, L. Antimicrobial Resistance in Companion Animals: A New Challenge for the One Health Approach in the European Union. Vet. Sci. 2022, 9, 208. [Google Scholar] [CrossRef] [PubMed]
- Galarce, N.; Arriagada, G.; Sánchez, F.; Venegas, V.; Cornejo, J.; Lapierre, L. Antimicrobial Use in Companion Animals: Assessing Veterinarians’ Prescription Patterns through the First National Survey in Chile. Animals 2021, 11, 348. [Google Scholar] [CrossRef]
- Leite-Martins, L.; Mahú, M.I.; Costa, A.L.; Bessa, L.J.; Vaz-Pires, P.; Loureiro, L.; Niza-Ribeiro, J.; de Matos, A.J.; Martins da Costa, P. Prevalence of antimicrobial resistance in faecal enterococci from vet-visiting pets and assessment of risk factors. Vet. Rec. 2015, 176, 674. [Google Scholar] [CrossRef]
- World Health Organization. WHO’s List of Medically Important Antimicrobials: A Risk Management Tool for Mitigating Antimicrobial Resistance Due to Non-Human Use; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- World Organisation for Animal Health. WOAH List of Antimicrobial Agents of Veterinary Importance; World Organisation for Animal Health: Paris, France, 2024. [Google Scholar]
- Dohoo, I.; Martin, W.; Stryhn, H. Veterinary Epidemiologic Research, 2nd ed.; VER Inc.: Charlottetown, PE, Canada, 2009. [Google Scholar]
- Clinical Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100, 35th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2025. [Google Scholar]
- Chen, J.; Griffiths, M.W. PCR differentiation of Escherichia coli from other Gram-negative bacteria using primers derived from the nucleotide sequences flanking the gene encoding the universal stress protein. Lett. Appl. Microbiol. 1998, 27, 369–371. [Google Scholar] [CrossRef]
- Galarce, N.; Arriagada, G.; Sánchez, F.; Escobar, B.; Miranda, M.; Matus, S.; Vilches, R.; Varela, C.; Zelaya, C.; Peralta, J.; et al. Phenotypic and genotypic antimicrobial resistance in Escherichia coli isolates isolated from household dogs in Chile. Front. Vet. Sci. 2023, 10, 1233127. [Google Scholar] [CrossRef]
- Kahlmeter, G. EUCAST proposes to change the definition and usefulness of the susceptibility category ‘Intermediate’. Clin. Microbiol. Infect. 2017, 23, 894–895. [Google Scholar] [CrossRef]
- Karalliu, E.; Chung, K.Y.; MacKinnon, B.; Haile, B.; Beczkowski, P.M.; Barrs, V.R.; Elsohaby, I.; Nekouei, O. Risk factors for antimicrobial-resistant Enterobacterales in dogs: A systematic review. Front. Vet. Sci. 2024, 11, 1447707. [Google Scholar] [CrossRef]
- Gibson, J.S.; Morton, J.M.; Cobbold, R.N.; Filippich, L.J.; Trott, D.J. Risk factors for dogs becoming rectal carriers of multidrug-resistant Escherichia coli during hospitalization. Epidemiol. Infect. 2011, 139, 1511–1521. [Google Scholar] [CrossRef]
- Dazio, V.; Nigg, A.; Schmidt, J.S.; Brilhante, M.; Mauri, N.; Kuster, S.P.; Brawand, S.G.; Schüpbach-Regula, G.; Willi, B.; Endimiani, A.; et al. Acquisition and carriage of multidrug-resistant organisms in dogs and cats presented to small animal practices and clinics in Switzerland. J. Vet. Intern. Med. 2021, 35, 970–979. [Google Scholar] [CrossRef] [PubMed]
- James, C.; Dixon, R.; Talbot, L.; James, S.J.; Williams, N.; Onarinde, B.A. Assessing the Impact of Heat Treatment of Food on Antimicrobial Resistance Genes and Their Potential Uptake by Other Bacteria-A Critical Review. Antibiotics 2021, 10, 1440. [Google Scholar] [CrossRef]
- Wedley, A.L.; Dawson, S.; Maddox, T.W.; Coyne, K.P.; Pinchbeck, G.L.; Clegg, P.; Nuttall, T.; Kirchner, M.; Williams, N.J. Carriage of antimicrobial resistant Escherichia coli in dogs: Prevalence, associated risk factors and molecular characteristics. Vet. Microbiol. 2017, 199, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Procter, T.D.; Pearl, D.L.; Finley, R.L.; Leonard, E.K.; Janecko, N.; Reid-Smith, R.J.; Weese, J.S.; Peregrine, A.S.; Sargeant, J.M. A cross-sectional study examining the prevalence and risk factors for anti-microbial-resistant generic Escherichia coli in domestic dogs that frequent dog parks in three cities in south-western Ontario, Canada. Zoonoses Public Health 2014, 61, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Klümper, U.; Recker, M.; Zhang, L.; Yin, X.; Zhang, T. Selection for antimicrobial resistance is reduced when embedded in a natural microbial community. ISME J. 2019, 13, 2927–2937. [Google Scholar] [CrossRef]
- Song, T.; Park, Y.; Shamputa, I.C.; Seo, S.; Lee, S.Y.; Jeon, H.S.; Choi, H.; Lee, M.; Glynne, R.J.; Barnes, S.W.; et al. Fitness costs of rifampicin resistance in Mycobacterium tuberculosis are amplified under conditions of nutrient starvation and compensated by mutation in the β subunit of RNA polymerase. Mol. Microbiol. 2014, 91, 1106–1119. [Google Scholar] [CrossRef]
- Sealey, J.E.; Hammond, A.; Mounsey, O.; Gould, V.C.; Reyher, K.K.; Avison, M.B. Molecular ecology and risk factors for third-generation cephalosporin-resistant Escherichia coli carriage by dogs living in urban and nearby rural settings. J. Antimicrob. Chemother. 2022, 77, 2399–2405. [Google Scholar] [CrossRef]
- Salgado-Caxito, M.; Moreno-Switt, A.I.; Paes, A.C.; Shiva, C.; Munita, J.M.; Rivas, L.; Benavides, J.A. Higher Prevalence of Extended-Spectrum Cephalosporin-Resistant Enterobacterales in Dogs Attended for Enteric Viruses in Brazil Before and After Treatment with Cephalosporins. Antibiotics 2021, 10, 122. [Google Scholar] [CrossRef]
- Umeda, K.; Hase, A.; Matsuo, M.; Horimoto, T.; Ogasawara, J. Prevalence and genetic characterization of cephalosporin-resistant Enterobacteriaceae among dogs and cats in an animal shelter. J. Med. Microbiol. 2019, 68, 339–345. [Google Scholar] [CrossRef]
- Belas, A.; Salazar, A.S.; Gama, L.T.; Couto, N.; Pomba, C. Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 2014, 175, 202. [Google Scholar] [CrossRef]
- Ekakoro, J.E.; Hendrix, G.K.; Guptill, L.F.; Ruple, A. Antimicrobial susceptibility and risk factors for resistance among Escherichia coli isolated from canine specimens submitted to a diagnostic laboratory in Indiana, 2010–2019. PLoS ONE 2022, 17, e0263949. [Google Scholar] [CrossRef] [PubMed]
- Groat, E.F.; Williams, N.J.; Pinchbeck, G.; Warner, B.; Simpson, A.; Schmidt, V.M. UK dogs eating raw meat diets have higher risk of Salmonella and antimicrobial-resistant Escherichia coli faecal carriage. J. Small Anim. Pract. 2022, 63, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Morgan, G.; Pinchbeck, G.; Haldenby, S.; Schmidt, V.; Williams, N. Raw meat diets are a major risk factor for carriage of third-generation cephalosporin-resistant and multidrug-resistant E. coli by dogs in the UK. Front. Microbiol. 2024, 15, 1460143. [Google Scholar] [CrossRef] [PubMed]
- Van den Bunt, G.; Fluit, A.C.; Spaninks, M.P.; Timmerman, A.J.; Geurts, Y.; Kant, A.; Scharringa, J.; Mevius, D.; Wagenaar, J.A.; Bonten, M.J.M.; et al. Faecal carriage, risk factors, acquisition and persistence of ESBL-producing Enterobacteriaceae in dogs and cats and co-carriage with humans belonging to the same household. J. Antimicrob. Chemother. 2020, 75, 342–350. [Google Scholar] [CrossRef]
- Montgomery, M.P.; Robertson, S.; Koski, L.; Salehi, E.; Stevenson, L.M.; Silver, R.; Sundararaman, P.; Singh, A.; Joseph, L.A.; Weisner, M.B.; et al. Multidrug-Resistant Campylobacter jejuni Outbreak Linked to Puppy Exposure—United States, 2016–2018. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 1032–1035. [Google Scholar] [CrossRef]
Gene | Primers | Expected Product Size (bp) | Reference |
---|---|---|---|
uspA | F: CCGATACGCTGCCAATCAGT R: ACGCAGACCGTAGGCCAGAT | 884 | [11] |
uidA | F: TATGGAATTTCGCCGATTTT R: TGTTTGCCTCCCTGCTGCGG | 166 | [11] |
Antibiotic/Breakpoints | MIC µg/mL | Number of Isolates | Interpretation (S/I/R) |
---|---|---|---|
Amoxicillin-clavulanic acid (AMC)/ S ≤ 8 µg/mL I = 16 µg/mL R ≥ 32 µg/mL | 0.25 | 228 | S |
2 | 28 | S | |
4 | 5 | S | |
16 | 21 | I | |
32 | 19 | R | |
Ceftazidime (CTZ)/ S ≤ 4 µg/mL I = 8 µg/mL R ≥ 16 µg/mL | 0.25 | 269 | S |
0.5 | 6 | S | |
1 | 18 | S | |
2 | 5 | S | |
4 | 3 | S | |
8 | 12 | I | |
32 | 6 | R | |
Enrofloxacin (ENR)/ S ≤ 0.5 µg/mL I = 1 µg/mL R ≥ 2 µg/mL | 0.25 | 233 | S |
0.5 | 13 | S | |
1 | 31 | I | |
2 | 1 | R | |
4 | 23 | R |
Variable | Df | Deviance | AIC | LRT | Pr (>Chi) |
---|---|---|---|---|---|
X6 | 2 | 196.62 | 208.62 | 30.52 | <2 × 10−16 *** |
X25 | 2 | 179.95 | 191.95 | 13.85 | 0.0010 *** |
X28 | 1 | 173.91 | 187.91 | 7.81 | 0.0052 ** |
X35 | 1 | 173.29 | 187.29 | 7.19 | 0.0073 ** |
X38 | 1 | 175.75 | 189.75 | 9.65 | 0.0019 ** |
Variable | Coefficients | OR | IC_2.5 | IC_97.5 | Pr (>|z|) | Significance |
---|---|---|---|---|---|---|
(Intercept) | 1.2358 | 3.441 | 0.772 | 15.303 | 0.099 | . |
X6Yes | −1.1512 | 0.316 | 0.129 | 0.717 | 0.008 | ** |
X25Commercial food | −0.8765 | 0.416 | 0.123 | 1.526 | 0.164 | |
X25Homemade food | 19.0878 | 194,866,108.8 | 2.92 × 10−17 | 1.01 × 10249 | 0.990 | |
X28Yes | −2.2851 | 0.102 | 0.005 | 0.562 | 0.034 | * |
X35Yes | −1.1322 | 0.322 | 0.129 | 0.744 | 0.011 | * |
X38Yes | −1.3533 | 0.258 | 0.109 | 0.604 | 0.002 | ** |
Variable | Df | Deviance | AIC | LRT | Pr (>Chi) |
---|---|---|---|---|---|
X6 | 2 | 98.05 | 112.05 | 10.005 | 0.007 ** |
X10 | 1 | 92.05 | 108.05 | 4.009 | 0.045 * |
X11 | 2 | 100.18 | 114.18 | 12.137 | 0.002 ** |
X14 | 1 | 97.24 | 113.24 | 9.201 | 0.002 ** |
X36 | 1 | 92.82 | 108.81 | 4.774 | 0.029 * |
X37 | 1 | 93.41 | 109.41 | 5.370 | 0.021 * |
Coefficient | OR | IC_2.5 | IC_97.5 | Pr (>|z|) | Significance | |
---|---|---|---|---|---|---|
(Intercept) | −22.1098 | 2.50 × 10−10 | 0 | 4.16 × 1052 | 0.994 | |
X6Yes | 0.1711 | 1.187 | 0.346 | 4.02 | 0.781 | |
X10Male | 1.1230 | 3.074 | 1.024 | 10.29 | 0.053 | . |
X11Older than 10 years | −18.1551 | 1.30 × 10−8 | NA | 3.06 | 0.996 | |
X11Under 2 years old | 1.3548 | 3.876 | 1.255 | 12.86 | 0.021 | * |
X14Purchase | 1.7978 | 6.036 | 1.882 | 21.32 | 0.003 | ** |
X36Yes | −18.7361 | 7.30 × 10−9 | NA | 2.60 | 0.996 | |
X37Yes | 18.3003 | 88,661,041.94 | 3.28 × 10−65 | 2.81 | 0.995 |
Variable | Df | Deviance | AIC | LRT | Pr (>Chi) |
---|---|---|---|---|---|
X6 | 2 | 249.79 | 267.79 | 62.666 | <2 × 10−16 *** |
X12 | 2 | 194.79 | 212.79 | 7.669 | 0.0216 * |
X15 | 2 | 198.13 | 216.13 | 11.003 | 0.0041 ** |
X17 | 1 | 199.91 | 219.91 | 12.788 | 0.0003 *** |
X26 | 2 | 197.51 | 215.51 | 10.384 | 0.0056 ** |
X33 | 1 | 191.76 | 211.76 | 4.637 | 0.0313 * |
Coefficient | OR | IC_2.5 | IC_97.5 | Pr (>|z|) | Significance | |
---|---|---|---|---|---|---|
(Intercept) | 0.46 | 1.58 | 0.25 | 9.91 | 0.621 | |
X6Yes | −1.78 | 0.17 | 0.07 | 0.37 | 0.000 | *** |
X12Medium (between 11–27 kg) | −0.71 | 0.49 | 0.14 | 1.78 | 0.264 | |
X12Small (less than 11 kg) | 0.44 | 1.55 | 0.50 | 5.34 | 0.464 | |
X15Between 5 and 10 years old | −1.30 | 0.27 | 0.11 | 0.65 | 0.005 | ** |
X15More than 10 years | −1.31 | 0.27 | 0.07 | 0.88 | 0.041 | * |
X17Yes | 1.45 | 4.24 | 1.91 | 9.88 | 0.001 | *** |
X26Mass sales commercial establishment (supermarkets, pet-shop) | −2.00 | 0.14 | 0.03 | 0.50 | 0.004 | ** |
X26Small-sized commercial establishment (neighborhood store, fair) | −1.04 | 0.36 | 0.06 | 1.90 | 0.235 | |
X33Yes | 1.079 | 2.94 | 1.10 | 8.85 | 0.041 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelaya, C.A.; Arriagada, G.; Medina, R.; Escobar, B.; Sánchez, F.; Galarce, N.; Lapierre, L. The Risk Factors Associated with the Carriage to Critical Antimicrobial-Resistant Escherichia coli in Healthy Household Dogs: A One Health Perspective. Animals 2025, 15, 1357. https://doi.org/10.3390/ani15101357
Zelaya CA, Arriagada G, Medina R, Escobar B, Sánchez F, Galarce N, Lapierre L. The Risk Factors Associated with the Carriage to Critical Antimicrobial-Resistant Escherichia coli in Healthy Household Dogs: A One Health Perspective. Animals. 2025; 15(10):1357. https://doi.org/10.3390/ani15101357
Chicago/Turabian StyleZelaya, Carlos Alejandro, Gabriel Arriagada, Rosario Medina, Beatriz Escobar, Fernando Sánchez, Nicolás Galarce, and Lisette Lapierre. 2025. "The Risk Factors Associated with the Carriage to Critical Antimicrobial-Resistant Escherichia coli in Healthy Household Dogs: A One Health Perspective" Animals 15, no. 10: 1357. https://doi.org/10.3390/ani15101357
APA StyleZelaya, C. A., Arriagada, G., Medina, R., Escobar, B., Sánchez, F., Galarce, N., & Lapierre, L. (2025). The Risk Factors Associated with the Carriage to Critical Antimicrobial-Resistant Escherichia coli in Healthy Household Dogs: A One Health Perspective. Animals, 15(10), 1357. https://doi.org/10.3390/ani15101357